Implementation of artificial intelligence techniques for the inversion of the Stokes parameters in the solar context

dc.contributor.advisorVargas Domínguez, Santiagospa
dc.contributor.advisorShelyag, Sergiyspa
dc.contributor.authorAgudelo Ortiz, Juan Estebanspa
dc.contributor.orcid0000-0002-7840-9370
dc.contributor.researchgroupGrupo de Astrofísicaspa
dc.date.accessioned2025-08-21T22:27:07Z
dc.date.available2025-08-21T22:27:07Z
dc.date.issued2025-08-19
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractThe inversion of Stokes parameters is a key tool for recovering the physical conditions of the solar atmosphere from spectropolarimetric observations. Traditional approaches rely on iterative least-squares optimization methods which, despite their accuracy, are computationally expensive and limited in their applicability to large volumes of data. In this thesis, we explore the implementation of artificial intelligence techniques—particularly deep learning architectures—for the inversion of Stokes profiles in the quiet Sun’s photosphere. Using synthetic data generated from magnetohydrodynamic simulations with the MURaM code and radiative transfer calculations with the NICOLE code, we train and compare various neural network models, including fully connected networks, convolutional neural networks, and a multi-scale convolutional network (MSCNN). The observational effects of the Hinode/SOT-SP instrument were progressively incorporated to ensure the applicability of the models to real data, and their generalization ability was evaluated using the MODEST inversion catalog. Six experiments were conducted to analyze the influence of spectral resolution, Stokes parameter weighting, multiscale learning, and the inclusion of physical constraints—particularly a loss function guided by the Weak Field Approximation (WFA), an innovative method in the field. The results demonstrate that neural networks can replicate synthetic inversions with high accuracy in milliseconds, providing a speed-up of several orders of magnitude over traditional methods. Furthermore, the incorporation of physical constraints improves magnetic field recovery and interpretability, with potential for generalization to actual observational cases. This work shows that physics-assisted deep learning offers a promising framework for fast and reliable spectropolarimetric inversions, representing an advance in the integration of machine learning into astrophysics.eng
dc.description.abstractLa inversión de los parámetros de Stokes es una herramienta fundamental para la recuperación de las condiciones físicas de la atmósfera solar a partir de observaciones espectropolarimétricas. Los enfoques tradicionales se basan en métodos iterativos de optimización por mínimos cuadrados que, aunque precisos, resultan computacionalmente costosos y limitados en su aplicabilidad a grandes volúmenes de datos. En esta tesis exploramos la implementación de técnicas de inteligencia artificial —particularmente arquitecturas de aprendizaje profundo— para la inversión de perfiles de Stokes en la fotosfera para el Sol en calma. Utilizando datos sintéticos generados a partir de simulaciones magnetohidrodinámicas con el código MURaM y cálculos de transferencia radiativa con el código NICOLE, entrenamos y comparamos diversos modelos de redes neuronales, incluyendo redes totalmente conectadas, redes convolucionales y una red convolucional multiescala (MSCNN). Se incorporaron progresivamente los efectos observacionales del instrumento Hinode/SOT-SP para garantizar la aplicabilidad de los modelos a datos reales, y se evaluó su capacidad de generalización utilizando el catálogo MODEST de inversiones. Se realizaron seis experimentos para analizar la influencia de la resolución espectral, el ponderado de los parámetros de Stokes, el aprendizaje multiescala y la inclusión de restricciones físicas —particularmente una función de pérdida guiada por la Aproximación de Campo Débil (WFA), la cuál constituye un método innovador en el campo de estudio. Los resultados demuestran que las redes neuronales pueden replicar con gran precisión las inversiones sintéticas en milisegundos, ofreciendo una aceleración de varios órdenes de magnitud respecto a los métodos tradicionales, mientras que la incorporación de restricciones físicas mejora la recuperación del campo magnético y su interpretabilidad, podiendo ser generalizado a casos de observaciones reales. Este trabajo demuestra que el aprendizaje profundo asistido por la física constituye un marco prometedor para realizar inversiones espectropolarimétricas rápidas y fiables, representando un avance en la integración del aprendizaje automático en la astrofísica. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Astronomíaspa
dc.description.methodsSe aplicó un estudio mediante la aplicación de diferentes experimentos computacionales con el fin de obtener el modelo ideal para la obtención de los parámetros físicos de la atmósfera solar mediante técnicas de aprendizaje profundo informadas por física.spa
dc.description.researchareaSolar astrophysicsspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88431
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesA. F. Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018. URL https://arxiv.org/abs/1803.08375.spa
dc.relation.referencesJ. C. Allred, S. L. Hawley, W. P. Abbett, and M. Carlsson. Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. The Astrophysical Journal, 630 (1):573, 2005.spa
dc.relation.referencesJ. C. Allred, A. F. Kowalski, and M. Carlsson. A unified computational model for solar and stellar flares. The Astrophysical Journal, 809(1):104, 2015.spa
dc.relation.referencesB. L. Alterman et al. The transition from slow to fast wind as observed in composition obser- vations. Astronomy & Astrophysics, 694:A265, 2025. doi: 10.1051/0004-6361/202451550. Published online: 19 February 2025.spa
dc.relation.referencesA. Asensio Ramos, I. S. Requerey, and N. Vitas. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface. A&A, 604:A11, July 2017. doi: 10.1051/ 0004-6361/201730783.spa
dc.relation.referencesA. Asensio Ramos, M. C. Cheung, I. Chifu, and R. Gafeira. Machine learning in solar physics. Living Reviews in Solar Physics, 20(1):4, 2023.spa
dc.relation.referencesAstropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-Whelan, et al. Astropy: A community python package for astronomy. Astronomy & Astrophysics, 558:A33, 2013. doi: 10.1051/0004-6361/201322068.spa
dc.relation.referencesAstropy Collaboration, A. M. Price-Whelan, B. M. Sipőcz, H. M. Günther, P. L. Lim, S. M. Crawford, S. Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas, L. D. Bradley, D. Pérez-Suárez, M. de Val-Borro, T. L. Aldcroft, K. L. Cruz, T. P. Robitaille, E. J. Tollerud, C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V. Bakanov, S. P. Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M. Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach, H. Buddelmeijer, D. J. Burke, G. Calderone, J. L. Cano Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella, Y. Copin, L. Corrales, D. Crichton, D. D’Avella, C. Deil, É. Depagne, J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro, L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein, R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P. Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Ž. Ivezić, A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E. Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni, A. Kumar, A. Lee, D. Lenz, S. P. Littlefair, Z. Ma, D. M. Macleod, M. Mastropietro, C. McCully, S. Montagnac, B. M. Morris, M. Mueller, S. J. Mumford, D. Muna, N. A. Murphy, S. Nelson, G. H. Nguyen, J. P. Ninan, M. Nöthe, S. Ogaz, S. Oh, J. K. Parejko, N. Parley, S. Pascual, R. Patil, A. A. Patil, A. L. Plunkett, J. X. Prochaska, T. Rastogi, V. Reddy Janga, J. Sabater, P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P. Singer, P. H. Sladen, K. A. Sooley, S. Sornarajah, O. Streicher, P. Teuben, S. W. Thomas, G. R. Tremblay, J. E. H. Turner, V. Terrón, M. H. van Kerkwijk, A. de la Vega, L. L. Watkins, B. A. Weaver, J. B. Whitmore, J. Woillez, V. Zabalza, and Astropy Contributors. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. AJ, 156(3):123, Sept. 2018. doi: 10.3847/1538-3881/aabc4f.spa
dc.relation.referencesAstropy Collaboration et al. The astropy project: Sustaining and growing a core open- source package for astronomy. The Astrophysical Journal, 935(2):167, 2022. doi: 10.3847/ 1538-4357/ac7c74.spa
dc.relation.referencesP. Barthol, A. Gandorfer, S. K. Solanki, M. Schüssler, B. Chares, W. Curdt, W. Deutsch, A. Feller, D. Germerott, B. Grauf, et al. The sunrise mission. Solar Physics, 268:1–34, 2011.spa
dc.relation.referencesC. D. Baso and A. A. Ramos. Enhancing sdo/hmi images using deep learning. Astronomy & Astrophysics, 614:A5, 2018.spa
dc.relation.referencesC. D. Baso, I. Milić, L. R. van der Voort, and R. Schlichenmaier. Spectral resolution effects on the information content in solar spectra. Astronomy & Astrophysics, 693:A272, 2025.spa
dc.relation.referencesS. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of markov chain monte carlo. CRC press, 2011.spa
dc.relation.referencesW. Cao, J. Jing, J. Ma, Y. Xu, H. Wang, and P. R. Goode. Diffraction-limited polarimetry from the infrared imaging magnetograph at big bear solar observatory. Publications of the Astronomical Society of the Pacific, 118(844):838, 2006.spa
dc.relation.referencesW. Cao, N. Gorceix, R. Coulter, K. Ahn, T. Rimmele, and P. R. Goode. Scientific instru- mentation for the 1.6 m new solar telescope in big bear. Astronomische Nachrichten, 331 (6):636–639, 2010.spa
dc.relation.referencesW. Cao, P. Goode, K. Ahn, N. Gorceix, W. Schmidt, and H. Lin. Niris: the second generation near-infrared imaging spectro-polarimeter for the 1.6 meter new solar telescope. In Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, volume 463, page 291, 2012.spa
dc.relation.referencesM. Carlsson and R. F. Stein. Non-lte radiating acoustic shocks and ca ii k2v bright points. Astrophysical Journal, Part 2-Letters (ISSN 0004-637X), vol. 397, no. 1, p. L59-L62., 397:L59–L62, 1992.spa
dc.relation.referencesM. Carlsson and R. F. Stein. Formation of solar calcium h and k bright grains. The Astrophysical Journal, 481(1):500, 1997spa
dc.relation.referencesM. Carlsson et al. Challenges and advances in modeling of the solar atmosphere: A white paper of findings and recommendations. arXiv preprint, 2021. URL https://arxiv.org/ abs/2101.00011v3spa
dc.relation.referencesT. Carroll and J. Staude. The inversion of stokes profiles with artificial neural networks. Astronomy & Astrophysics, 378(1):316–326, 2001spa
dc.relation.referencesS. Chandrasekhar. Radiative transfer. Dover Publications, 1950. Originally published as a bookspa
dc.relation.referencesB. R. Cobo. Sir: An inversion technique of spectral lines. Astrophysics and space science, 263:331–334, 1998spa
dc.relation.referencesB. R. Cobo, C. Q. Noda, R. Gafeira, H. Uitenbroek, D. O. Suárez, and E. P. Mañá. Desire: Departure coefficient aided stokes inversion based on response functions. Astronomy & Astrophysics, 660:A37, 2022spa
dc.relation.referencesA. S. E. Community. What is the density profile within the sun’s photo- sphere?, 2025. URL https://astronomy.stackexchange.com/questions/32727/ what-is-the-density-profile-within-the-suns-photosphere-which-one-of-these-is. Accessed: 2025-04-06.spa
dc.relation.referencesW. contributors. Otsu’s method, 2023. URL https://en.wikipedia.org/wiki/Otsu%27s_ method. Accessed February 7, 2025.spa
dc.relation.referencesR. M. Crutcher and A. J. Kemball. Review of Zeeman Effect Observations of Regions of Star Formation K Zeeman Effect, Magnetic Fields, Star formation, Masers, Molecular clouds. Frontiers in Astronomy and Space Sciences, 6:66, Oct. 2019. doi: 10.3389/fspas.2019. 00066.spa
dc.relation.referencesB. De Pontieu, A. Title, J. Lemen, G. Kushner, D. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, et al. The interface region imaging spectrograph (iris). Solar Physics, 289:2733–2779, 2014.spa
dc.relation.referencesM. L. Degl’Innocenti and M. Landolfi. Polarization in spectral lines, volume 307. Springer Science & Business Media, 2006.spa
dc.relation.referencesJ. del Toro Iniesta and B. Ruiz Cobo. Stokes profiles inversion techniques. Solar Physics, 164:169–182, 1996.spa
dc.relation.referencesJ. C. del Toro Iniesta. Introduction to Spectropolarimetry. Cambridge University Press, Cambridge, UK, 2007. ISBN 9780521036481.spa
dc.relation.referencesJ. C. del Toro Iniesta and B. Ruiz Cobo. Inversion of the radiative transfer equation for polarized light. Living Reviews in Solar Physics, 13(1):4, 2016.spa
dc.relation.referencesJ. C. del Toro Iniesta, D. Orozco Suárez, and L. R. Bellot Rubio. On Spectropo- larimetric Measurements with Visible Lines. ApJ, 711(1):312–321, Mar. 2010. doi: 10.1088/0004-637X/711/1/312.spa
dc.relation.referencesA. Diercke, C. Kuckein, P. W. Cauley, K. Poppenhäger, J. D. Alvarado-Gómez, E. Dineva, and C. Denker. Solar Hα excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope. A&A, 661:A107, May 2022. doi: 10.1051/0004-6361/202040091.spa
dc.relation.referencesD. Dobrijevic. Sunspots: What are they, and why do they occur?, 2023. URL https: //www.space.com/sunspots-formation-discovery-observations. Accessed: 2025-04- 21.spa
dc.relation.referencesI. Domínguez Cerdeña, F. Kneer, and J. Sánchez Almeida. Quiet-Sun Magnetic Fields at High Spatial Resolution. ApJ, 582(1):L55–L58, Jan. 2003. doi: 10.1086/346199.spa
dc.relation.referencesS. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.spa
dc.relation.referencesJ. C. Durán, N. Milanovic, A. Korpi-Lagg, B. Löptien, M. van Noort, and S. Solanki. The modest catalog of depth-dependent spatially coupled inversions of sunspots observed by hinode/sot-sp. Astronomy & Astrophysics, 687:A218, 2024.spa
dc.relation.referencesE. Falgarone et al. Cn zeeman measurements in star formation regions. Astronomy & Astrophysics, 487(3):247–258, 2008. Application of the Zeeman effect to CN lines, fitting Stokes V with derivative of I to derive BLOS .spa
dc.relation.referencesT. Felipe, E. Khomenko, M. Collados, and C. Beck. Multi-layer study of wave propagation in sunspots. The Astrophysical Journal, 722(1):131, 2010.spa
dc.relation.referencesR. Gafeira, D. O. Suárez, I. Milić, C. Q. Noda, B. R. Cobo, and H. Uitenbroek. Machine learning initialization to accelerate stokes profile inversions. Astronomy & Astrophysics, 651:A31, 2021.spa
dc.relation.referencesJ. Gawlikowski, C. Rovile Njieutcheu Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu. A Survey of Uncertainty in Deep Neural Networks. arXiv e-prints, art. arXiv:2107.03342, July 2021. doi: 10.48550/arXiv.2107.03342.spa
dc.relation.referencesP. R. Goode and W. Cao. The 1.6 m off-axis new solar telescope (nst) in big bear. In Ground-based and airborne telescopes IV, volume 8444, page 844403. SPIE, 2012.spa
dc.relation.referencesP. R. Goode, V. Yurchyshyn, W. Cao, V. Abramenko, A. Andic, K. Ahn, and J. Chae. Highest resolution observations of the quietest sun. The Astrophysical Journal Letters, 714(1):L31, 2010.spa
dc.relation.referencesS. Gosain and A. A. Pevtsov. Resolving azimuth ambiguity using vertical nature of solar quiet-sun magnetic fields. Solar Physics, 283:195–205, 2013.spa
dc.relation.referencesJ. Guo, X. Bai, Y. Deng, H. Liu, J. Lin, J. Su, X. Yang, and K. Ji. A Non-Linear Mag- netic Field Calibration Method for Filter-Based Magnetographs by Multilayer Perceptron. Sol. Phys., 295(1):5, Jan. 2020. doi: 10.1007/s11207-019-1573-9.spa
dc.relation.referencesJ. Guo, X. Bai, H. Liu, X. Yang, Y. Deng, J. Lin, J. Su, X. Yang, and K. Ji. A nonlinear solar magnetic field calibration method for the filter-based magnetograph by the residual network. Astronomy & Astrophysics, 646:A41, 2021.spa
dc.relation.referencesS. R. Habbal, M. Druckmüller, H. Morgan, A. Ding, J. Johnson, H. Druckmüllerová, A. Daw, M. B. Arndt, M. Dietzel, and J. Saken. Thermodynamics of the solar corona and evolution of the solar magnetic field as inferred from the total solar eclipse observations of 11 july 2010. 2011. URL https://ntrs.nasa.gov/api/citations/20110011240/downloads/ 20110011240.pdf.spa
dc.relation.referencesJ. P. Halpern. Scattering of radiation with polarization. URL https://www.astro.umd. edu/~jph/notes3.pdf. Lecture notes, Columbia University.spa
dc.relation.referencesC. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna- peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard- Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.spa
dc.relation.referencesR. E. Higgins, D. F. Fouhey, D. Zhang, S. K. Antiochos, G. Barnes, J. T. Hoeksema, K. Leka, Y. Liu, P. W. Schuck, and T. I. Gombosi. Fast and accurate emulation of the sdo/hmi stokes inversion with uncertainty quantification. The Astrophysical Journal, 911(2):130, 2021.spa
dc.relation.referencesR. E. Higgins, D. F. Fouhey, S. K. Antiochos, G. Barnes, M. C. Cheung, J. T. Hoeksema, K. Leka, Y. Liu, P. W. Schuck, and T. I. Gombosi. Synthia: a synthetic inversion ap- proximation for the stokes vector fusing sdo and hinode into a virtual observatory. The Astrophysical Journal Supplement Series, 259(1):24, 2022.spa
dc.relation.referencesJ. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.spa
dc.relation.referencesR. Jarolim, M. E. Molnar, B. Tremblay, R. Centeno, and M. Rempel. Pinn me: A physics- informed neural network framework for accurate milne-eddington inversions of solar mag- netic fields, 2025. URL https://arxiv.org/abs/2502.13924.spa
dc.relation.referencesG. Jiang, H. He, J. Yan, and P. Xie. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Transactions on Industrial Electronics, 66(4): 3196–3207, 2019. doi: 10.1109/TIE.2018.2844805.spa
dc.relation.referencesH. Jiang, Q. Li, Y. Xu, W. Hsu, K. Ahn, W. Cao, J. T. L. Wang, and H. Wang. Inferring Line- of-sight Velocities and Doppler Widths from Stokes Profiles of GST/NIRIS Using Stacked Deep Neural Networks. ApJ, 939(2):66, Nov. 2022. doi: 10.3847/1538-4357/ac927e.spa
dc.relation.referencesE. Khomenko, N. Vitas, M. Collados, and A. de Vicente. Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery. A&A, 604:A66, Aug. 2017. doi: 10.1051/0004-6361/201630291.spa
dc.relation.referencesS. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 1d convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151:107398, 2021. ISSN 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2020.107398. URL https://www.sciencedirect.com/science/article/pii/S0888327020307846.spa
dc.relation.referencesI. Knyazeva, A. Plotnikov, T. Medvedeva, and N. Makarenko. Multi-output deep learning framework for solar atmospheric parameters inferring from stokes profiles. In Advances in Neural Computation, Machine Learning, and Cognitive Research V: Selected Papers from the XXIII International Conference on Neuroinformatics, October 18-22, 2021, Moscow, Russia, pages 299–307. Springer, 2022.spa
dc.relation.referencesC. C. J. Kuo. Understanding Convolutional Neural Networks with A Mathematical Model. arXiv e-prints, art. arXiv:1609.04112, Sept. 2016. doi: 10.48550/arXiv.1609.04112.spa
dc.relation.referencesA. Lagg, S. K. Solanki, H. P. Doerr, M. J. Martínez González, T. Riethmüller, M. Collados Vera, R. Schlichenmaier, D. Orozco Suárez, M. Franz, A. Feller, C. Kuckein, W. Schmidt, A. Asensio Ramos, A. Pastor Yabar, O. von der Lühe, C. Denker, H. Balthasar, R. Volkmer, J. Staude, A. Hofmann, K. Strassmeier, F. Kneer, T. Waldmann, J. M. Borrero, M. Sobotka, M. Verma, R. E. Louis, R. Rezaei, D. Soltau, T. Berkefeld, M. Sigwarth, D. Schmidt, C. Kiess, and H. Nicklas. Probing deep photospheric lay- ers of the quiet Sun with high magnetic sensitivity. A&A, 596:A6, Nov. 2016. doi: 10.1051/0004-6361/201628489.spa
dc.relation.referencesY. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computa- tion, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.spa
dc.relation.referencesB. Lites, R. Casini, J. Garcia, and H. Socas-Navarro. A suite of community tools for spectro- polarimetric analysis . Mem. Soc. Astron. Italiana, 78:148, Jan. 2007.spa
dc.relation.referencesH. Liu, Y. Xu, J. Wang, J. Jing, C. Liu, J. T. Wang, and H. Wang. Inferring vector magnetic fields from stokes profiles of gst/niris using a convolutional neural network. The Astrophysical Journal, 894(1):70, 2020.spa
dc.relation.referencesV. Martínez Pillet, J. Del Toro Iniesta, A. Álvarez-Herrero, V. Domingo, J. Bonet, L. González Fernández, A. López Jiménez, C. Pastor, J. Gasent Blesa, P. Mellado, et al. The imaging magnetograph experiment (imax) for the sunrise balloon-borne solar obser- vatory. Solar Physics, 268:57–102, 2011.spa
dc.relation.referencesI. Milić and R. Gafeira. Mimicking spectropolarimetric inversions using convolutional neural networks. Astronomy & Astrophysics, 644:A129, 2020.spa
dc.relation.referencesI. Milić and M. van Noort. Spectropolarimetric nlte inversion code snapi. Astronomy & Astrophysics, 617:A24, 2018.spa
dc.relation.referencesL. Mistryukova, A. Plotnikov, A. Khizhik, I. Knyazeva, M. Hushchyn, and D. Derkach. Stokes inversion techniques with neural networks: analysis of uncertainty in parameter estimation. Solar Physics, 298(8):98, 2023.spa
dc.relation.referencesNASA. Layers of the sun, October 2012. URL https://www.nasa.gov/image-article/ layers-of-sun/. Accessed: 2025-04-06.spa
dc.relation.referencesNASA. What is the sun’s corona?, 2024a. URL https://spaceplace.nasa.gov/sun-corona/en/. Accessed: 2025-04-21.spa
dc.relation.referencesNASA. Nasa’s parker solar probe and the curious case of the hot corona, 2024b. URL https://www.nasa.gov/science-research/heliophysics/ nasas-parker-solar-probe-and-the-curious-case-of-the-hot-corona/. Accessed: 2025-04-21.spa
dc.relation.referencesNOAA Space Weather Prediction Center. A Note on NOAA SEC Active Region Num- bers. https://umbra.nascom.nasa.gov/eit/plan/region_numbers.html, 2002. De- scribes the NOAA active region numbering system for solar observations, in use since January 5, 1972.spa
dc.relation.referencesL. J. November and G. W. Simon. Precise proper-motion measurement of solar granulation. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 333, Oct. 1, 1988, p. 427-442., 333: 427–442, 1988.spa
dc.relation.referencesN. S. Observatory. Chromosphere, 2025. URL https://nso.edu/for-public/ sun-science/chromosphere/. Accessed: 2025-04-21.spa
dc.relation.referencesC. M. Osborne, J. A. Armstrong, and L. Fletcher. Radynversion: learning to invert a solar flare atmosphere with invertible neural networks. The Astrophysical Journal, 873(2):128, 2019.spa
dc.relation.referencesN. Otsu et al. A threshold selection method from gray-level histograms. Automatica, 11 (285-296):23–27, 1975.spa
dc.relation.referencesT. pandas development team. pandas-dev/pandas: Pandas, Feb. 2020. URL https://doi. org/10.5281/zenodo.3509134.spa
dc.relation.referencesA. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv e-prints, art. arXiv:1912.01703, Dec. 2019. doi: 10.48550/arXiv.1912.01703.spa
dc.relation.referencesF. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon- del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.spa
dc.relation.referencesW. D. Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO), volume 275. Jan. 2012. doi: 10.1007/s11207-011-9841-3.spa
dc.relation.referencesM. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686–707, 2019.spa
dc.relation.referencesA. A. Ramos and C. D. Baso. Stokes inversion based on convolutional neural networks. Astronomy & Astrophysics, 626:A102, 2019.spa
dc.relation.referencesO. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. page arXiv:1505.04597, May 2015. doi: 10.48550/arXiv.1505.04597.spa
dc.relation.referencesS. Rose. The radiative opacity at the sun centre—a code comparison study. Journal of Quantitative Spectroscopy and Radiative Transfer, 71(2-6):635–638, 2001.spa
dc.relation.referencesB. Ruiz Cobo and J. C. del Toro Iniesta. Inversion of Stokes Profiles. ApJ, 398:375, Oct. 1992. doi: 10.1086/171862.spa
dc.relation.referencesL. Schanne. Normalization of spectra – continuum normalization, November 2017. URL https://lotharschanne.wordpress.com/ normalization-of-spectra-continuum-normalization/. Accessed: 2025-04-06.spa
dc.relation.referencesJ. Schou, P. H. Scherrer, R. I. Bush, R. Wachter, S. Couvidat, M. C. Rabello-Soares, R. S. Bogart, J. Hoeksema, Y. Liu, T. Duvall, et al. Design and ground calibration of the helioseismic and magnetic imager (hmi) instrument on the solar dynamics observatory (sdo). Solar Physics, 275:229–259, 2012.spa
dc.relation.referencesA. I. Shapiro, H. Peter, and S. K. Solanki. The sun’s atmosphere. Max Planck Institute for Solar System Research, 2019a. Available at: https://www2.mps.mpg.de/projects/solve/files/Solar_Atmosphere.pdf.spa
dc.relation.referencesA. I. Shapiro, H. Peter, and S. K. Solanki. The sun’s atmosphere, 2019b. URL https:// www2.mps.mpg.de/projects/solve/files/Solar_Atmosphere.pdf. Max Planck Institute for Solar System Research.spa
dc.relation.referencesH. Socas-Navarro. Feature extraction techniques for the analysis of spectral polarization pro- files. The Astrophysical Journal, 620(1):517, 2005a.spa
dc.relation.referencesH. Socas-Navarro. Strategies for spectral profile inversion using artificial neural networks. The Astrophysical Journal, 621(1):545, 2005b.spa
dc.relation.referencesH. Socas-Navarro, J. de la Cruz Rodriguez, A. A. Ramos, J. T. Bueno, and B. R. Cobo. An open-source, massively parallel code for non-lte synthesis and inversion of spectral lines and zeeman-induced stokes profiles. Astronomy & Astrophysics, 577:A7, 2015.spa
dc.relation.referencesS. Solanki, P. Barthol, S. Danilovic, A. Feller, A. Gandorfer, J. Hirzberger, T. Riethmüller, M. Schüssler, J. Bonet, V. M. Pillet, et al. Sunrise: instrument, mission, data, and first results. The Astrophysical Journal Letters, 723(2):L127, 2010.spa
dc.relation.referencesR. F. Stein. Magneto-convection. Philosophical Transactions of the Royal Society of London Series A, 370(1970):3070–3087, July 2012. doi: 10.1098/rsta.2011.0533.spa
dc.relation.referencesR. F. Stein, A. Nordlund, and D. Georgobiani. Photospheric Magnetic Fields from Magneto- Convection Simulations. art. 95, Mar. 2012.spa
dc.relation.referencesJ. Stenflo. Solar Magnetic Fields: Polarized Radiation Diagnostics, volume 189. 1994. doi: 10.1007/978-94-015-8246-9.spa
dc.relation.referencesJ. O. Stenflo. Calibration of the 6302/6301 stokes v line ratio in terms of the 5250 line ratio. Astronomy Astrophysics, 555:A132, 2013. Discusses magnetic sensitivity and calibration of Fe I 6301.5 and 6302.5 Stokes V signals.spa
dc.relation.referencesH. Tian. Probing the solar transition region: current status and future perspectives. Research in Astronomy and Astrophysics, 17(11):110, Oct. 2017. doi: 10.1088/1674-4527/17/11/110.spa
dc.relation.referencesS. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, et al. The solar optical telescope for the hinode mission: an overview. Solar Physics, 249:167–196, 2008.spa
dc.relation.referencesS. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors. scikit-image: image processing in Python. PeerJ, 2:e453, 6 2014. ISSN 2167-8359. doi: 10.7717/peerj.453. URL https: //doi.org/10.7717/peerj.453.spa
dc.relation.referencesJ. Varsik, C. Plymate, P. Goode, A. Kosovichev, W. Cao, R. Coulter, K. Ahn, N. Gorceix, and S. Shumko. Control and operation of the 1.6 m new solar telescope in big bear. In Ground- based and Airborne Instrumentation for Astronomy V, volume 9147, pages 1747–1756. SPIE, 2014.spa
dc.relation.referencesP. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen- riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.spa
dc.relation.referencesA. Vögler. Three-dimensional simulations of magneto-convection in the solar photosphere. PhD thesis, Georg August University of Gottingen, Germany, Jan. 2003.spa
dc.relation.referencesA. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde. Simulations of magneto-convection in the solar photosphere-equations, methods, and results of the muram code. Astronomy & Astrophysics, 429(1):335–351, 2005.spa
dc.relation.referencesA. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using time-delay neural networks. volume 37, pages 328–339. 1989. doi: 10.1109/29.21701.spa
dc.relation.referencesS. Wedemeyer, G. Fleishman, J. de la Cruz Rodríguez, S. Gunár, J. M. da Silva Santos, P. Antolin, J. C. Guevara Gómez, M. Szydlarski, and H. Eklund. Prospects and challenges of numerical modelling of the Sun at millimetre wavelengths. Frontiers in Astronomy and Space Sciences, 9:335, Nov. 2022. doi: 10.3389/fspas.2022.967878.spa
dc.relation.referencesC. Xu, J. Wang, H. Li, Z. Hu, X. Bai, J. Lin, H. Liu, Z. Jin, and K. Ji. Nnhmc: An efficient stokes inversion method using a neural network (nn) model combined with the hamiltonian monte carlo (hmc) algorithm. The Astrophysical Journal, 977(1):101, 2024.spa
dc.relation.referencesK. E. Yang, L. A. Tarr, M. Rempel, S. C. Dodds, S. A. Jaeggli, P. Sadowski, T. A. Schad, I. Cunnyngham, J. Liu, Y. Glaser, et al. Spectropolarimetric inversion in four dimensions with deep learning (spin4d). i. overview, magnetohydrodynamic modeling, and stokes profile synthesis. The Astrophysical Journal, 976(2):204, 2024.spa
dc.relation.referencesA. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep Learning. Cambridge University Press, 2021. URL https://d2l.ai.spa
dc.relation.referencesZ. Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pages 1–2, 2018. doi: 10.1109/ IWQoS.2018.8624183.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalSolar physicseng
dc.subject.proposalSpectropolarimetryeng
dc.subject.proposalRadiative transfereng
dc.subject.proposalMachine learningeng
dc.subject.proposalDeep learningeng
dc.subject.proposalNeural networkseng
dc.subject.proposalPhysics-informed modelseng
dc.subject.proposalFísica solarspa
dc.subject.proposalEspectropolarimetríaspa
dc.subject.proposalTransferencia radiativaspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalModelos informados por la físicaspa
dc.subject.unescoSolar activityeng
dc.subject.unescoActividad solarspa
dc.subject.unescoArtificial intelligenceeng
dc.subject.unescoInteligencia artificialspa
dc.subject.unescoAstrophysicseng
dc.subject.unescoAstrofísicaspa
dc.titleImplementation of artificial intelligence techniques for the inversion of the Stokes parameters in the solar contexteng
dc.title.translatedImplementación de técnicas de inteligencia artificial para la inversión de parámetros de Stokes en el contexto solarspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1193441159.2025.pdf
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: