Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención

dc.contributor.advisorMárquez Godoy, Marco Antonio
dc.contributor.advisorOCAMPO CARMONA, LUZ MARINA
dc.contributor.authorMiranda Arroyave, Lina Marcela
dc.contributor.researchgroupGrupo de Mineralogía Aplicada y Bioprocesos (Gmab)spa
dc.contributor.researchgroupCiencia y Tecnología de Materiales - CTMspa
dc.coverage.cityRiosucio, Caldas, Colombia
dc.date.accessioned2022-09-26T16:23:08Z
dc.date.available2022-09-26T16:23:08Z
dc.date.issued2022-09-25
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEn este trabajo se presentan los resultados obtenidos para la recuperación de Zn, por medio de procesos de biolixiviación/biooxidación y electroobtención, a partir de residuos mineros de la mina la Gavia, ubicada en el municipio de Riosucio, Caldas, Colombia. Esta empresa minera se dedica a la explotación de oro, y en ella se produce grandes pilas residuales con contenido apreciable de minerales secundarios, donde se resalta la esfalerita, una de las principales menas de Zn. La biolixiviación se realizó en presencia de cultivos puros y mixtos de cepas de A. ferrooxidans, L. ferrooxidans y A. thiooxidans, con el objetivo de evaluar su capacidad y empleo en el proceso de lixiviación. Los resultados a escala de laboratorio del proceso de adaptación evidenciaron la facultad de estos microrganismos a sobrevivir en ambientes complejos. Los ensayos formales permitieron conocer la cinética del proceso, en función del Eh, pH, biomasa y determinación de Zn+2. Se confirmó la ventaja de emplear cultivos en mezcla, de este modo, el mayor porcentaje de disolución de Zn que fue del 69,5%, se logró con el cultivo [A. ferrooxidans + L. ferrooxidans + A. thiooxidans]. Mediante los análisis FT-IR, DRX y SEM/EDS, se confirmó la presencia de productos secundarios, los cuales fueron principalmente jarosita, anglesita y yeso, y posiblemente azufre elemental, compuestos que intervienen negativamente en la recuperación de Zn. Los experimentos de electroobtención consiguieron mostrar el comportamiento de la electrodeposición de Zn en función del rendimiento, el pH y el voltaje. En general, las formaciones morfológicamente de los depósitos fueron rugosos (dendríticos o fractales) y polvo. Lo anterior se asoció con el desprendimiento de hidrógeno gaseoso, además de la influencia de variables como temperatura, pH, agitación e impurezas del sistema. El trabajo de laboratorio realizado con residuos de la actividad minera de la mina La Gavia corroboró el potencial uso del proceso de la biolixiviación/biooxidación para la recuperación de metales, en los que se resaltó la capacidad adaptativa de las cepas, frente a muestras minerales con altos contenidos de metales tóxicos. Por lo anterior, se concluyó que la biolixiviación asistida por bacterias acidófilas es un proceso efectivo para la recuperación de material de interés (Zn en el caso de la presente tesis) a partir de residuos mineros, además de ser amigable con el medio ambiente. (Texto tomado de la fuente)spa
dc.description.abstractThis paper presented the results obtained for the recovery of zinc, through bioleaching / biooxidation and electrowinning processes, from mining waste from the La Gavia mine, located in the municipality of Riosucio, Caldas, Colombia. This mining company is dedicated to the exploitation of gold, and it produces large residual piles with an appreciable content of secondary minerals, where sphalerite stands out, one of the main Zn ores. The bioleaching was carried out in the presence of pure and mixed cultures of A. ferrooxidans, L. ferrooxidans and A. thiooxidans strains, with the purpose to evaluate their capacity and use in the leaching process. The laboratory-scale results of the adaptation process evidenced the ability of these microorganisms to survive in complex environments. The formal bioleaching tests allowed to know the kinetics of the process, as a function of Eh, pH, biomass and determination of Zn+2. The advantage of using mixed cultures was confirmed, in this way, the highest percentage of Zn dissolution, which was 69,5%, was achieved with the culture [A. ferrooxidans + L. ferrooxidans + A. thiooxidans]. Through the FT-IR, XRD and SEM / EDS analyzes, the presence of secondary products was confirmed, which were mainly jarosite, anglesite and gypsum, and possibly elemental sulfur, compounds that are negatively involved in Zn recovery. Electrowinning experiments were able to show the behavior of Zn electrodeposition as a function of yield, pH and voltage. In general, the morphological formations of the deposits were rough (dendritic or fractal) and dust. This was associated with the detachment of hydrogen gas, in addition to the influence of variables such as temperature, pH, agitation and impurities in the system. The laboratory work carried out with residues from the mining activity of the La Gavia mine corroborated the potential use of the bioleaching/biooxidation process for the recovery of metals, in which the adaptive capacity of the strains was highlighted, compared to mineral samples with high content of toxic metals. Therefore, it was concluded that bioleaching assisted by acidophilic bacteria is an effective process for the recovery of material of interest (Zn in the case of this thesis) from mining waste, in addition to being friendly to the environment.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaReciclaje de materialesspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extentxxvi, 147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82327
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesDANE, “Inicio,” 2021spa
dc.relation.referencesSIMCO, “Inicio,” SIMCO. Sistema de Información Minero Colombiano., 2021. https://www1.upme.gov.co/simco/Paginas/home.aspxspa
dc.relation.referencesR. Oyarzún, P. Higueras, and J. Lillo, “Minería Ambiental. Una introducción a los Impactos y su Remediación,” GEMM - Aula2puntonet, pp. 1–337, 2011.spa
dc.relation.referencesL. E. Sánchez, “Manejo De Residuos Solidos En Mineria,” II Curso Internacional de aspectos geológicos de protección ambiental, pp. 239–250, 2005.spa
dc.relation.referencesK. Bosecker, “Bioleaching: Metal solubilization by microorganisms,” FEMS Microbiol Rev, vol. 20, no. 3–4, pp. 591–604, 1997, doi: 10.1016/S0168-6445(97)00036-3.spa
dc.relation.referencesA. Ballester, J. Sancho, and L. F. Verdeja, Metalurgia extractiva: Fundamentos (Vol. I). 2000.spa
dc.relation.referencesH. J. Ayala Mosquera, M. Cabrera Leal, A. Cadena Galvis, and C. Castaño Uribe, “Diagnóstico de la información ambiental y social respecto a la actividad minera y extracción ilícita de minerales en el país,” 2019.spa
dc.relation.referencesE. D. Ruiz López, “Valoración de los residuos industriales en organizaciones del sector minero-energético y su impacto en el medio ambiente,” 2019. [Online]. Available: http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218&lang=fa&tmpl=component%0Ahttp://www.albayan.ae%0Ahttps://scholar.google.co.id/scholar?hl=en&q=APLIKASI+PENGENAspa
dc.relation.referencesY. Rodríguez, A. Ballester, M. L. Blázquez, F. González, and J. A. Muñoz, “Mecanismo de biolixiviación de sulfuros metálicos,” Revista de Metalurgia, vol. 37, no. 2001, pp. 665–672, 2001, doi: 10.3989/egeogr.2001.i245.267.spa
dc.relation.referencesE. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Parte 1,” 2010.spa
dc.relation.referencesF. Anjum, M. Shahid, and A. Akcil, “Biohydrometallurgy techniques of low grade ores: A review on black shale,” Hydrometallurgy, vol. 117–118, pp. 1–12, 2012, doi: 10.1016/j.hydromet.2012.01.007.spa
dc.relation.referencesD. B. Johnson, “Development and application of biotechnologies in the metal mining industry,” Environmental Science and Pollution Research, vol. 20, no. 11, pp. 7768–7776, 2013, doi: 10.1007/s11356-013-1482-7.spa
dc.relation.referencesElsevier B.V., “Scopus.”spa
dc.relation.referencesC. Gómez, M. L. Blázquez, and A. Ballester, “Bioleaching of a Spanish complex sulphide ore bulk concentrate,” Miner Eng, vol. 12, no. 98, pp. 93–106, 1999, doi: 10.1016/S0892-6875(98)00122-8.spa
dc.relation.referencesS. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, and R. Roostaazad, “Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and Sulfobacillus,” Int J Miner Process, vol. 80, no. 2–4, pp. 238–243, 2006, doi: 10.1016/j.minpro.2006.05.001.spa
dc.relation.referencesS. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, “Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains,” Hydrometallurgy, vol. 85, no. 1, pp. 59–65, 2007, doi: 10.1016/j.hydromet.2006.08.003.spa
dc.relation.referencesS. M. Mousavi et al., “The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor,” Bioresour Technol, vol. 99, no. 8, pp. 2840–2845, 2008, doi: 10.1016/j.biortech.2007.06.009.spa
dc.relation.referencesD. M. Zapata Aguirre, “Mineralogía del proceso de oxidación bacteriana de esfalerita, proveniente del distrito minero de marmato (Caldas),” p. 181, 2006.spa
dc.relation.referencesP. A. OLUBAMBI, S. NDLOVU, J. H. POTGIETER, and J. O. BORODE, “Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 5, pp. 1234–1246, 2008, doi: 10.1016/S1003-6326(08)60210-1.spa
dc.relation.referencesP. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 368–374, 2009, doi: 10.1016/S1674-4799(09)60066-2.spa
dc.relation.referencesM. Soleimani, S. Hosseini, R. Roostaazad, J. Petersen, S. M. Mousavi, and A. K. Vasiri, “Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor,” Hydrometallurgy, vol. 99, no. 3–4, pp. 131–136, 2009, doi: 10.1016/j.hydromet.2009.06.006.spa
dc.relation.referencesD. M. Zapata Aguirre, D. M. Ossa Henao, and M. A. Marquez Godoy, “Mineralogical characterization of oxidation productos in a pyrite-sphalerite system using indigenous Fe oxidizing bacteria,” Dyna-Colombia, vol. 75, no. 154, pp. 59–64, 2008.spa
dc.relation.referencesS. Ghassa, Z. Boruomand, H. Abdollahi, M. Moradian, and A. Akcil, “Bioleaching of high grade Zn-Pb bearing ore by mixed moderate thermophilic microorganisms,” Sep Purif Technol, vol. 136, pp. 241–249, 2014, doi: 10.1016/j.seppur.2014.08.029.spa
dc.relation.referencesA. Ahmadi and S. J. Mousavi, The influence of physicochemical parameters on the bioleaching of zinc sulfide concentrates using a mixed culture of moderately thermophilic microorganisms, vol. 135. Elsevier B.V., 2015. doi: 10.1016/j.minpro.2015.01.002.spa
dc.relation.referencesM. O. Bustamante Rúa, A. C. Gaviria Cartagena, and J. O. Restrepo Baena, “Concentracion De Minerales,” p. 83, 2008, [Online]. Available: http://minas.medellin.unal.edu.co/centro-editorial/cuadernos/download/24_5a1004a32dcbd619453c3eed562725f0spa
dc.relation.referencesD. H. Lock, “Aplicaciones en la biometalurgia,” Revista de Química, no. 1012–3946, pp. 25–30, 2009.spa
dc.relation.referencesM. E. Hoque and O. J. Philip, “Biotechnological recovery of heavy metals from secondary sources-An overview,” Materials Science and Engineering C, vol. 31, no. 2, pp. 57–66, 2011, doi: 10.1016/j.msec.2010.09.019.spa
dc.relation.referencesS. L. Márquez Cordero, “Estudio de la precipitación de zinc producto de la oxidación bacteriana de la esfalerita (Variedad marmatita) usando electrowinning,” p. 80, 2006.spa
dc.relation.referencesY. Rodríguez, M. L. Blázquez, A. Ballester, F. González, and J. A. Muñoz, “La biolixiviación al comienzo del siglo XXI,” Metalurgia, vol. LIX, no. 37, pp. 121–129, 2001, doi: 10.3989/egeogr.2001.i245.267.spa
dc.relation.references[30] A. Mahmoud, P. Cézac, A. F. A. Hoadley, F. Contamine, and P. D’Hugues, “A review of sulfide minerals microbially assisted leaching in stirred tank reactors,” Int Biodeterior Biodegradation, vol. 119, pp. 118–146, 2017, doi: 10.1016/j.ibiod.2016.09.015.spa
dc.relation.referencesM. Vera, A. Schippers, and W. Sand, “Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-part A,” Appl Microbiol Biotechnol, vol. 97, no. 17, pp. 7529–7541, 2013, doi: 10.1007/s00253-013-4954-2.spa
dc.relation.referencesW. Sand, T. Gehrke, P. G. Jozsa, and A. Schippers, “(Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching,” Hydrometallurgy, vol. 59, no. 2–3, pp. 159–175, 2001, doi: 10.1016/S0304-386X(00)00180-8.spa
dc.relation.referencesG. Rossi, Biohydrometallurgy. New York: McGraw-Hill, 1990.spa
dc.relation.references[34] F. Acevedo and J. Gentina, “Fundamentos y Perspectivas de las Tecnologías Biomineras,” Archivos de Ingeniería Bioquímica, pp. 3–24, 2005, [Online]. Available: www.euv.clspa
dc.relation.referencesD. Arroyave, “Evaluación del proceso de Biooxidación a escala de laboratorio del mineral aurífero de la mina El Zancudo, Titiribí-Antioquia,” 2008.spa
dc.relation.referencesJ. R. Ban, G. H. Gu, and K. T. Hu, “Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans,” Transactions of Nonferrous Metals Society of China (English Edition), 2013, doi: 10.1016/S1003-6326(13)62490-5.spa
dc.relation.referencesP. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 368–374, 2009, doi: 10.1016/S1674-4799(09)60066-2.spa
dc.relation.referencesG. Lewis, S. Gaydardzhiev, D. Bastin, and P. F. Bareel, “Bio hydrometallurgical recovery of metals from Fine Shredder Residues,” Miner Eng, vol. 24, no. 11, pp. 1166–1171, 2011, doi: 10.1016/j.mineng.2011.03.025.spa
dc.relation.referencesL. M. Ocampo Carmona, “Serie electroquímica, escala de tensiones, electrodos de referencia,” Medellin, 2017.spa
dc.relation.referencesL. M. Ocampo Carmona, “Generalidades sobre termodinámica electroquímica, ecuación de Nerst y diagrama de Pourbaix,” 2018.spa
dc.relation.referencesD. Calla, “Tratamiento de los residuos del proceso jarosita de la industria metalurgica del zinc, conla finalidad de mitigar este pasivo ambiental,” 2010. doi: 10.1007/s00103-010-1194-9.spa
dc.relation.referencesMx News and others, “¿Qué es una celda electrolítica y como esta formada?,” Celdas Electrolíticas y Electroquímicas (Definición, Primarias o Secundarias y Otros datos)., Nov. 14, 2019.spa
dc.relation.referencesMetallos, “Zn-pourbaix-diagram,” Oct. 24, 2007.spa
dc.relation.referencesL. M. Ocampo Carmona, “Cinética electroquímica,” 2018.spa
dc.relation.referencesATCC, “ATCC: The Global Bioresource Center. Bacterial Products.” https://www.atcc.org/spa
dc.relation.referencesDSMZ, “German Collection of Microorganisms and Cell Cultures GmbH: Culture Technology.” https://www.dsmz.de/collection/catalogue/microorganisms/culturetechnologyspa
dc.relation.referencesHach Company, “HQ40D Multimedidor digital de dos canales - Hach España - Aspectos generales.” https://es.hach.com/hq40d-multimedidor-digital-de-doscanales/product?id=26096933367#spa
dc.relation.referencesHach Company, “Electrodo de pH Intellical PHC301 para laboratorio, multiuso, rellenable, cable de 1 metro | Hach España - Aspectos Generales.”spa
dc.relation.references[49] Hach Company, “Electrodo de ORP/RedOx Intellical MTC301 para laboratorio, multiuso, rellenable, cable de 1 metro | Hach España - Aspectos Generales.” https://es.hach.com/electrodo-de-orp-redox-intellical-mtc301-para-laboratorio-multiusorellenable-cable-de-1-metro/product?id=25116715766&callback=qs (accessed Jun. 02, 2021).spa
dc.relation.references[50] A. R. Dubon Urbina and A. Ivette Guadron, “Determinacion cuantitativa de elementos presentes en sales inorganicas por métodos complejometricos no oficiales,” 2009. [Online]. Available: http://ri.ues.edu.sv/2597/1/16101216.pdfspa
dc.relation.references[51] M. KIMATA et al., “Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite,” Journal of Mineralogical and Petrological Sciences, vol. 103, no. 2, pp. 145–151, 2008, doi: 10.2465/jmps.071022f.spa
dc.relation.references[52] L. G. Berry and R. M. Thompson, X-Ray Powder Data for Ore Minerals: The Peacock Atlas. 1962.spa
dc.relation.references[53] C. L. Burdick and H. Ellis, James, The crystal structure of chalcopyrite determined by x-ray, vol. 505, no. 1916. 1917.spa
dc.relation.references[54] S. M. Antao, I. Hassan, J. Wang, P. L. Lee, and B. H. Toby, “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can Mineral, vol. 46, no. 6, pp. 1501–1509, 2008, doi: 10.3749/canmin.46.6.1501.spa
dc.relation.referencesM. Prencipe, F. Pascale, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando, and R. Dovesi, “The vibrational spectrum of calcite (CaCO3): An ab initio quantum-spa
dc.relation.referencesJ. J. Liang, F. C. Hawthorne, and I. P. Swainson, “Triclinic muscovite: X-ray diffraction, neutron diffraction and photo-acoustic FTIR spectroscopy,” Can Mineral, vol. 36, no. 4, pp. 1017–1027, 1998.spa
dc.relation.references[57] H. W. van der Marel and H. Beutelspacher, Atlas of infrared spectroscopy of clay minerals and their admixtures. New York: Elsevier Scientific Publishing Company, 1976.spa
dc.relation.references[58] K. Harneit, A. Göksel, D. Kock, J. H. Klock, T. Gehrke, and W. Sand, “Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans,” Hydrometallurgy, vol. 83, no. 1–4, pp. 245–254, 2006, doi: 10.1016/j.hydromet.2006.03.044.spa
dc.relation.references[59] A. A. Baba, F. A. Adekola, R. F. Atata, R. N. Ahmed, and S. Panda, “Bioleaching of Zn(II) and Pb(II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 21, no. 11, pp. 2535–2541, 2011, doi: 10.1016/S1003-6326(11)61047-9.spa
dc.relation.references[60] E. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Parte 2,” 2010.spa
dc.relation.references[61] H. Deveci, A. Akcil, and I. Alp, “Bioleaching of complex zinc importance of pH and iron,” Hydrometallurgy, 2004, doi: 10.1016/j.hydromet.2003.12.001.spa
dc.relation.references[62] J. E. Dutrizac and J. L. Jambor, “Jarosites and Their Application in Hydrometallurgy,” Rev Mineral Geochem, vol. 40, no. 1, pp. 405–452, 2000, doi: 10.2138/rmg.2000.40.8.spa
dc.relation.referencesM. Gotić, S. Popović, N. Ljubešić, and S. Musić, “Structural properties of precipitates formed by hydrolysis of Fe3+ ions in aqueous solutions containing NO3- and Cl- ions,” J Mater Sci, vol. 29, no. 9, pp. 2474–2480, 1994, doi: 10.1007/BF00363442sulphides using mesophilic and thermophilic bacteria: Comparativespa
dc.relation.referencesJ. D. Ospina Correa, “Mineralogia del proceso de oxidación bacteriana de arsenopirita y pirita,” 2010.spa
dc.relation.references[65] M. C. Prada, “Influencia de las sales cloruro férrico y sulfato férrico como fuentes de hierro exógenas en un proceso de biodesulfurización de carbones, mediado por la acción de una cepa de Acidithiobacillus ferrooxidans,” 2015.spa
dc.relation.references[66] D. Baron and C. Palmer, “Solubility of jarosite at 4-35oC,” Geochim Cosmochim Acta, vol. 60, no. 2, pp. 185–195, 1996, [Online]. Available: http://www.hicn.org/wordpress/wp-content/uploads/2012/06/wp114.pdfspa
dc.relation.references[67] N. Lazaroff, W. Sigal, and A. Wasserman, “Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells.,” Appl Environ Microbiol, vol. 43, no. 4, pp. 924–38, 1982, doi: 82/040924-15$02.00/0.spa
dc.relation.references[68] K. C. Ivarson, “Microbiological formation of basic ferric sulfates,” Can. J. Soil Sci., vol. 53, no. 433, pp. 315–323, 1973. [69] H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” American Mineralogist, vol. 50, no. 1–2, pp. 132–147, Feb. 1965, [Online]. Available: https://dx.doi.org/spa
dc.relation.references[70] S. Xuguang, “The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 62, no. 5, pp. 557–564, 2005, doi: 10.1016/j.saa.2006.11.034.spa
dc.relation.references[71] L. Gunneriusson, Å. Sandström, A. Holmgren, E. Kuzmann, K. Kovacs, and A. Vértes, “Jarosite inclusion of fluoride and its potential significance to bioleaching of sulphide minerals,” Hydrometallurgy, vol. 96, no. 1–2, pp. 108–116, 2009, doi: 10.1016/j.hydromet.2008.08.012.spa
dc.relation.references[72] J. L. Bishop and E. Murad, “The visible and infrared spectral properties of jarosite and alunite,” American Mineralogist, vol. 90, no. 7, pp. 1100–1107, Jul. 2005, doi: 10.2138/am.2005.1700.spa
dc.relation.referencesK. Sasaki, M. Tsunekawa, and H. Konno, “Characterization of Argentojarosite Formed From Biologically Oxidized Fe3+ Ions,” Can Mineral, vol. 33, no. Part 6, pp. 1311–1319, 1995, doi: 10.1785/0120000261.spa
dc.relation.references[74] E. J. W. Whittaker, “The infrared spectra of minerals,” Mineral Mag, vol. 40, no. 309, p. 539, 1975, doi: 10.1080/00207237108709483.spa
dc.relation.references[75] I. v. Chernyshova, “An in situ FTIR study of galena and pyrite oxidation in aqueous solution,” Journal of Electroanalytical Chemistry, vol. 558, no. 1–2, pp. 83–98, 2003, doi: 10.1016/S0022-0728(03)00382-6.spa
dc.relation.references[76] M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” American Mineralogist, vol. 92, no. 1, pp. 1–18, 2007, doi: 10.2138/am.2007.2170.spa
dc.relation.references[77] H. H. Adler and P. F. Kerr, “Infrared spectra, symmentry and structure relations of some carbonate minerals,” American Mineralogist, vol. 48, no. 7–8, pp. 839–853, Aug. 1963, [Online]. Available: https://dx.doi.org/spa
dc.relation.references[78] D. Helm and D. Naumann, “Identification of some bacterial cell components by FT-IR spectroscopy,” FEMS Microbiol Lett, vol. 126, no. 1, pp. 75–79, 1995, doi: 10.1016/0378-1097(94)00529-Z.spa
dc.relation.references[79] P. K. Sharma and K. H. Rao, “Surface characterization of bacterial cells relevant to the mineral industry,” Minerals & Metallurgical Processing, vol. 22, no. 1, pp. 31–37, 2005.spa
dc.relation.references[80] A. Heydarian, S. M. Mousavi, F. Vakilchap, and M. Baniasadi, “Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries,” J Power Sources, vol. 378, no. November 2017, pp. 19–30, 2018, doi: 10.1016/j.jpowsour.2017.12.009.spa
dc.relation.references[81] C. Castro, “Interacción de una arquea termófila con la superficie mineral y su influencia en la biolixiviación de minerales,” p. 268, 2016.spa
dc.relation.referencesS. J. G. Casaroli, B. Cohen, A. R. Tong, P. Linkson, and J. G. Petrie, “Cementation for metal removal in zinc electrowinning circuits,” Miner Eng, vol. 18, no. 13–14, pp. 1282–1288, 2005, doi: 10.1016/j.mineng.2005.05.017.spa
dc.relation.references[83] T. Karlsson, Y. Cao, Y. Colombus, and B. M. Steenari, “Investigation of the kinetics and the morphology of cementation products formed during purification of a synthetic zinc sulfate electrolyte,” Hydrometallurgy, vol. 181, no. August, pp. 169–179, 2018, doi: 10.1016/j.hydromet.2018.09.007.spa
dc.relation.references[84] T. J. Peng et al., “Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 26, no. 2, pp. 544–550, 2016, doi: 10.1016/S1003-6326(16)64143-2.spa
dc.relation.references[85] S. yuan Shi and Z. heng Fang, “Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans,” Hydrometallurgy, vol. 75, no. 1–4, pp. 1–10, 2004, doi: 10.1016/j.hydromet.2004.05.008.spa
dc.relation.references[86] M. Ye et al., “Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process,” Chemosphere, vol. 168, pp. 1115–1125, 2017, doi: 10.1016/j.chemosphere.2016.10.095.spa
dc.relation.references[87] J. E. Dutrizac and S. Kaiman, “Synthesis and properties of jarosite type compounds,” Can Mineral, vol. 14, pp. 151–158, 1976.spa
dc.relation.references[88] P. Cogram, “Jarosite,” Reference Module in Earth Systems and Environmental Sciences, pp. 1–9, 2018, doi: 10.1016/B978-0-12-409548-9.10960-1.spa
dc.relation.references[89] G. da Silva, M. R. Lastra, and J. R. Budden, “Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena,” Miner Eng, vol. 16, no. 3, pp. 199–203, 2003, doi: 10.1016/S0892-6875(03)00010-4.spa
dc.relation.references[90] P. A. Olubambi, “Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores,” Hydrometallurgy, vol. 95, no. 1–2, pp. 159–165, 2009, doi: 10.1016/j.hydromet.2008.05.043.spa
dc.relation.referencesH. Ollakka, J. Ruuska, and S. Taskila, “The application of principal component analysis for bioheapleaching process - Case study: Talvivaara mine,” Miner Eng, vol. 95, pp. 48–58, 2016, doi: 10.1016/j.mineng.2016.06.009.spa
dc.relation.referencesJ. Valdés, I. Pedroso, R. Quatrini, and D. S. Holmes, “Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology,” Hydrometallurgy, vol. 94, no. 1–4, pp. 180–184, doi: 10.1016/j.hydromet.2008.05.039.spa
dc.relation.referencesG. A. González, “Transporte iónico y patrones de crecimiento en electrodeposición ramificada,” p. 138, 2003, [Online]. Available: http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_3611_Gonzalez.pdfspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc540 - Química y ciencias afines::549 - Mineralogíaspa
dc.subject.lembSuelos - Contenidos de cinc
dc.subject.lembSoils - Zinc content
dc.subject.proposalRecuperación de Znspa
dc.subject.proposalEsfaleritaspa
dc.subject.proposalBiolixiviaciónspa
dc.subject.proposalElectroobtenciónspa
dc.subject.proposalZn recoveryeng
dc.subject.proposalSphaleriteeng
dc.subject.proposalAcidithiobacillus ferrooxidanseng
dc.subject.proposalLeptospirillum ferrooxidanseng
dc.subject.proposalAcidithiobacillus thiooxidanseng
dc.subject.proposalBioleachingeng
dc.subject.proposalElectrowinningeng
dc.titleRecuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtenciónspa
dc.title.translatedRecovery of zinc from mining waste through bioleaching by acidophilic bacteria and electrowinningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleRecuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtenciónspa
oaire.fundername“Aplicaciones biotecnológicas en procesos de síntesis y transformación de minerales aplicadas a la industria - fase II” con código Hermes 35981 de la convocatoria nacional de proyectos para el fortalecimiento de la investigación, creación e innovación de la Universidad Nacional de Colombia 2016-2018)spa
oaire.fundername“Recuperación de zinc a partir de residuos sólidos mineros mediante biolixiviación por bacterias acidófilas” con código Hermes 40912 de la convocatoria nacional para el apoyo al desarrollo de tesis de posgrado o de trabajos finales de especialidades en el área de la salud, de la Universidad Nacional de Colombia 2017-2018spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020766900.2022.pdf
Tamaño:
7.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: