Método para calcular el grado de fluctuación de la curva de demanda de potencia eléctrica usando dimensión fractal

dc.contributor.advisorAngulo García, Fabiola
dc.contributor.advisorOsorio Lema, Mauricio
dc.contributor.authorTabares Ospina, Hector Anibal
dc.date.accessioned2021-07-08T15:33:30Z
dc.date.available2021-07-08T15:33:30Z
dc.date.issued2021-06-29
dc.descriptionilustracionesspa
dc.description.abstractEl objeto de estudio en esta tesis doctoral es la geometría fractal no lineal, que despierta el interés por su patrón gráfico fractal de formación. No obstante, la topología de los conjuntos resultantes son meras curiosidades matemáticas sin ninguna utilidad. Por lo tanto, en la primera parte de esta tesis se propone su acople con la potencia eléctrica en circuitos de corriente alterna, gracias a que ambos están defi nidos en el campo complejo. El acople resulta útil para comprobar que la potencia eléctrica alterna (resistiva, inductiva o capacitiva), también puede ser descrita mediante conjuntos fractales de Julia. Así mismo, se comprueba que las curvas de demanda de potencia eléctrica también pueden ser descritas mediante diagramas de órbitas y atractores en el plano complejo del conjunto de Mandelbrot. En la segunda parte de esta tesis, el concepto de dimensión fractal es usado para medir el grado de variación o fluctuación de las curvas demanda de potencia eléctrica. Se trata de una nueva unidad de medida con la que se caracteriza la variabilidad de la carga eléctrica, que complementa los estudios de carga en una red de distribución de potencia eléctrica. La tercera y última parte de esta tesis, versa sobre el desarrollo e implementación de un algoritmo para calcular la dimensión fractal e integración numérica de una función continua fluctuante. Las tres partes de la tesis están relacionados entre sí y con su aplicación en la ingeniería eléctrica. (Tomado de la fuente)spa
dc.description.abstractThe object of study in this doctoral thesis is nonlinear fractal geometry, which arouses interest due to its fractal graphic pattern of formation. However, the topology of the resulting sets are mere mathematical curiosities without any use. Therefore, in the rst part of this thesis, its coupling with electrical power in alternating current circuits is proposed, thanks to the fact that both are de fined in the complex field. The coupling is useful to verify that the alternating electrical power (resistive, inductive or capacitive), can also be described by means of Julia fractal sets. Likewise, it is found that the electrical power demand curves can also be described by means of orbits and attractors diagrams in the complex plane of the Mandelbrot set. In the second part of this thesis, the concept of fractal dimension is used to measure the degree of variation or fluctuation of the electrical power demand curves. It is a new unit of measurement with which the variability of the electrical load is characterized, which complements the load studies in an electrical power distribution network. In the third and last part of this thesis deals with the development and implementation of an algorithm to calculate the fractal dimension and numerical integration of a fluctuating continuous function. The three parts of the thesis are related to each other and to its application in electrical engineering. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAnálisis de fenómenos no linealesspa
dc.format.extent228 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79777
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.references[Barnsley et al., 1988] Barnsley, M., Devaney, R., Mandelbrot, B., Peitgen, H., Saupe, D., and Voss, R. (1988). The Science of Fractal Images. H.-O. Peitgen D. Saupe, eds.spa
dc.relation.references[Besicovitch, 1929] Besicovitch, A. (1929). On linear sets of points of fractional dimension. Mathematische Annalen, 101:161-193.spa
dc.relation.references[Binimelis, 2011] Binimelis, M. (2011). Una nueva manera de ver el mundo. RDA, Barcelona.spa
dc.relation.references[Borjon, 2002] Borjon, J. (2002). Caos, Orden Y Desorden En El Sistema Monetario Y Financiero Internacional. ed. Y. Valdes., New York.spa
dc.relation.references[Cantor, 1884] Cantor, C. (1884). On the power of perfect set of points. Acta Mathematica, 4:381-392.spa
dc.relation.references[Cayley, 1879] Cayley, A. (1879). The newton{fourier imaginary problem. The Newton-Fourier Imaginary Problem, 2:97.spa
dc.relation.references[Chapra and Canale, 2006] Chapra, S. and Canale, R. (2006). Numerical methods for engineers. The McGraw-Hill Companies, México.spa
dc.relation.references[Chen and Huang, 2019] Chen, L. and Huang, Y. (2019). Modeling growth curve of fractal dimension of urban form of beijing. Physica A., 523:1038-1056.spa
dc.relation.references[Coloner et al., 2018] Coloner, J., Naranjo, A., Janvier, V., and Mossi, T. (2018). Evaluation of fractal dimension e ectiveness for damage detection in retinal background. J. Comput. Appl. Math., 337:341-353.spa
dc.relation.references[Cui and Yng, 2009] Cui, H. and Yng, L. (2009). Short-term electricity price forecast based on improved fractal theory. Technical report, International Conference on Computer Engineering and Technology.spa
dc.relation.references[Dandan et al., 2017] Dandan, Y., Meifeng, D., Yu, S., and Weiyi, S. (2017). Average weighted receiving time on the non-homogeneous double-weighted fractal networks. Phys. A Stat. Mech. Its Appl, 473:390-402.spa
dc.relation.references[Davis and Baylis, 1995] Davis, M. and Baylis, J. (1995). The nature and power of mathematics.The Mathematical Gazette, 2:79.spa
dc.relation.references[Devaney, 1990] Devaney, R. (1990). Chaos, fractals, and dynamics: Computer experiments in modern mathematics. Addison-Wesley, ed., Massachusetts.spa
dc.relation.references[Fatou, 1920] Fatou, P. (1920). Sur les equations fonctionelles. Bull. Sci. Math, France, 48:208-314.spa
dc.relation.references[Feigenbaum, 1991] Feigenbaum, A. (1991). Total quality control. McGraw-Hill, ed., New York.spa
dc.relation.references[Garcia et al., 2018] Garcia, T., Tamura Ozaki, G., Castoldi, R., Koike, T., Trindade Camargo, R., and F., S. C. (2018). Fractal dimension in the evaluation of di erent treatments of muscular injury in rats. Tissue and Cell, 54:120-126.spa
dc.relation.references[Gun-Baek et al., 2017] Gun-Baek, S., Hye-Rim, S., and Gang-Gyoo, J. (2017). Enhancement of the box-counting algorithm for fractal dimension estimation. Pattern Recognition Letters, 98:53-58.spa
dc.relation.references[Guosheng et al., 2019] Guosheng, F., Weimin, X., Feng, Y., Yi, Y., and Yuan, W. (2019). Surface fractal dimension of bentonite a ected by long-term corrosion in alkaline solution. Appl. Clay Sci., 175:94-101.spa
dc.relation.references[Hausdorff, 1919] Hausdorff, F. (1919). Der wertvorrat einer bilinearform. Mathematische Zeitschrift, 3:314-316.spa
dc.relation.references[Hernández et al., 2018] Hernández, J., Mejía-Rosales, S., and Gama Goicochea, A. (2018). Fractal properties of biophysical models of pericellular brushes can be used to di erentiate between cancerous and normal cervical epithelial cells. Colloids and Surfaces B: Biointerfaces, 170:572-577.spa
dc.relation.references[Hénon, 1976] Hénon, M. (1976). A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50:69-77.spa
dc.relation.references[Jelica et al., 2018] Jelica, D., Taljegard, M., Thorson, L., and Johnsson, F. (2018). Hourly electricity demand from an electric road system a swedish case study. Applied Energy, 228:141-148.spa
dc.relation.references[Jian. et al., 2009] Jian., QianDu., and CaixinSum. (2009). An improved box-counting method for image fractal dimension estimation. Pattern Recognition, 42:2460-2469.spa
dc.relation.references[Jiménez et al., 2019] Jiménez, J., Anzola, A., and Jimenez-Triana, J. (2019). Pedestrian counting estimation based on fractal dimension. 5:1-20.spa
dc.relation.references[Jinyan et al., 2017] Jinyan, Y., Yanggrong, L., and Hongyong, C. (2017). Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain. Journal of Mathematical Analysis and Applications, 450:1180-1207.spa
dc.relation.references[Julia, 1918] Julia, G. (1918). Memoire sur literacion des fonctions rationelles. J. Math. Pures et App, 8:47-245.spa
dc.relation.references[Junfeng et al., 2017] Junfeng, X., Zengyun, J., and Xin, L. (2017). An application of box counting method for measuring phase fraction. Measurement, 100:297-300.spa
dc.relation.references[Katok, 1996] Katok, A. andHasselblatt, B. (1996). Introduction to the modern theory of dynamical systems. In Cambridge University Press., Cambridge.spa
dc.relation.references[Koch, 1904] Koch, H. (1904). Sur une courbe continue sans tangente, obtenue par une construction g eometrique elementaire. Arkiv For Matematik Astronomi Och Fysik, 1:681- 704.spa
dc.relation.references[Kumar and Chaubey, 2012] Kumar, R. and Chaubey, N. (2012). On the design of treetype ultra wideband fractal antenna for ds-cdma system. J. Microwaves, Optoelectron. Electromagn. Appl., 11:107-121.spa
dc.relation.references[Lindberg et al., 2019a] Lindberg, K., Bakker, S., and Sartori, I. (2019a). Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts. Utilities Policy, 58:63-88.spa
dc.relation.references[Lindberg et al., 2019b] Lindberg, K., Seljom, P., Madsen, H., Fisher, D., and Korpas, M. (2019b). Long-term electricity load forecasting: Current and future trends. Utilities Policy, 58:102-119.spa
dc.relation.references[Lorenz, 1963] Lorenz, E. (1963). Deterministic nonperiodic flow. J. Atmos. Sci., 20:130-141.spa
dc.relation.references[Losa, 2012] Losa, G. (2012). Fractals and their contribution to biology and medicine. Medicographia, 34:365-374.spa
dc.relation.references[Mamun-Ur-Rashid et al., 2017] Mamun-Ur-Rashid, S., Hossain, M., and Parvin, M. (2017). Numerical integration schemes for unequal data spacing. Am. J. Appl. Math., 2:48-56.spa
dc.relation.references[Mandelbrot, 1967] Mandelbrot, B. (1967). How long is the coast of britain? Statistical Self-Similarity and Fractional Dimension, 156:636-638.spa
dc.relation.references[Mandelbrot and HudsonStrogatz, 2004] Mandelbrot, B. and HudsonStrogatz, R. (2004). Practical Optimization. Ruin and Reward, Profile Books, London.spa
dc.relation.references[Martos et al., 2017] Martos, E., Lapuerta, F., Exp osito, M., and Sanmiguel-Rojas, J. (2017). Overestimation of the fractal dimension from projections of soot agglomerates. Powder Technol., 311:528-536.spa
dc.relation.references[Mathews and Fink, 2000] Mathews, J. and Fink, K. (2000). Numerical methods using MATLAB. P. HALL, ed., Madrid.spa
dc.relation.references[Milicic, 2018] Mili ci c, S. (2018). Box-counting dimensions of generalised fractal nests. Chaos, Solitons and Fractals, 113:125-134.spa
dc.relation.references[Moon et al., 2018] Moon, H., Youngjun, P., Jeong, C., and Lee, J. (2018). Forecasting electricity demand of electric vehicles by analyzing consumers charging patterns. Transportation Research Part D, 62:64-79.spa
dc.relation.references[Moon et al., 2014] Moon, P., Muday, J., Raynor, S., Schirillo, J., Boydston, C., Fairbanks, M., and Taylor, R. (2014). Fractal images induce fractal pupil dilations and constrictions. International Journal of Psychophysiology, 93(3):316-321.spa
dc.relation.references[Motlagh et al., 2019] Motlagh, C., Berry, A., and ONeil, L. (2019). Clustering of residential electricity customers using load time series. Applied Energy, 58:102-119.spa
dc.relation.references[Navascu es, 2013] Navascu es, M. (2013). Numerical integration of a ne fractal functions. J. Comput. Appl. Math., 252:169-176.spa
dc.relation.references[Pashminehazar et al., 2019] Pashminehazar, E., Kharaghani, R., and Tsotsas, A. (2019). Determination of fractal dimension and prefactor of agglomerates with irregular structure. Powder Technol., 343:765-774.spa
dc.relation.references[Poincar e, 1892] Poincar e, H. (1892). Les methodes nouvelles de la mecanique celeste. GAUTHIER-VILLARS ET FILS, Paris.spa
dc.relation.references[Popovic et al., 2018] Popovic, N., Radunovic, M., Badnjar, J., and Popovic, T. (2018). Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes. Microvascular Research, 118:36-43.spa
dc.relation.references[Ranjan et al., 2019] Ranjan, S., Mishra, J., and Palai, G. (2019). Analysing roughness of surface through fractal dimension: A review. Image and Vision Computing, 89:21-34.spa
dc.relation.references[Rezaee, 2019] Rezaee, A. (2019). Optimisation of demand response in electric power systems, a review. Renewable and Sustainable Energy Reviews, 103:308-319.spa
dc.relation.references[Rodriguez et al., 2016] Rodriguez, V., Prieto, B., Correa, H., Soracipa, M., Mendez, P., Bernal, C., Hoyos, O., Valero, A., and Velasco, R. (2016). Nueva metodologia de evaluacion del holter basada en los sistemas dinamicos y la geometria fractal: confirmacion de su aplicabilidad a nivel clínico. Rev. La Univ. Ind. Santander. Salud., 48:27-36.spa
dc.relation.references[Salvo and Piacquadio, 2017] Salvo, G. and Piacquadio, M. (2017). Multifractal analysis of electricity demand as a tool for spatial forecasting. Energy for Sustainable Development, 38:67-76.spa
dc.relation.references[Sierpinski, 1915] Sierpinski, W. (1915). Sur une courbe dont tout point est un point de ramification. Comptes Rendus, 160:302-305.spa
dc.relation.references[Silva and Florindo, 2019] Silva, P. and Florindo, J. (2019). A statistical descriptor for texture images based on the box counting fractal dimension. 528:1-13.spa
dc.relation.references[Soumya et al., 2018] Soumya, N., Jibitesh, M., Asimanada, K., and Gopinath, P. (2018). Fractal dimension of rgb color images. Elsevier-Optik, 162:196-205.spa
dc.relation.references[Strogatz, 2018] Strogatz, S. (2018). Nonlinear Dynamics and Chaos. Perseus Books Publisher, New York.spa
dc.relation.references[Swain et al., 2019] Swain, R., Roy, S., Mukherjee, P., and Sawkar, B. (2019). Fractal dimension and its translation into a model of gold spatial proxy. Ore Geol. Rev., 110:1-10.spa
dc.relation.references[Tabares-Ospina et al., 2020a] Tabares-Ospina, H., Angulo, F., and Osorio, M. (2020a). New method to calculate the energy and fractal dimension of the daily electrical load. Fractals, 28:2050135 (12 pages).spa
dc.relation.references[Tabares-Ospina et al., 2020b] Tabares-Ospina, H., Angulo, F., and Osorio, M. (2020b). A new methodology to analyze the dynamic of daily power demand with attractors into the mandelbrot set. Fractals, 28:2050003 (9 pages).spa
dc.relation.references[Tabares-Ospina et al., 2019] Tabares-Ospina, H., Candelo-Becerra, J., and Hoyos-Velasco, F. (2019). Fractal representation of the power demand based on topological properties of julia sets. Int. J. Electr. Comput. Eng., 4:31-38.spa
dc.relation.references[Tabares-Ospina and Osorio, 2020a] Tabares-Ospina, H. and Osorio, M. (2020a). Characterization of the resistive and inductive loads of an energy distribution systems with julia fractal sets. Fractals, 28:2050082 (9 pages).spa
dc.relation.references[Tabares-Ospina and Osorio, 2020b] Tabares-Ospina, H. and Osorio, M. (2020b). Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of mandelbrot set. Discrete and Continuous Dynamical Systems Series B, 25:1895-1905.spa
dc.relation.references[Tabares-Ospina and Osorio, 2021] Tabares-Ospina, H. and Osorio, M. (2021). Algorithm to calculate the fractal dimension and numerical integration of fluctuating continuous functions. Fractals, tal:X-Y.spa
dc.relation.references[Wem et al., 2019] Wem, L., Zhou, K., and Yang, S. (2019). A shape-based clustering method for pattern recognition of residential electricity consumption. Journal of Cleaner Production, 212:475-488.spa
dc.relation.references[Willis, 2002] Willis, H. (2002). Spatial Electric Load Forecasting. M. Dekker, ed., New York.spa
dc.relation.references[Yang et al., 2019] Yang, F., Zhang, X., Ma, R., Yang, S., and Wand, X. (2019). Fractal dimension of concrete meso-structure based on x-ray computed tomography. Powder Technol., 350:91-99.spa
dc.relation.references[Yilmaz et al., 2019] Yilmaz, S., Chambers, J., and Patel, M. (2019). Comparison of clustering approaches for domestic electricity load profile characterisation - implications for demand side management. Energy, 180:665-677.spa
dc.relation.references[Yongfu, 2018] Yongfu, X. (2018). Fractal dimension of demolition waste fragmentation and its implication of compactness. Powder Technol., 339:922-929.spa
dc.relation.references[Yuan-jia and Ming-Yue, 2018] Yuan-jia, M. and Ming-Yue, Z. (2018). Fractal and multifractal features of the broadband power line communication signals. Comput. Electr. Eng, 72:566-576.spa
dc.relation.references[Zaletel et al., 2015] Zaletel, I., Ristanovic, D., Stefanovic, B., and Puska s, N. (2015). Modified richardsons method versus the box-counting method in neuroscience. Journal of Neuroscience Methods, 242:93-96.spa
dc.relation.references[Zhai, 2015] Zhai, M. (2015). A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. International Journal of Electrical Power Energy Systems, 69:241-245.spa
dc.relation.references[Zhao et al., 2016] Zhao, Z., Zhu, J., and Xia, B. (2016). Multi-fractal fluctuation features of thermal power coal price in china. Energy, 117:10-18.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembDemanda de energía eléctrica
dc.subject.proposalMatemáticas y estadísticaspa
dc.subject.proposalAlgoritmospa
dc.subject.proposalGeometría fractalspa
dc.subject.proposalMathematics and statisticseng
dc.subject.proposalAlgorithmeng
dc.subject.proposalFractal geometryeng
dc.subject.proposalElectricityeng
dc.subject.proposalElectricidadspa
dc.titleMétodo para calcular el grado de fluctuación de la curva de demanda de potencia eléctrica usando dimensión fractalspa
dc.title.translatedMethod to calculate the degree of fluctuation of the electrical power demand curve using fractal dimension
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameINSTITUCION UNIVERSITARIA PASCUAL BRAVOspa
oaire.fundernameSAPIENCIA-MEDELLINspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71703810.2021.pdf
Tamaño:
12.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: