Evaluación del potencial de la bioprospección de recursos naturales para el descubrimiento de nuevos agentes terapéuticos en salud pública

dc.contributor.advisorHenao Riveros, Sandra Consuelo
dc.contributor.authorRodriguez Pava, Cristian Nicolas
dc.date.accessioned2025-04-07T16:29:06Z
dc.date.available2025-04-07T16:29:06Z
dc.date.issued2025-03-07
dc.descriptionilustraciones, ilustraciones, tablasspa
dc.description.abstractLas crecientes amenazas a la salud pública, como enfermedades crónicas, infecciones resistentes y la escasez de nuevos tratamientos, destacan la urgencia de soluciones innovadoras. En este contexto, Colombia, como uno de los países más biodiversos del mundo, ofrece un enorme potencial para la Bioprospección, definida como la exploración sistemática de la biodiversidad en busca de compuestos bioactivos con aplicaciones terapéuticas. Este campo abarca dimensiones económicas, sociales, éticas y políticas, reguladas por normativas como el Convenio sobre la Diversidad Biológica y el Protocolo de Nagoya. La Bioprospección en Colombia puede impulsar el desarrollo de terapias novedosas y el crecimiento económico, siempre que se respeten principios de equidad en el reparto de beneficios y se priorice la conservación de la biodiversidad. Este estudio evaluó el potencial de la Bioprospección de recursos naturales como estrategia para descubrir nuevos agentes terapéuticos en salud pública. Mediante una revisión bibliográfica y un análisis cualitativo con herramientas de codificación, se examinaron estudios relevantes, comparando Bioprospección terrestre y marina, y revisando marcos normativos globales y locales. Los resultados identificaron compuestos prometedores antimicrobianos, antiinflamatorios y anticancerígenos con casos exitosos en la Amazonía y ecosistemas marinos. Se concluye que la Bioprospección es una oportunidad clave para nuevos tratamientos, aunque enfrenta retos como la falta de financiación y la implementación efectiva de regulaciones. Se recomienda un enfoque sostenible y equitativo que integre a las comunidades y proteja la biodiversidad, posicionando a Colombia como líder si se fortalecen la normativa y la colaboración entre actores (Texto tomado de la fuente)spa
dc.description.abstractThe escalating threats to public health, including chronic diseases, resistant infections, and the scarcity of new treatments, underscore the urgent need for innovative solutions. In this context, Colombia, one of the world’s most biodiverse countries, holds immense potential for bioprospecting defined as the systematic exploration of biodiversity to identify bioactive compounds with therapeutic applications. This field encompasses economic, social, ethical, and political dimensions, governed by frameworks such as the Convention on Biological Diversity and the Nagoya Protocol. Bioprospecting in Colombia can drive the development of novel therapies and economic growth, provided equitable benefit-sharing and biodiversity conservation are prioritized. This study assessed the potential of bioprospecting natural resources as a strategy for discovering new therapeutic agents in public health. Through a literature review and qualitative analysis using coding tools, relevant studies were examined, comparing terrestrial and marine bioprospecting and reviewing global and local regulations. Results identified promising compounds antimicrobial, anti-inflammatory, and anticáncer with successful cases from the Amazon and marine ecosystems. The findings highlight bioprospecting as a key opportunity for new treatments, though it faces challenges like insufficient funding and regulatory implementation. A sustainable, equitable approach that integrates communities and safeguards biodiversity is recommended, positioning Colombia as a leader if regulations and stakeholder collaboration are strengthened.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Públicaspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87867
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Salud Públicaspa
dc.relation.referencesAggarwal, B. B., Gupta, S. C., & Sung, B. (2021). Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. British Journal of Pharmacology, 178(5), 1021-1035spa
dc.relation.referencesAli, S., et al. (2021). Biopharming: A novel approach for vaccine production during pandemics. Frontiers in Plant Science, 12, Article 678123spa
dc.relation.referencesAlharbi, N., et al. (2021). Marine natural products: A treasure trove for therapeutic discovery. Marine Drugs, 19(5), 267-289spa
dc.relation.referencesAlonso-Álvarez, S., Pascual, M., & Vidriales, M. B. (2022). Plitidepsin: A novel marine-derived anticancer agent for multiple myeloma and solid tumors. Cancer Treatment Reviews, 105, Article 102368.spa
dc.relation.referencesAtanasov, A. G., et al. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216.spa
dc.relation.referencesBachhav, S. S., Bhutada, M. S., & Patil, S. P. (2021). Bioactive diterpenoids from Azadirachta indica: Antimicrobial and anticancer potential. Phytochemistry Reviews, 20(3), 567-582spa
dc.relation.referencesBalick, M. J., & Cox, P. A. (2020). Plants, people, and culture: The science of ethnobotany. CRC Press.spa
dc.relation.referencesBalt, R. H. (2017). Molecular engineering approaches to peptide, polyketide and other antibiotics. Nature Biotechnology, 34(12), 1215-1225.spa
dc.relation.referencesBanco Mundial. (2017). Drug-resistant infections: A threat to our economic future.spa
dc.relation.referencesBanco Mundial. (2022). Gasto en investigación y desarrollo (% del PIB) - Colombia.spa
dc.relation.referencesBanerjee, S., et al. (2020). Teixobactin: A new hope against resistant pathogens. Journal of Antibiotics, 73(4), 215-223.spa
dc.relation.referencesBeattie, A. J. (2011). New products and industries from biodiversity. En Biodiversity and human health (pp. 45-60). Island Press.spa
dc.relation.referencesBerdy, J. (2005). Bioactive microbial metabolites. Journal of Antibiotics, 58(1), 1-26spa
dc.relation.referencesBerdy, J. (2020). Bioactive compounds from marine ecosystems: Opportunities and challenges. Journal of Natural Products, 83(5), 1456-1468spa
dc.relation.referencesBIO. (2022). Biotechnology Innovation Organization annual report.spa
dc.relation.referencesBlunt, J. W., Copp, B. R., & Keyzers, R. A. (2021). Marine natural products from extreme environments. Natural Product Reports, 38(4), 765-798.spa
dc.relation.referencesBlunt, J. W., Copp, B. R., Munro, M. H. G., Northcote, P. T., & Prinsep, M. R. (2013). Marine natural products. Natural Product Reports, 30(2), 237-323spa
dc.relation.referencesBouslimani, A., Porto, C., & Dorrestein, P. C. (2021). Mass spectrometry in natural product discovery. Chemical Reviews, 121(9), 5678-5710spa
dc.relation.referencesCarrizosa, S. (2012). Análisis comparativo de modelos internacionales de Bioprospección: Implicaciones para la conservación de la biodiversidad y la distribución equitativa de beneficios. En L. M. Melgarejo, J. Sánchez, A. Chaparro, F. Newmark, M. Santos, C. Burbano, & C. Reyes (Eds.), Aproximación al estado actual de la Bioprospección en Colombia (pp. 171-192). Universidad Nacional de Colombia, Bogotá: Serie de Documentos Generales INVEMAR 10.spa
dc.relation.referencesChen, S., Li, X., & Wang, Y. (2020). Traditional Chinese medicine and modern bioprospecting. Journal of Ethnopharmacology, 259, Article 112928.spa
dc.relation.referencesComunidad Andina. (1996). Decisión 391: Régimen común sobre acceso a los recursos genéticos.spa
dc.relation.referencesCongreso de la República de Colombia. (1991). Ley 21 de 1991: Por la cual se aprueba el Convenio 169 de la OIT.spa
dc.relation.referencesCongreso de la República de Colombia. (1994). Ley 165 de 1994: Por medio de la cual se aprueba el Convenio sobre la Diversidad Biológica.spa
dc.relation.referencesCongreso de la República del Perú. (2002). Ley Nº 27811: Régimen de protección de los conocimientos colectivos de los pueblos indígenas.spa
dc.relation.referencesConvention on Biological Diversity. (1992). Convention on Biological Diversity. United Nations.spa
dc.relation.referencesCragg, G. M., & Newman, D. J. (2020). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 19(5), 351-364.spa
dc.relation.referencesCruz, J., et al. (2021). Marine microorganisms as a source of novel antimicrobial agents: Exploring sponges and cyanobacteria. Marine Drugs, 19(6), 325.spa
dc.relation.referencesDaza, J. M. (2020). Retos en la implementación de marcos normativos para la Bioprospección en Colombia. Revista Colombiana de Derecho Ambiental, 9(2), 45-67.spa
dc.relation.referencesDevinsky, O., Cross, J. H., & Laux, L. (2016). Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. New England Journal of Medicine, 376(21), 2011-2020.spa
dc.relation.referencesDíaz, J. (2019). Bioprospección como herramienta para el desarrollo sostenible: Un análisis de los recursos biológicos y genéticos en Colombia [Tesis de maestría]. Universidad Nacional de Colombia, Facultad de Derecho.spa
dc.relation.referencesDíaz, S. (2019). Biopiratería en América Latina: Casos de quinua y ayahuasca. Revista Latinoamericana de Estudios Socioambientales, 15(2), 34-50.spa
dc.relation.referencesEng, J., Kleinman, W. A., Singh, L., Singh, G., & Raufman, J. P. (1992). Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Journal of Biological Chemistry, 267(11), 7402-7405.spa
dc.relation.referencesFAO. (2009). Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura. Organización de las Naciones Unidas para la Alimentación y la Agricultura.spa
dc.relation.referencesFenical, W., Jensen, P. R., & Cheng, X. C. (2021). Marine microbial natural products: Challenges in drug development. Annual Review of Microbiology, 75, 449-467spa
dc.relation.referencesFernández, M., et al. (2020). Bioactive compounds from marine species: Potential applications in pharmacology and regenerative medicine. Journal of Marine Biotechnology, 22(4), 456-472.spa
dc.relation.referencesFerreira, S. H., Bartelt, D. C., & Greene, L. J. (1970). Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry, 9(13), 2583-2593.spa
dc.relation.referencesFitch, R. W., Garraffo, H. M., Spande, T. F., & Daly, J. W. (2012). Epibatidine: From frog alkaloid to analgesic drug candidate. Natural Product Reports, 29(10), 1127-1138. spa
dc.relation.referencesForsberg, K. J., et al. (2021). Sustainable alternatives to antibiotics in agriculture. Nature Sustainability, 4(5), 456-463.spa
dc.relation.referencesGarcía, M., et al. (2019). Croton lechleri sap in wound healing: Traditional use and scientific evidence. Phytomedicine, 62, 152932. spa
dc.relation.referencesGARDP. (2020). Annual report 2020. Global Antibiotic Research and Development Partnership.spa
dc.relation.referencesGaribaldi, L. A., Pérez-Méndez, N., & Casas, A. (2021). Bioprospecting and economic diversification. Sustainability, 13(8), Article 4567.spa
dc.relation.referencesGerwick, W. H., & Moore, B. S. (2021). Lessons from the sea: Marine natural products in clinical trials. Chemical Reviews, 121(10), 6148-6178.spa
dc.relation.referencesGibbons, S., et al. (2021). Natural products as a resource for antimicrobial, anticancer, and anti-inflammatory agents. Natural Product Reports, 38(5), 910-928.spa
dc.relation.referencesGomes, F. C., Silva, M. R., & Almeida, R. N. (2020). Neuroprotective potential of Uncaria tomentosa in neurodegenerative diseases. Journal of Ethnopharmacology, 258, Article 112875.spa
dc.relation.referencesGómez, J. (2020). Patentes biopiratas y desafíos legales en Colombia, Brasil e India. Biodiversidad y Derecho, 12(3), 89-105.spa
dc.relation.referencesGómez, L. (2014). Bioprospección y desarrollo sostenible: Una perspectiva económica, social y ética. Revista de Estudios Ambientales y Sociales, 8(2), 45-67.spa
dc.relation.referencesGonzález, L., et al. (2020). Endophytic fungi and tropical plants from Colombia: A reservoir of bioactive compounds against multidrug-resistant bacteria. Phytochemistry Letters, 40, 123-130.spa
dc.relation.referencesGuerrero, J., et al. (2021a). Bioprospecting Colombian biodiversity: A source of therapeutic agents for modern medicine. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(2), 123-145.spa
dc.relation.referencesGuerrero, J., et al. (2021b). Bioprospecting Colombian medicinal plants: A source of therapeutic agents. Journal of Ethnopharmacology, 278, Article 114256.spa
dc.relation.referencesGuerrero-Álvarez, J., et al. (2021). Bioprospección en Colombia: Potencial de la biodiversidad para nuevos fármacos. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(2), 123-145.spa
dc.relation.referencesGupta, V. K., Rastogi, A., & Nayak, A. (2021). Traditional Knowledge Digital Library: A tool against biopiracy. Journal of Intellectual Property Rights, 26(2), 89-97.spa
dc.relation.referencesGutiérrez, R. (2016). Regulación de la Bioprospección en México: Brechas y oportunidades. Revista Mexicana de Biodiversidad, 87(3), 890-902.spa
dc.relation.referencesHandelsman, J. (2020). Metagenomics and microbial bioprospecting. Nature Reviews Microbiology, 18(10), 569-575.spa
dc.relation.referencesHarvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2), 111-129.spa
dc.relation.referencesHuang, Y., Liu, X., & Wang, Z. (2021). Plinabulin: A novel small-molecule with potent anti-cancer and anti-inflammatory activities. Journal of Hematology & Oncology, 14(1),spa
dc.relation.referencesHuemer, M., Sánchez, P., & Torres, L. (2020). Discodermolide: A marine-derived anticancer compound in clinical trials. Marine Drugs, 18(12), Article 632.spa
dc.relation.referencesHuitrón-Ramírez, F., Sánchez, J., & Morales, P. (2022). Biodiversity and public health: A holistic approach. EcoHealth, 19(2), 134-145.spa
dc.relation.referencesJiménez, P. (2021). Strengthening local capacities for bioprospecting in Colombia. Journal of Environmental Management, 290, Article 112678.spa
dc.relation.referencesKennedy, D. O., Wightman, E. L., & Okello, E. J. (2019). Neuroprotective effects of Ginkgo biloba: Preclinical and clinical evidence. Phytotherapy Research, 33(5), 1119-1134.spa
dc.relation.referencesKim, H., et al. (2021). Genomic and metagenomic approaches in bioprospecting: Unlocking the therapeutic potential of unculturable microorganisms. Applied Microbiology and Biotechnology, 105(18), 6789-6802spa
dc.relation.referencesKim, J., & Lee, S. (2020). South Korea’s R&D investment strategy. Science and Public Policy, 47(4), 512-523.spa
dc.relation.referencesKingston, D. G. I. (2021). Taxol and its analogs: A success story in natural product drug discovery. Journal of Natural Products, 84(3), 918-929.spa
dc.relation.referencesKöser, C. U., et al. (2014). Antimicrobial resistance: A global challenge. The Lancet, 384(9945), 747-749.spa
dc.relation.referencesLaird, S. A., Wynberg, R., & McLain, R. (2020). Biodiversity and benefit-sharing: Lessons from international collaboration. Environmental Science & Policy, 113, 45-56.spa
dc.relation.referencesLattanzi, S., Brigo, F., & Trinka, E. (2018). Efficacy and safety of cannabidiol in epilepsy: A systematic review. Epilepsia, 59(8), 1541-1554.spa
dc.relation.referencesLauritano, C. (2018). Marine bioprospecting: Opportunities and challenges. Marine Biotechnology, 20(3), 345-356.spa
dc.relation.referencesLebeaux, D., et al. (2014). Biofilm-related infections: Bridging the gap between clinical management and fundamental research. Clinical Microbiology Reviews, 27(3), 456-478.spa
dc.relation.referencesLing, L. L., Schneider, T., & Peoples, A. J. (2015). A new antibiotic kills pathogens without detectable resistance. Nature, 517(7535), 455-459.spa
dc.relation.referencesMackey, T. K. (2012). Global health diplomacy and the governance of antimicrobial resistance. Journal of Global Health, 2(1), Article 010301.spa
dc.relation.referencesMackey, T. K., & Liang, B. A. (2012). Integrating biodiversity conservation and equitable benefit-sharing: The Nagoya Protocol framework. Global Health Action, 5(1), 1-10.spa
dc.relation.referencesMayer, A. M. S., Guerrero, A. J., & Rodríguez, A. D. (2020). Bryostatin: Marine-derived compound with immunotherapeutic potential. Marine Biotechnology, 22(4), 489-502.spa
dc.relation.referencesMgbeoji, I. (2006). Global biopiracy: Patents, plants, and indigenous knowledge. Cornell University Press.spa
dc.relation.referencesMisra, A. L., Pontani, R. B., & Vadlamani, N. L. (2020). Non-addictive coca alkaloids: Potential in local anesthesia. Journal of Medicinal Chemistry, 63(10), 5211-5223.spa
dc.relation.referencesMittermeier, R. A., Myers, N., & Robles Gil, P. (2020). Biodiversity hotspots and the future of bioprospecting. Conservation Biology, 34(5), 1123-1135.spa
dc.relation.referencesMolina, D., et al. (2022). Bioactive compounds from Coffea arabica and Laurelia sempervirens: Potential antimicrobial agents. Phytochemistry Letters, 48, 15-22.spa
dc.relation.referencesMoreno, L., Pérez, J., & Vargas, M. (2020). Challenges in implementing the Nagoya Protocol in developing countries. Journal of Environmental Management, 265, Article 110567.spa
dc.relation.referencesMorgera, E., Tsioumani, E., & Buck, M. (2014). Unraveling the Nagoya Protocol: A commentary on the Nagoya Protocol on access and benefit-sharing. Brill Nijhoff.spa
dc.relation.referencesMounce, R., Smith, P., & Brockington, D. (2021). Conservation strategies for genetic resources in bioprospecting. Biodiversity and Conservation, 30(6), 1789-1804.spa
dc.relation.referencesNewman, D. J. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311-335.spa
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803.spa
dc.relation.referencesOIT. (1989). Convenio 169 sobre pueblos indígenas y tribales. Organización Internacional del Trabajo.spa
dc.relation.referencesO’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance.spa
dc.relation.referencesPaddon, C. J., Keasling, J. D., & Newman, J. D. (2021). Synthetic biology and natural product synthesis: Semisynthetic artemisinin. Nature Chemical Biology, 17(5), 489-497.spa
dc.relation.referencesPatiño, J., Fernández, M., & Ramírez, B. (2021). Amazonian biodiversity and its potential for bioprospecting. Biodiversity and Conservation, 30(7), 1895-1912.spa
dc.relation.referencesPaz, A. (2016). Biodiversidad y Bioprospección: Innovación en medicina y biotecnología desde los ecosistemas colombianos. En Avances en investigación para el desarrollo sostenible (pp. 89-110). Corporación Colombiana de Investigación Agropecuaria (CORPOICA).spa
dc.relation.referencesPereira, F. (2018). Genomic mining and AI in natural product discovery. Natural Product Reports, 35(9), 897-905.spa
dc.relation.referencesPieroni, A., Quave, C. L., & Giusti, M. E. (2021). Ethnopharmacology and public health in marginalized communities. Journal of Ethnopharmacology, 276, Article 114192.spa
dc.relation.referencesPinto, J., et al. (2021). Antifungal volatile compounds from Eugenia uniflora. Mycology, 12(3), 189-198.spa
dc.relation.referencesPires, A., Almeida, R., & Costa, S. (2021). Sustainability in bioprospecting: Balancing environmental, social, and economic dimensions. Sustainability Science, 16(3), 789-802.spa
dc.relation.referencesPires, D., et al. (2021). Biodiversity and drug discovery: A sustainable approach. Frontiers in Pharmacology, 12, Article 678123.spa
dc.relation.referencesPisanti, S., Picardi, P., & Bifulco, M. (2019). Ethical and legal challenges in bioprospecting of controlled plants. Frontiers in Plant Science, 10, Article 1245.spa
dc.relation.referencesPlotkin, M. J. (2020). Ethnobotany and the search for new drugs. Island Press.spa
dc.relation.referencesProtocolo de Nagoya. (2010). Protocolo de Nagoya sobre acceso a los recursos genéticos y participación justa y equitativa en los beneficios que se deriven de su utilización. United Nations.spa
dc.relation.referencesQuave, C. L., & Pieroni, A. (2022). Ethnomedicine and bioprospecting: Bridging traditional and modern science. Trends in Biotechnology, 40(6), 678-690.spa
dc.relation.referencesRayan, A. (2023). Antibacterial properties of Aloe vera extracts against resistant pathogens. Journal of Ethnopharmacology, 298, Article 115632.spa
dc.relation.referencesRepública de Brasil. (2015). Ley Nº 13.123/2015: Regulación del acceso y repartición de beneficios relacionados con la biodiversidad.spa
dc.relation.referencesRepública de Colombia. (2013). Decreto 1375 de 2013: Reglamentación del acceso a recursos genéticos y productos derivados. Ministerio de Ambiente y Desarrollo Sostenible.spa
dc.relation.referencesRepública de Colombia. (2015). Decreto 1076 de 2015: Por el cual se expide el Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible. Ministerio de Ambiente y Desarrollo Sosteniblespa
dc.relation.referencesRepública de Colombia. (2018). Decreto 1232 de 2018: Procedimientos para el acceso a recursos genéticos. Ministerio de Ambiente y Desarrollo Sostenible.spa
dc.relation.referencesRiviere, J. E., & Papich, M. G. (2009). Veterinary pharmacology and therapeutics. Wiley-Blackwell.spa
dc.relation.referencesRobinson, D. F. (2021). Confronting biopiracy: Challenges, cases and international debates. Earthscan.spa
dc.relation.referencesRocha, J., Peixe, L., & Gomes, N. C. M. (2022). Marine bioprospecting: Microbial diversity and applications. Microbial Biotechnology, 15(3), 789-805.spa
dc.relation.referencesRojas, J., et al. (2010). Ethnomedicine and drug discovery from Colombian biodiversity. Journal of Ethnopharmacology, 132(3), 567-579spa
dc.relation.referencesRoldán, G. (2019). Biopiratería en Colombia: Retos y perspectivas legales. Biodiversidad en América Latina, 15(2), 78-92.spa
dc.relation.referencesRomero, M. (2008). Biodiversidad y Bioprospección en Colombia: Oportunidades y desafíos para el desarrollo económico. Revista Colombiana de Biotecnología, 10(1), 23-35.spa
dc.relation.referencesRomero, M., et al. (2021). Biodiversity and sustainable bioprospecting in Colombia: Opportunities for health and environmental conservation. Biotecnología Aplicada, 38(3), 245-259.spa
dc.relation.referencesRSC Advances. (2022). Recent advances in marine-derived antimicrobial and anticancer compounds. RSC Advances, 12(15), 8901-8915.spa
dc.relation.referencesSalazar, R. (2017). Ley 27811 y la protección de conocimientos tradicionales en Perú. Revista Peruana de Derecho Ambiental, 5(1), 23-40.spa
dc.relation.referencesSantilli, J. (2020). Indigenous participation in bioprospecting: Lessons from Brazil. Latin American Perspectives, 47(2), 123-139.spa
dc.relation.referencesSaraiva, R., Almeida, M., & Costa, J. (2018). Brazil’s biodiversity law: Challenges in access and benefit-sharing implementation. Environmental Policy and Law, 48(6), 345-356.spa
dc.relation.referencesSaraiva, R., Almeida, M., & Costa, J. (2020). Brazil’s biodiversity law and sustainable resource use. Environmental Policy and Law, 48(6), 345-356.spa
dc.relation.referencesSchneider, Y. (2021). The golden age of antibiotics: Past, present, and future. Microbial Biotechnology, 14(5), 1876-1885.spa
dc.relation.referencesShiva, V. (2001). Protect or plunder? Understanding intellectual property rights. Zed Books.spa
dc.relation.referencesShukla, R., et al. (2023). Genomic mining for novel antibiotics from soil bacteria. Applied Microbiology and Biotechnology, 107(2), 345-356.spa
dc.relation.referencesSilva, R., et al. (2020). Indole alkaloids from Aspidosperma nitidum: Antitubercular activity. Fitoterapia, 141, Article 104465.spa
dc.relation.referencesSong, J., et al. (2022). Nanotechnology-enhanced photodynamic therapy for resistant infections. Nanomedicine, 18(4), 567-579.spa
dc.relation.referencesTsai, Y., et al. (2020). Antiviral potential of cepharanthine and tetrandrine against SARS-CoV-2. Antiviral Research, 182, Article 104923.spa
dc.relation.referencesTu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine, 17(10), 1217-1220.spa
dc.relation.referencesTvedt, M. W., & Young, T. (2021). Beyond access: Ensuring equitable benefit-sharing in bioprospecting. Environmental Law Review, 23(2), 145-160.spa
dc.relation.referencesTyurin, A. P. (2023). New frontiers in antibiotic discovery from unculturable bacteria. FEMS Microbiology Reviews, 47(1), 112-130.spa
dc.relation.referencesUNESCO. (2021). Science report: The race against time for smarter development. UNESCO Publishing.spa
dc.relation.referencesVallejo, A. (2019). Marco normativo ambiental en Colombia: Bioprospección y protección de la biodiversidad. Revista Colombiana de Derecho Ambiental, 8(1), 56-73.spa
dc.relation.referencesVan Boeckel, T. P., et al. (2019). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 116(22), 11507-11513.spa
dc.relation.referencesWani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325-2327spa
dc.relation.referencesWaters, A. L., Hill, R. T., & Place, A. R. (2019). Salinomycin from Streptomyces: A promising antimicrobial against resistant pathogens. Marine Biotechnology, 21(4), 456-470.spa
dc.relation.referencesWeaver, B. A. (2014). How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, 25(18), 2677-2681. spa
dc.relation.referencesWerneke, U., Earl, J., & Seydel, C. (2020). Emetine: Historical insights and contemporary uses. British Journal of Clinical Pharmacology, 86(12), 2300-2312. spa
dc.relation.referencesWhite, K. M., Rosales, R., & Yildiz, S. (2021). Plitidepsin has potent preclinical efficacy against SARS-CoV-2. Science, 371(6529), 926-931.spa
dc.relation.referencesWhiting, P. F., Wolff, R. F., & Deshpande, S. (2015). Cannabinoids for medical use: A systematic review and meta-analysis. JAMA, 313(24), 2456-2473.spa
dc.relation.referencesWong, W. K., Tan, S. Y., & Lim, C. C. (2021). Biopolis: Singapore’s biotechnology hub. Nature Biotechnology, 39(5), 521-523.spa
dc.relation.referencesWoo, J., et al. (2023). Actinobacteria from mangrove rhizospheres: A source of bioactive compounds. Marine Drugs, 21(3), 145-160.spa
dc.relation.referencesWorld Health Organization. (2015). Plan de acción global sobre la resistencia a los antimicrobianos.spa
dc.relation.referencesWorld Health Organization. (2018). Saving lives, spending less: A strategic response to noncommunicable diseases.spa
dc.relation.referencesWorld Health Organization. (2019). Ten threats to global health in 2019.spa
dc.relation.referencesWorld Health Organization. (2020). Global report on antimicrobial resistance and emerging diseases: Challenges and opportunities.spa
dc.relation.referencesWynberg, R., Schroeder, D., & Chennells, R. (2020). Indigenous peoples, consent and benefit sharing: Lessons from the San-Hoodia case. Springer.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::613 - Salud y seguridad personalspa
dc.subject.decsBiodiversidadspa
dc.subject.decsBiodiversityeng
dc.subject.decsLegislación como Asuntospa
dc.subject.decsLegislation as Topiceng
dc.subject.decsInvestigación Biomédicaspa
dc.subject.decsBiomedical Researcheng
dc.subject.decsAntiinflamatoriosspa
dc.subject.decsAnti-Inflammatory Agentseng
dc.subject.proposalBioprospecciónspa
dc.subject.proposalSalud públicaspa
dc.subject.proposalAgentes terapeuticosspa
dc.subject.proposalBiodiversidadspa
dc.subject.proposalResistencia antimicrobianaspa
dc.subject.proposalDesarrollo económicospa
dc.subject.proposalConservaciónspa
dc.subject.proposalBioprospectingeng
dc.subject.proposalBiodiversityeng
dc.subject.proposalBioactive compoundseng
dc.subject.proposalPublic healtheng
dc.subject.proposalAntimicrobial resistanceeng
dc.subject.proposalEconomic developmenteng
dc.subject.proposalConservationeng
dc.subject.proposalCompuestos bioactivosspa
dc.titleEvaluación del potencial de la bioprospección de recursos naturales para el descubrimiento de nuevos agentes terapéuticos en salud públicaspa
dc.title.translatedEvaluation of the potential of natural resource bioprospecting for the discovery of novel therapeutic agents in public healtheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestria Salud Pública Cristian Rodriguez 2025.pdf
Tamaño:
1.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud Pública

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: