Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos

dc.contributor.advisorBenjumea Hernández, Pedro Nelspa
dc.contributor.advisorMejía Cárdenas, Juan Manuelspa
dc.contributor.authorOlaya Marín, Guiberspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-12-18T22:26:18Zspa
dc.date.available2020-12-18T22:26:18Zspa
dc.date.issued2020-08-30spa
dc.description.abstractEn esta tesis se presenta el desarrollo de un modelo fenomenológico para la remediación química del daño de formación por precipitación de asfaltenos. Se estableció el modelo matemático de la fenomenología que se presenta al inyectar tratamientos químicos a un yacimiento con el fin de revertir las pérdidas de porosidad y permeabilidad. Se realizaron pruebas de disolución de asfaltenos en solventes puros y en mezclas en tolueno, xileno y quinolina; obteniendo hasta el 85% de disolución en tolueno en concentraciones de 100 ppm. Se encontró que no hay sinergia entre solventes, dispersantes y surfactantes en la disolución. Con tratamientos comerciales se encontró sinergias entre el xileno y el solvente mutual. Además, se validó el modelo con datos de laboratorio con pruebas cinéticas de disolución de asfaltenos en tratamientos químicos y pruebas de desplazamiento de fluidos tratados con la remediación en núcleos.spa
dc.description.abstractThis thesis presents the development of a phenomenological model for chemical remediation of formation damage due to asphaltene precipitation. The mathematical model of the phenomenology that occurs when injecting chemical treatments into a reservoir was established to reverse the losses of porosity and permeability. Asphaltenes dissolution tests were carried out in pure solvents and in mixtures in toluene, xylene and quinoline, obtaining up to 85% of dissolution in toluene in concentrations of 100 ppm. It was found that there is no synergy between solvents, dispersants, and surfactants in the solution. Synergies between xylene and mutual solvent were found with commercial treatments. In addition, the model was validated with laboratory data with kinetic tests for dissolving asphaltenes in chemical treatments and fluid displacement tests treated with remediation in cores.spa
dc.description.degreelevelDoctoradospa
dc.format.extent138spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationOlaya-Marín, G. Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos. 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78730
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.references1. Pasquevich DM. La Creciente Demanda Mundial de Energia Frente a Los Riesgos Ambientales.Pdf.; 2016. http://www.cab.cnea.gov.ar/ieds/images/extras/medios/2011/aapc_la_creciente_demanda_energ_frente_riesgos_amb.pdf.spa
dc.relation.references2. Rodríguez Hernández A, Herrera B, Subdirectora De Hidrocarburos J, et al. PLAN ENERGETICO NACIONAL COLOMBIA: IDEARIO ENERGÉTICO 2050 REPÚBLICA DE COLOMBIA Ministerio de Minas y Energía Tomás González Estrada, Ministro UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA Ángela Inés Cadena Monroy Directora General Secretario General COLABORAD.spa
dc.relation.references3. Combustibles fósiles: colombia le seguirá apostando a estos. https://sostenibilidad.semana.com/medio-ambiente/articulo/combustibles-fosiles-colombia-le-seguira-apostando-a-estos/35666.spa
dc.relation.references4. Civan F. Reservoir Formation Damage. Second. Gulf Professional Publishing; 2007.spa
dc.relation.references5. Hill DG, Liétard OM, Piot BM, Dowell S, King GE, Amoco BP. Formation Damage: Origin, Diagnosis and Treatment Strategy.; 2000.spa
dc.relation.references6. Leontaritis KJ, Amaefule JO, Charles RE. A Systematic Approach for the Prevention and Treatment of Formation Damage Caused by Asphaltene Deposition. SPE Prod Facil. 1994;9(03):157-164. doi:10.2118/23810-PAspa
dc.relation.references7. Darabi H, Sepehrnoori K. Modeling and Simulation of Near-Wellbore Asphaltene Remediation Using Asphaltene Dispersants. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers; 2015. doi:10.2118/173284-MSspa
dc.relation.references8. Zekri AY, Shedid SA. The effect of fracture characteristics on reduction of permeability by asphaltene precipitation in carbonate formation. J Pet Sci Eng. 2004;42(2-4):171-182. doi:10.1016/j.petrol.2003.12.009spa
dc.relation.references9. Hirschberg A. Influence of Temperature and Pressure on Asphaltene Floculation. 1984.spa
dc.relation.references10. Neves GBM, de Sousa M dos A, Travalloni-Louvisse AM, Lucas EF, Gonz´lez G. CHARACTERIZATION OF ASPHALTENE PARTICLES BY LIGHT SCATTERING AND ELECTROPHORESIS. Pet Sci Technol. 2001;19(1-2):35-43. doi:10.1081/LFT-100001225spa
dc.relation.references11. Ali Mansoori G. Modeling of asphaltene and other heavy organic depositions. J Pet Sci Eng. 1997;17(1-2):101-111. doi:10.1016/S0920-4105(96)00059-9spa
dc.relation.references12. Yarranton H. Asphaltene Deposition. In: Canadian International Petroleum Conference. Petroleum Society of Canada; 2000. doi:10.2118/2000-099-EAspa
dc.relation.references13. Amroun H, Tiab D. Alteration of Reservoir Wettability Due to Asphaltene Deposition in Rhourd-Nouss Sud Est Field, Algeria. In: SPE Rocky Mountain Petroleum Technology Conference. Society of Petroleum Engineers; 2001. doi:10.2118/71060-MSspa
dc.relation.references14. Goual L, Firoozabadi A. Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AIChE J. 2002;48(11):2646-2663. doi:10.1002/aic.690481124spa
dc.relation.references15. Goual L, Firoozabadi A. Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE J. 2004;50(2):470-479. doi:10.1002/aic.10041spa
dc.relation.references16. Anisimov MA, Ganeeva YM, Gorodetskii EE, et al. Effects of Resins on Aggregation and Stability of Asphaltenes. Energy & Fuels. 2014;28(10):6200-6209. doi:10.1021/ef501145aspa
dc.relation.references17. Abedini A, Ashoori S, Torabi F. Reversibility of asphaltene precipitation in porous and non-porous media. Fluid Phase Equilib. 2011;308(1-2):129-134. doi:10.1016/j.fluid.2011.06.024spa
dc.relation.references18. Ju B, Luan Z, Wu Z, Lu G. A Study of Removal of Organic Formation Damage by Experiments and Modeling Approaches. In: Proceedings of SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers; 2001. doi:10.2523/68752-MSspa
dc.relation.references19. Delgado JG. CUADERNO FIRP S369-A . Modulo de enseñanza en fenomenos interfaciales. 2006;1.spa
dc.relation.references20. Akbarzadeh K, Hammami A, Kharrat A, et al. Los asfaltenos: Problemáticos pero ricos en potencial. Oilf Rev. 2007:24-47. http://www.water.slb.com/~/media/Files/resources/oilfield_review/spanish07/aut07/p22_43.pdf. Accessed October 23, 2014.spa
dc.relation.references21. Alapati RR, Joshi N. New Test Method for Field Evaluation of Asphaltene Deposition. In: Offshore Technology Conference. Offshore Technology Conference; 2013. doi:10.4043/24168-MSspa
dc.relation.references22. Schneider MH, Andrews AB, Mitra-Kirtley S, Mullins OC. Asphaltene molecular size by fluorescence correlation spectroscopy. Energy and Fuels. 2007;21(5):2875-2882. doi:10.1021/ef700216rspa
dc.relation.references23. Mullins OC, Sabbah H, Eyssautier J, et al. Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels. 2012;26(7):3986-4003. doi:10.1021/ef300185pspa
dc.relation.references24. Mullins OC, Sabbah H, Eyssautier J, et al. Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels. 2012;26(7):3986-4003. doi:10.1021/ef300185pspa
dc.relation.references25. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S. Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels. 2009;23(3):1575-1582. doi:10.1021/ef800706cspa
dc.relation.references26. Groffe P, Volle JL, Ziada A. Application of chemicals in prevention and treatment of asphaltene precipitation in crude oils. doi:10.2118/30128-MSspa
dc.relation.references27. Pacheco-Sanchez JH, Mansoori GA. In situ remediation of heavy organic deposits using aromatic solvents. In: Proceedings - SPE Annual Western Regional Meeting. Soc Pet Eng (SPE); 1998. http://www.scopus.com/inward/record.url?eid=2-s2.0-0031651352&partnerID=tZOtx3y1.spa
dc.relation.references28. Al-Ghazi AS, Lawson J. Asphaltene cleanout using VibraBlaster tool. In: Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium 2007. ; 2007. doi:10.2523/110972-msspa
dc.relation.references29. Bachmann RT, Johnson AC, Edyvean RGJ. Biotechnology in the petroleum industry: An overview. Int Biodeterior Biodegradation. 2014;86:225-237. doi:10.1016/j.ibiod.2013.09.011spa
dc.relation.references30. Wu GZ, Coulon F, Yang YW, Li H, Sui H. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil. Pedosphere. 2013;23(4):455-463. doi:10.1016/S1002-0160(13)60038-7spa
dc.relation.references31. Betancur S. Desarrollo de nanopartículas basadas en sílice para la inhibición de la precipitación/depositación de asfaltenos. 2015.spa
dc.relation.references32. Zabala R, Mora E, Cespedes C, et al. Application and Evaluation of a NanoFluid Containing NanoParticles for Asphaltenes Inhibition in Well CPSXL4. Offshore Technol Conf Bras. 2013:14. doi:10.4043/24310-MSspa
dc.relation.references33. Benjumea PN, Isaza CN. Remediación Del Daño de Formación Por Depositación de Asfaltenos. Medellín; 2015.spa
dc.relation.references34. Trbovich MG, King GE. Asphaltene Deposit Removal: Long-Lasting Treatment With a Co-Solvent. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Vol i. Society of Petroleum Engineers; 1991. doi:10.2523/21038-MSspa
dc.relation.references35. Kuang J, Yarbrough J, Enayat S, Edward N, Wang J, Vargas FM. Evaluation of solvents for in-situ asphaltene deposition remediation. Fuel. 2019;241(October 2018):1076-1084. doi:10.1016/j.fuel.2018.12.080spa
dc.relation.references36. Ogolo NA, Olafuyi OA, Onyekonwu MO. Enhanced Oil Recovery Using Nanoparticles. In: SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers; 2012:9. doi:10.2118/160847-MSspa
dc.relation.references37. Hashmi SM, Firoozabadi A. Asphaltene Deposition in Metal Pipes : Efficient Inhibition and Removal by Different Surfactants. SPE J. 2013. doi:10.2118/166404-MSspa
dc.relation.references38. Rittner, D., & Bailey RA. Encyclopedia of Chemistry.; 2005.spa
dc.relation.references39. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Third, Upd. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.spa
dc.relation.references40. Hildebrand JH. A History of Solution Theory.spa
dc.relation.references41. Belmares M, Blanco M, Goddard WA, et al. Hildebrand and hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem. 2004;25(15):1814-1826. doi:10.1002/jcc.20098spa
dc.relation.references42. Holmberg K, ed. Handbook of Applied Surface and Colloid Chemistry. JOHN WILEY & SONS ,LTD; 2002.spa
dc.relation.references43. Rogel E. Effect of inhibitors on asphaltene aggregation: A theoretical framework. Energy and Fuels. 2011;25(2):472-481. doi:10.1021/ef100912bspa
dc.relation.references44. Al-Sahhaf T a., Fahim M a., Elkilani AS. Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase Equilib. 2002;194-197:1045-1057. doi:10.1016/S0378-3812(01)00702-6spa
dc.relation.references45. Samuelson ML. Alternatives to Aromatics for Solvency of Organic Deposits. 1992. doi:10.2118/23816-MSspa
dc.relation.references46. Becker HL, Thomas DC, Doddridge WR, McDougall DB. Asphaltene Deposition Control Using Chemical Control Agents. doi:10.2118/92-70spa
dc.relation.references47. Jamaluddin AKM, Nazarko TW, Sills S, Fuhr BJ. Deasphalted oil: A natural asphaltene solvent. SPE Prod Facil. 1996;11(3).spa
dc.relation.references48. Minssieux L. Removal of Asphalt Deposits by Cosolvent Squeeze: Mechanisms and Screening. doi:10.2118/39447-MSspa
dc.relation.references49. Newberry ME, Barker KM. Organic Formation Damage Control and Remediation. SPE Int Symp Form Damage Control. 2013. doi:10.2118/58723-MSspa
dc.relation.references50. Dong L, Xie H, Zhang F. Chemical Control Techniques for the Paraffin and Asphaltene Deposition. doi:10.2118/65380-MSspa
dc.relation.references51. Ju B, Luan Z, Wu Z, Lu G. A Study of Removal of Organic Formation Damage by Experiments and Modeling Approaches. doi:10.2118/68752-MSspa
dc.relation.references52. Alkafeef SF, Al-Medhadi F, AL-Shammari AD. Asphaltene Remedial Technology Using Advanced Deasphalted Oil. doi:10.2118/81570-MSspa
dc.relation.references53. Sanada A, Miyagawa Y. A Case Study of a Successful Chemical Treatment to Mitigate Asphaltene Precipitation and Deposition in Light Crude Oil Field. doi:10.2118/101102-MSspa
dc.relation.references54. Frost KA, Daussin RD, Van Domelen MS. New, Highly Effective Asphaltene Removal System with Favorable HSE Characteristics. doi:10.2118/112420-MSspa
dc.relation.references55. Lightford SC, Pitoni E, Mauri L, Armesi F. Development and Field Use of a Novel Solvent Water Emulsion for the Removal of Asphaltene Deposits in Fractured Carbonate Formations. doi:10.2118/101022-MSspa
dc.relation.references56. Fattah Ahmed WA, Nasr-El-Din HA. Acid Emulsified in Xylene: A Cost-Effective Treatment To Remove Asphalting Deposition and Enhance Well productivity. doi:10.2118/117251-MSspa
dc.relation.references57. Abdallah D, Bazuhair MK, Zwolle S, Grutters M, Ramanathan K, Stankiewicz A. Asphaltene Studies in on-shore Abu Dhabi Oil fields, PART III: Optimization of Field Chemicals for Remediation and Inhibition of Asphaltene Deposition. 2010. doi:10.2118/138040-MSspa
dc.relation.references58. Oseghale CI, Ebhodaghe FO. Asphaltene Deposition and Remediation in Crude Oil Production: Solubility Technique. J Eng Appl Sci. 2011;6(4):258-261.spa
dc.relation.references59. Pereira JC, Delgado-Linares J, Briones A, Guevara M, Scorzza C, Salager J-L. The effect of solvent nature and dispersant performance on asphaltene precipitation from diluted solutions of instable crude oil. Pet Sci Technol. 2011;29(23):2432-2440.spa
dc.relation.references60. Telang M, Al-Matrook MF, Oskui GR, et al. Continuous Solvent Flush Approach for Asphaltene Precipitation in a Kuwaiti Reservoir: PhaseI-An Experimental Solvent Screening. doi:10.2118/163316-MSspa
dc.relation.references61. Salgaonkar L, Danait A. Environmentally Acceptable Emulsion System: An Effective Approach for Removal of Asphaltene Deposits. 2012. doi:10.2118/160877-MSspa
dc.relation.references62. Chen C, Guo J, An N, Pan Y, Li Y, Jiang Q. Study of asphaltene dispersion and removal for high-asphaltene oil wells. Pet Sci. 2012;9(4):551-557. doi:10.1007/s12182-012-0242-5spa
dc.relation.references63. Restrepo A, Ocampo A, Lopera Castro SH, Diaz MP, Clavijo J, Marin J. GaStim Concept - A Novel Technique for Well Stimulation. Part I: Understanding the Physics. doi:10.2118/152309-MSspa
dc.relation.references64. Misra S, Abdallah D, Nuimi S. Successful Asphaltene Cleanout Field Trial in on-shore Abu Dhabi Oil Fields. 2013. doi:10.2118/164175-MSspa
dc.relation.references65. Al-Taq AA, Zeid SMA, Al-Haji HH, Saleem JA. Removal of Organic Deposits from Oil Producing Wells in a Sandstone Reservoir: A Lab Study and a Case History. doi:10.2118/164410-MSspa
dc.relation.references66. Murtaza S, Al-Ruwaily AA, Taqi AA, et al. Wellbore Asphaltene Cleanout Using a new Solvent Formulation in a Horizontal Openhole oil Producer in Carbonate Reservoir of North Ghawar Field -Scripting a Success Story. doi:10.2118/164434-MSspa
dc.relation.references67. Alian SS, Singh K, Saidu Mohamed A, Ismail MZ, Anwar ML. Organic Deposition: From Detection and Laboratory Analysis to Treatment and Removal. doi:10.2118/165912-MSspa
dc.relation.references68. Zabala Romero RD, Acuna HM, Cortés FB, et al. Application and Evaluation of a NanoFluid Containing NanoParticles for Asphaltenes Inhibition in Well CPSXL4. doi:10.4043/24310-MSspa
dc.relation.references69. Restrepo A, Ocampo A, Lopera S, et al. GaStim Concept - A Novel Technique for Well Stimulation. Part II: From Laboratory to Field Pilot Testing. doi:10.2118/168133-MSspa
dc.relation.references70. Moreno-Arciniegas L, Babadagli T. Optimal Application Conditions of Solvent Injection Into Oil Sands To Minimize the Effect of Asphaltene Deposition: An Experimental Investigation. doi:10.2118/165531-PAspa
dc.relation.references71. Chang R. Chemistry. 10th ed.; 2010.spa
dc.relation.references72. Mitchell DL, Speight JG. The solubility of asphaltenes in hydrocarbon solvents. Fuel. 1973;52(2):149-152. doi:10.1016/0016-2361(73)90040-9spa
dc.relation.references73. Hong E, Watkinson P. A study of asphaltene solubility and precipitation. Fuel. 2004;83(14-15 SPEC. ISS.):1881-1887. doi:10.1016/j.fuel.2003.09.026spa
dc.relation.references74. Wang T, Zhang C, Zhao R, Zhu C, Yang C, Liu C. Solvent extraction of bitumen from oil sands. Energy and Fuels. 2014;28(4):2297-2304. doi:10.1021/ef402101sspa
dc.relation.references75. Sato T, Araki S, Morimoto M, Tanaka R, Yamamoto H. Comparison of Hansen Solubility Parameter of Asphaltenes Extracted from Bitumen Produced in Different Geographical Regions. Energy & Fuels. 2014;28(2):891-897. doi:10.1021/ef402065jspa
dc.relation.references76. Painter PC, Veytsman B, Youtcheff J. Guide to asphaltene solubility. Energy and Fuels. 2015;29(5):2951-2961. doi:10.1021/ef502918tspa
dc.relation.references77. Prausnitz JM, Linchtenthaler RN, Gomes De Azevedo E. Termodinámica Molecular de Los Equilibrios de Fases. Prentice-Hall; 2000. doi:10.1002/cjce.5450780222spa
dc.relation.references78. Barton AFM. Solubility parameters. Chem Rev. 1975;75:731-753. doi:10.1021/cr60298a003spa
dc.relation.references79. Flory PJ. Themodynamics of high polymer solutions. J Chem Phys. 1942. doi:10.1063/1.1723621spa
dc.relation.references80. Wypych G. Handbook of Solvents. (Wypych G, ed.). Toronto-New york: ChemTec; 2001. https://www.google.com.co/search?tbm=bks&q=ISBN+1-895198-24-0.spa
dc.relation.references81. Fossen M, Hemmingsen PV, Hannisdal A, Sjöblom J, Kallevik H. Solubility Parameters Based on IR and NIR Spectra: I. Correlation to Polar Solutes and Binary Systems. J Dispers Sci Technol. 2005;26(2):227-241. doi:10.1081/DIS-200045605spa
dc.relation.references82. Redelius P. Bitumen solubility model using Hansen solubility parameter. Energy and Fuels. 2004;18(4):1087-1092. doi:10.1021/ef0400058spa
dc.relation.references83. Siddiqui SA, Needles HL. Solubility Parameters. Text Res J. 1982;52(9):570-579. doi:10.1177/004051758205200904spa
dc.relation.references84. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28(8):1223-1270. doi:10.1016/S0079-6700(03)00045-5spa
dc.relation.references85. Química A De, Avanzada F. Química Física de los Polímeros. 2011:1-40.spa
dc.relation.references86. Hildebrand JH, Scott RL. The Solubility of Nonelectrolytes. 1964.spa
dc.relation.references87. Chemtech LS. Solutions to Solution Problems. Chem SOC 1155 16TH ST, NW …. 1979.spa
dc.relation.references88. Baldeschwieler EL, Morgan MD, Troeller WJ. The Kauri Butanol Test for Solvent Power. II. Ind Eng Chem - Anal Ed. 1937;9(11):540-543. doi:10.1021/ac50115a020spa
dc.relation.references89. Godfrey NB. Solvent selection via miscibility number. osti.gov. 1972. https://www.osti.gov/biblio/6068509.spa
dc.relation.references90. Mannistu KD, Yarranton HW, Masliyah JH. Solubility Modeling of Asphaltenes in Organic Solvents. Energy & Fuels. 1997;11(3):615-622. doi:10.1021/ef9601879spa
dc.relation.references91. Khoshandam A, Alamdari A. Kinetics of asphaltene precipitation in a heptane-toluene mixture. Energy and Fuels. 2010;24(3):1917-1924. doi:10.1021/ef9012328spa
dc.relation.references92. Hirschberg A. Role of Asphaltenes in Compositional Grading of a Reservoir’s Fluid Column. J Pet Technol. 1988;40(January):89-94. doi:10.2118/13171-PAspa
dc.relation.references93. Du JL, Zhang D. A Thermodynamic Model for the Prediction of Asphaltene Precipitation. Pet Sci Technol. 2004;22(7-8):1023-1033. doi:10.1081/LFT-120038724spa
dc.relation.references94. Andersen SI, Speight JG. Thermodynamic models for asphaltene solubility and precipitation. J Pet Sci Eng. 1999;22(1-3):53-66. doi:10.1016/S0920-4105(98)00057-6spa
dc.relation.references95. Rogel E, Roye M, Vien J, Miao T. Characterization of asphaltene fractions: Distribution, chemical characteristics, and solubility behavior. Energy and Fuels. 2015;29(4):2143-2152. doi:10.1021/ef5026455spa
dc.relation.references96. Rogel E, Ovalles C, Bake KD, et al. Asphaltene Densities and Solubility Parameter Distributions: Impact on Asphaltene Gradients. Energy & Fuels. 2016;30(11):9132-9140. doi:10.1021/acs.energyfuels.6b01794spa
dc.relation.references97. De Boer RB, Leerlooyer K. Screening of Crude Oils for Asphal Precipitation: Theory, Practice, and the Selection of Inhibitors. SPE. 1995;(February):55-61.spa
dc.relation.references98. Correra S, Merlini M, Di Lullo A, Merino-Garcia D. Estimation of the solvent power of crude oil from density and viscosity measurements. Ind Eng Chem Res. 2005;44(24):9307-9315. doi:10.1021/ie0507272spa
dc.relation.references99. Mohammadi AH, Eslamimanesh A, Richon D. Monodisperse Thermodynamic Model Based on Chemical + Flory–Hüggins Polymer Solution Theories for Predicting Asphaltene Precipitation. Ind Eng Chem Res. 2012;51(10):4041-4055. doi:10.1021/ie202737pspa
dc.relation.references100. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14(2):147-154. doi:10.1002/pen.760140211spa
dc.relation.references101. Goharshadi EK, Hesabi M. Estimation of solubility parameter using equations of state. J Mol Liq. 2004;113(1-3):125-132. doi:10.1016/j.molliq.2004.02.030spa
dc.relation.references102. Buckley JS, Hirasaki GJ, Liu Y, Von Drasek S, Wang JX, Gill BS. Asphaltene precipitation and solvent properties of crude oils. Pet Sci Technol. 1998;16(3-4):251-285. doi:10.1080/10916469808949783spa
dc.relation.references103. Wang JX, Buckley JS. A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy and Fuels. 2001;15(5):1004-1012. doi:10.1021/ef010012lspa
dc.relation.references104. Vargas FM, Chapman WG. Application of the One-Third rule in hydrocarbon and crude oil systems. Fluid Phase Equilib. 2010;290(1-2):103-108. doi:10.1016/j.fluid.2009.12.004spa
dc.relation.references105. Zuo JY, Mullins OC, Freed D, Zhang D. A Simple Relation between Solubility Parameters and Densities for Live Reservoir Fluids. J Chem Eng Data. 2010;55(9):2964-2969. doi:10.1021/je100155dspa
dc.relation.references106. Fan T, Wang J, Buckley JS. Evaluating Crude Oils by SARA Analysis. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers; 2002. doi:10.2118/75228-MSspa
dc.relation.references107. Chamkalani A. Correlations between SARA Fractions, Density, and RI to Investigate the Stability of Asphaltene. ISRN Anal Chem. 2012;2012(I):1-6. doi:10.5402/2012/219276spa
dc.relation.references108. Fan T, Buckley JS. Rapid and Accurate SARA Analysis of Medium Gravity Crude Oils. Energy & Fuels. 2002;16(6):1571-1575. doi:10.1021/ef0201228spa
dc.relation.references109. Rogel E, Miao T, Vien J, Roye M. Comparing asphaltenes: Deposit versus crude oil. Fuel. 2015;147:155-160. doi:10.1016/j.fuel.2015.01.045spa
dc.relation.references110. Goual L, Sedghi M. Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. J Colloid Interface Sci. 2015;440:23-31. doi:10.1016/j.jcis.2014.10.043spa
dc.relation.references111. Painter PC, Graf J, Coleman MM. Coal Solubility and Swelling. 1. Solubility Parameters for Coal and the Flory χ Parameter. Energy and Fuels. 1990;4(4):379-384. doi:10.1021/ef00022a008spa
dc.relation.references112. Painter P, Veytsman B, Youtcheff J. Asphaltene Aggregation and Solubility. Energy & Fuels. 2015;29(4):2120-2133. doi:10.1021/ef5024912spa
dc.relation.references113. Mohammadi AH, Richon D. A monodisperse thermodynamic model for estimating asphaltene precipitation. AIChE J. 2007;53(11):2940-2947. doi:10.1002/aic.11304spa
dc.relation.references114. Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321(1-2):1-11. doi:10.1016/j.ijpharm.2006.07.011spa
dc.relation.references115. Wang Y, Abrahamsson B, Lindfors L, Brasseur JG. Comparison and Analysis of Theoretical Models for Diffusion-Controlled Dissolution. Mol Pharm. 2012;9(5):1052-1066. doi:10.1021/mp2002818spa
dc.relation.references116. Permsukarome P, Chang C, Fogler HS. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Ind Eng …. 1997;36(9):3960-3967. doi:10.1021/ie970177aspa
dc.relation.references117. Isaza Toro CN. Modelo fenomenológico y simulación de la disolución de los asfaltenos depositados en formación usando un solvente químico puro. 2017.spa
dc.relation.references118. Zendehboudi S, Shafiei A, Bahadori A, James L a., Elkamel A, Lohi A. Asphaltene precipitation and deposition in oil reservoirs – Technical aspects, experimental and hybrid neural network predictive tools. Chem Eng Res Des. 2014;92(5):857-875. doi:10.1016/j.cherd.2013.08.001spa
dc.relation.references119. Ahmed TH. Equations of State and PVT Analysis : Applications for Improved Reservoir Modeling. Houston: Gulf Publishing Company; 2007.spa
dc.relation.references120. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S. Thermodynamic solubility models to predict asphaltene instability in live crude oils. Energy and Fuels. 2007;21(3):1248-1255. doi:10.1021/ef060386kspa
dc.relation.references121. Burke NE, Hobbs RE, Kashou SF. Measurement and Modeling of Asphaltene Precipitation. J Pet Technol. 1990;42(11):1440-1446. doi:10.2118/18273-PAspa
dc.relation.references122. Cornell J. Experiments with Mixture. Design, Models, and the Analysis of Mixture Data. Wiley; 2002.spa
dc.relation.references123. Tayakout M, Ferreira C, Espinat D, et al. Diffusion of asphaltene molecules through the pore structure of hydroconversion catalysts. Chem Eng Sci. 2010;65(5):1571-1583. doi:10.1016/j.ces.2009.10.025spa
dc.relation.references124. Li J, Carr PW. Accuracy of Empirical Correlations for Estimating Diffusion Coefficients in Aqueous Organic Mixtures. Anal Chem. 1997;69(13):2530-2536. doi:10.1021/ac961005aspa
dc.relation.references125. Leontaritis KJ, Mansoori GA. Asphaltene Flocculation During Oil Production and Processing: A Thermodynamic Collodial Model. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 1987:149-158. doi:10.2523/16258-MSspa
dc.relation.references126. Pereira JC, López I, Salas R, et al. Resins: The Molecules Responsible for the Stability/Instability Phenomena of Asphaltenes †. Energy & Fuels. 2007;21(3):1317-1321. doi:10.1021/ef0603333spa
dc.relation.references127. Almehaideb RA. Asphaltene Precipitation and Deposition in the Near Wellbore Region: A Modeling Approach. J Pet Sci Eng. 2004;42(2-4):157-170. doi:10.1016/j.petrol.2003.12.008spa
dc.relation.references128. Islam MR, Mousavizadegan SH, Mustafiz S, Abou-Kassem JH. Advanced Petroleum Reservoir Simulations. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010. doi:10.1002/9780470650684spa
dc.relation.references129. Ertekin T, Abou-Kassem JH, King GR. Basic Applied Reservoir Simulation. Vol 111. Society of Petroleum Engineers; 2001. doi:10.1192/bjp.111.479.1009-aspa
dc.relation.references130. Wang S, Civan F. Preventing Asphaltene Deposition in Oil Reservoirs by Early Water Injection. In: SPE Production Operations Symposium. Society of Petroleum Engineers; 2005. doi:10.2118/94268-MSspa
dc.relation.references131. Shaojun W, Civan F, Strycker AR. Simulation of Paraffin and Asphaltene Deposition in Porous Media. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 1999. doi:10.2118/50746-MSspa
dc.relation.references132. Mozo I. Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad. 2017. http://bdigital.unal.edu.co/59324/.spa
dc.relation.references133. Garcia Lesmes BF. Modelamiento de la remediacion e inhibicion del daño de formacion por asfaltenos usando tratamientos dispersos en gas de inyeccion. 2016. http://www.bdigital.unal.edu.co/55106/.spa
dc.relation.references134. Wang S, Civan F. Productivity Decline of Vertical and Horizontal Wells by Asphaltene Deposition in Petroleum Reservoirs. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 2001:1-16. doi:10.2118/64991-MSspa
dc.relation.references135. Fernández Oro JM. Técnicas Numéricas En Ingeniería de Fluidos: Introducción a La Dinámica de Fluidos Computacional (CFD) Por El Método de Volúmenes Finitos. Barcelona: Reverté; 2012.spa
dc.relation.references136. Chapra SC, Canale RP, E-libro C. Métodos Numéricos Para Ingenieros (5a. Ed.). McGraw-Hill Interamericana; 2007. https://books.google.com.co/books?id=y_1NAQAACAAJ.spa
dc.relation.references137. Alvarez W, Ramirez S, Ruiz JF. Métodos iterativos GMRES & MINRES. 2018;(June). doi:10.13140/RG.2.2.22355.89129spa
dc.relation.references138. Novaki LP, Moraes EO, Goncalves AB, et al. Solvatochromic and Solubility Parameters of Solvents: Equivalence of the Scales and Application to Probe the Solubilization of Asphaltenes. Energy and Fuels. 2016;30(6):4644-4652. doi:10.1021/acs.energyfuels.6b00461spa
dc.relation.references139. Acevedo S, Castro A, Vásquez E, Marcano F, Ranaudo MA. Investigation of physical chemistry properties of asphaltenes using solubility parameters of asphaltenes and their fractions A1 and A2. Energy and Fuels. 2010;24(11):5921-5933. doi:10.1021/ef1005786spa
dc.relation.references140. Wilczak A, Keinath TM. Kinetics of sorption and desorption of copper(II) and lead (II) on activated carbon. Water Environ Res. 1993;65(3):238-244. doi:10.2175/wer.65.3.7spa
dc.relation.references141. Shayan NN, Mirzayi B. Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy and Fuels. 2015;29(3):1397-1406. doi:10.1021/ef502494dspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalAsfaltenosspa
dc.subject.proposalDissolutioneng
dc.subject.proposalPhenomenological modeleng
dc.subject.proposalRemediación químicaspa
dc.subject.proposalDaño de formaciónspa
dc.titleDesarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenosspa
dc.title.alternativeDevelopment of a phenomenological model and numerical simulation of the chemical remediation of formation damage by asphaltene precipitationspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
93370604.2020.pdf
Tamaño:
3.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: