Implementation of artificial intelligence techniques for the inversion of the Stokes parameters in the solar context
dc.contributor.advisor | Vargas Domínguez, Santiago | spa |
dc.contributor.advisor | Shelyag, Sergiy | spa |
dc.contributor.author | Agudelo Ortiz, Juan Esteban | spa |
dc.contributor.orcid | 0000-0002-7840-9370 | |
dc.contributor.researchgroup | Grupo de Astrofísica | spa |
dc.date.accessioned | 2025-08-21T22:27:07Z | |
dc.date.available | 2025-08-21T22:27:07Z | |
dc.date.issued | 2025-08-19 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | The inversion of Stokes parameters is a key tool for recovering the physical conditions of the solar atmosphere from spectropolarimetric observations. Traditional approaches rely on iterative least-squares optimization methods which, despite their accuracy, are computationally expensive and limited in their applicability to large volumes of data. In this thesis, we explore the implementation of artificial intelligence techniques—particularly deep learning architectures—for the inversion of Stokes profiles in the quiet Sun’s photosphere. Using synthetic data generated from magnetohydrodynamic simulations with the MURaM code and radiative transfer calculations with the NICOLE code, we train and compare various neural network models, including fully connected networks, convolutional neural networks, and a multi-scale convolutional network (MSCNN). The observational effects of the Hinode/SOT-SP instrument were progressively incorporated to ensure the applicability of the models to real data, and their generalization ability was evaluated using the MODEST inversion catalog. Six experiments were conducted to analyze the influence of spectral resolution, Stokes parameter weighting, multiscale learning, and the inclusion of physical constraints—particularly a loss function guided by the Weak Field Approximation (WFA), an innovative method in the field. The results demonstrate that neural networks can replicate synthetic inversions with high accuracy in milliseconds, providing a speed-up of several orders of magnitude over traditional methods. Furthermore, the incorporation of physical constraints improves magnetic field recovery and interpretability, with potential for generalization to actual observational cases. This work shows that physics-assisted deep learning offers a promising framework for fast and reliable spectropolarimetric inversions, representing an advance in the integration of machine learning into astrophysics. | eng |
dc.description.abstract | La inversión de los parámetros de Stokes es una herramienta fundamental para la recuperación de las condiciones físicas de la atmósfera solar a partir de observaciones espectropolarimétricas. Los enfoques tradicionales se basan en métodos iterativos de optimización por mínimos cuadrados que, aunque precisos, resultan computacionalmente costosos y limitados en su aplicabilidad a grandes volúmenes de datos. En esta tesis exploramos la implementación de técnicas de inteligencia artificial —particularmente arquitecturas de aprendizaje profundo— para la inversión de perfiles de Stokes en la fotosfera para el Sol en calma. Utilizando datos sintéticos generados a partir de simulaciones magnetohidrodinámicas con el código MURaM y cálculos de transferencia radiativa con el código NICOLE, entrenamos y comparamos diversos modelos de redes neuronales, incluyendo redes totalmente conectadas, redes convolucionales y una red convolucional multiescala (MSCNN). Se incorporaron progresivamente los efectos observacionales del instrumento Hinode/SOT-SP para garantizar la aplicabilidad de los modelos a datos reales, y se evaluó su capacidad de generalización utilizando el catálogo MODEST de inversiones. Se realizaron seis experimentos para analizar la influencia de la resolución espectral, el ponderado de los parámetros de Stokes, el aprendizaje multiescala y la inclusión de restricciones físicas —particularmente una función de pérdida guiada por la Aproximación de Campo Débil (WFA), la cuál constituye un método innovador en el campo de estudio. Los resultados demuestran que las redes neuronales pueden replicar con gran precisión las inversiones sintéticas en milisegundos, ofreciendo una aceleración de varios órdenes de magnitud respecto a los métodos tradicionales, mientras que la incorporación de restricciones físicas mejora la recuperación del campo magnético y su interpretabilidad, podiendo ser generalizado a casos de observaciones reales. Este trabajo demuestra que el aprendizaje profundo asistido por la física constituye un marco prometedor para realizar inversiones espectropolarimétricas rápidas y fiables, representando un avance en la integración del aprendizaje automático en la astrofísica. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Astronomía | spa |
dc.description.methods | Se aplicó un estudio mediante la aplicación de diferentes experimentos computacionales con el fin de obtener el modelo ideal para la obtención de los parámetros físicos de la atmósfera solar mediante técnicas de aprendizaje profundo informadas por física. | spa |
dc.description.researcharea | Solar astrophysics | spa |
dc.format.extent | 101 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88431 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Astronomía | spa |
dc.relation.references | A. F. Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018. URL https://arxiv.org/abs/1803.08375. | spa |
dc.relation.references | J. C. Allred, S. L. Hawley, W. P. Abbett, and M. Carlsson. Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. The Astrophysical Journal, 630 (1):573, 2005. | spa |
dc.relation.references | J. C. Allred, A. F. Kowalski, and M. Carlsson. A unified computational model for solar and stellar flares. The Astrophysical Journal, 809(1):104, 2015. | spa |
dc.relation.references | B. L. Alterman et al. The transition from slow to fast wind as observed in composition obser- vations. Astronomy & Astrophysics, 694:A265, 2025. doi: 10.1051/0004-6361/202451550. Published online: 19 February 2025. | spa |
dc.relation.references | A. Asensio Ramos, I. S. Requerey, and N. Vitas. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface. A&A, 604:A11, July 2017. doi: 10.1051/ 0004-6361/201730783. | spa |
dc.relation.references | A. Asensio Ramos, M. C. Cheung, I. Chifu, and R. Gafeira. Machine learning in solar physics. Living Reviews in Solar Physics, 20(1):4, 2023. | spa |
dc.relation.references | Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-Whelan, et al. Astropy: A community python package for astronomy. Astronomy & Astrophysics, 558:A33, 2013. doi: 10.1051/0004-6361/201322068. | spa |
dc.relation.references | Astropy Collaboration, A. M. Price-Whelan, B. M. Sipőcz, H. M. Günther, P. L. Lim, S. M. Crawford, S. Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas, L. D. Bradley, D. Pérez-Suárez, M. de Val-Borro, T. L. Aldcroft, K. L. Cruz, T. P. Robitaille, E. J. Tollerud, C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V. Bakanov, S. P. Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M. Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach, H. Buddelmeijer, D. J. Burke, G. Calderone, J. L. Cano Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella, Y. Copin, L. Corrales, D. Crichton, D. D’Avella, C. Deil, É. Depagne, J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro, L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein, R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P. Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Ž. Ivezić, A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E. Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni, A. Kumar, A. Lee, D. Lenz, S. P. Littlefair, Z. Ma, D. M. Macleod, M. Mastropietro, C. McCully, S. Montagnac, B. M. Morris, M. Mueller, S. J. Mumford, D. Muna, N. A. Murphy, S. Nelson, G. H. Nguyen, J. P. Ninan, M. Nöthe, S. Ogaz, S. Oh, J. K. Parejko, N. Parley, S. Pascual, R. Patil, A. A. Patil, A. L. Plunkett, J. X. Prochaska, T. Rastogi, V. Reddy Janga, J. Sabater, P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P. Singer, P. H. Sladen, K. A. Sooley, S. Sornarajah, O. Streicher, P. Teuben, S. W. Thomas, G. R. Tremblay, J. E. H. Turner, V. Terrón, M. H. van Kerkwijk, A. de la Vega, L. L. Watkins, B. A. Weaver, J. B. Whitmore, J. Woillez, V. Zabalza, and Astropy Contributors. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. AJ, 156(3):123, Sept. 2018. doi: 10.3847/1538-3881/aabc4f. | spa |
dc.relation.references | Astropy Collaboration et al. The astropy project: Sustaining and growing a core open- source package for astronomy. The Astrophysical Journal, 935(2):167, 2022. doi: 10.3847/ 1538-4357/ac7c74. | spa |
dc.relation.references | P. Barthol, A. Gandorfer, S. K. Solanki, M. Schüssler, B. Chares, W. Curdt, W. Deutsch, A. Feller, D. Germerott, B. Grauf, et al. The sunrise mission. Solar Physics, 268:1–34, 2011. | spa |
dc.relation.references | C. D. Baso and A. A. Ramos. Enhancing sdo/hmi images using deep learning. Astronomy & Astrophysics, 614:A5, 2018. | spa |
dc.relation.references | C. D. Baso, I. Milić, L. R. van der Voort, and R. Schlichenmaier. Spectral resolution effects on the information content in solar spectra. Astronomy & Astrophysics, 693:A272, 2025. | spa |
dc.relation.references | S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of markov chain monte carlo. CRC press, 2011. | spa |
dc.relation.references | W. Cao, J. Jing, J. Ma, Y. Xu, H. Wang, and P. R. Goode. Diffraction-limited polarimetry from the infrared imaging magnetograph at big bear solar observatory. Publications of the Astronomical Society of the Pacific, 118(844):838, 2006. | spa |
dc.relation.references | W. Cao, N. Gorceix, R. Coulter, K. Ahn, T. Rimmele, and P. R. Goode. Scientific instru- mentation for the 1.6 m new solar telescope in big bear. Astronomische Nachrichten, 331 (6):636–639, 2010. | spa |
dc.relation.references | W. Cao, P. Goode, K. Ahn, N. Gorceix, W. Schmidt, and H. Lin. Niris: the second generation near-infrared imaging spectro-polarimeter for the 1.6 meter new solar telescope. In Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, volume 463, page 291, 2012. | spa |
dc.relation.references | M. Carlsson and R. F. Stein. Non-lte radiating acoustic shocks and ca ii k2v bright points. Astrophysical Journal, Part 2-Letters (ISSN 0004-637X), vol. 397, no. 1, p. L59-L62., 397:L59–L62, 1992. | spa |
dc.relation.references | M. Carlsson and R. F. Stein. Formation of solar calcium h and k bright grains. The Astrophysical Journal, 481(1):500, 1997 | spa |
dc.relation.references | M. Carlsson et al. Challenges and advances in modeling of the solar atmosphere: A white paper of findings and recommendations. arXiv preprint, 2021. URL https://arxiv.org/ abs/2101.00011v3 | spa |
dc.relation.references | T. Carroll and J. Staude. The inversion of stokes profiles with artificial neural networks. Astronomy & Astrophysics, 378(1):316–326, 2001 | spa |
dc.relation.references | S. Chandrasekhar. Radiative transfer. Dover Publications, 1950. Originally published as a book | spa |
dc.relation.references | B. R. Cobo. Sir: An inversion technique of spectral lines. Astrophysics and space science, 263:331–334, 1998 | spa |
dc.relation.references | B. R. Cobo, C. Q. Noda, R. Gafeira, H. Uitenbroek, D. O. Suárez, and E. P. Mañá. Desire: Departure coefficient aided stokes inversion based on response functions. Astronomy & Astrophysics, 660:A37, 2022 | spa |
dc.relation.references | A. S. E. Community. What is the density profile within the sun’s photo- sphere?, 2025. URL https://astronomy.stackexchange.com/questions/32727/ what-is-the-density-profile-within-the-suns-photosphere-which-one-of-these-is. Accessed: 2025-04-06. | spa |
dc.relation.references | W. contributors. Otsu’s method, 2023. URL https://en.wikipedia.org/wiki/Otsu%27s_ method. Accessed February 7, 2025. | spa |
dc.relation.references | R. M. Crutcher and A. J. Kemball. Review of Zeeman Effect Observations of Regions of Star Formation K Zeeman Effect, Magnetic Fields, Star formation, Masers, Molecular clouds. Frontiers in Astronomy and Space Sciences, 6:66, Oct. 2019. doi: 10.3389/fspas.2019. 00066. | spa |
dc.relation.references | B. De Pontieu, A. Title, J. Lemen, G. Kushner, D. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, et al. The interface region imaging spectrograph (iris). Solar Physics, 289:2733–2779, 2014. | spa |
dc.relation.references | M. L. Degl’Innocenti and M. Landolfi. Polarization in spectral lines, volume 307. Springer Science & Business Media, 2006. | spa |
dc.relation.references | J. del Toro Iniesta and B. Ruiz Cobo. Stokes profiles inversion techniques. Solar Physics, 164:169–182, 1996. | spa |
dc.relation.references | J. C. del Toro Iniesta. Introduction to Spectropolarimetry. Cambridge University Press, Cambridge, UK, 2007. ISBN 9780521036481. | spa |
dc.relation.references | J. C. del Toro Iniesta and B. Ruiz Cobo. Inversion of the radiative transfer equation for polarized light. Living Reviews in Solar Physics, 13(1):4, 2016. | spa |
dc.relation.references | J. C. del Toro Iniesta, D. Orozco Suárez, and L. R. Bellot Rubio. On Spectropo- larimetric Measurements with Visible Lines. ApJ, 711(1):312–321, Mar. 2010. doi: 10.1088/0004-637X/711/1/312. | spa |
dc.relation.references | A. Diercke, C. Kuckein, P. W. Cauley, K. Poppenhäger, J. D. Alvarado-Gómez, E. Dineva, and C. Denker. Solar Hα excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope. A&A, 661:A107, May 2022. doi: 10.1051/0004-6361/202040091. | spa |
dc.relation.references | D. Dobrijevic. Sunspots: What are they, and why do they occur?, 2023. URL https: //www.space.com/sunspots-formation-discovery-observations. Accessed: 2025-04- 21. | spa |
dc.relation.references | I. Domínguez Cerdeña, F. Kneer, and J. Sánchez Almeida. Quiet-Sun Magnetic Fields at High Spatial Resolution. ApJ, 582(1):L55–L58, Jan. 2003. doi: 10.1086/346199. | spa |
dc.relation.references | S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987. | spa |
dc.relation.references | J. C. Durán, N. Milanovic, A. Korpi-Lagg, B. Löptien, M. van Noort, and S. Solanki. The modest catalog of depth-dependent spatially coupled inversions of sunspots observed by hinode/sot-sp. Astronomy & Astrophysics, 687:A218, 2024. | spa |
dc.relation.references | E. Falgarone et al. Cn zeeman measurements in star formation regions. Astronomy & Astrophysics, 487(3):247–258, 2008. Application of the Zeeman effect to CN lines, fitting Stokes V with derivative of I to derive BLOS . | spa |
dc.relation.references | T. Felipe, E. Khomenko, M. Collados, and C. Beck. Multi-layer study of wave propagation in sunspots. The Astrophysical Journal, 722(1):131, 2010. | spa |
dc.relation.references | R. Gafeira, D. O. Suárez, I. Milić, C. Q. Noda, B. R. Cobo, and H. Uitenbroek. Machine learning initialization to accelerate stokes profile inversions. Astronomy & Astrophysics, 651:A31, 2021. | spa |
dc.relation.references | J. Gawlikowski, C. Rovile Njieutcheu Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu. A Survey of Uncertainty in Deep Neural Networks. arXiv e-prints, art. arXiv:2107.03342, July 2021. doi: 10.48550/arXiv.2107.03342. | spa |
dc.relation.references | P. R. Goode and W. Cao. The 1.6 m off-axis new solar telescope (nst) in big bear. In Ground-based and airborne telescopes IV, volume 8444, page 844403. SPIE, 2012. | spa |
dc.relation.references | P. R. Goode, V. Yurchyshyn, W. Cao, V. Abramenko, A. Andic, K. Ahn, and J. Chae. Highest resolution observations of the quietest sun. The Astrophysical Journal Letters, 714(1):L31, 2010. | spa |
dc.relation.references | S. Gosain and A. A. Pevtsov. Resolving azimuth ambiguity using vertical nature of solar quiet-sun magnetic fields. Solar Physics, 283:195–205, 2013. | spa |
dc.relation.references | J. Guo, X. Bai, Y. Deng, H. Liu, J. Lin, J. Su, X. Yang, and K. Ji. A Non-Linear Mag- netic Field Calibration Method for Filter-Based Magnetographs by Multilayer Perceptron. Sol. Phys., 295(1):5, Jan. 2020. doi: 10.1007/s11207-019-1573-9. | spa |
dc.relation.references | J. Guo, X. Bai, H. Liu, X. Yang, Y. Deng, J. Lin, J. Su, X. Yang, and K. Ji. A nonlinear solar magnetic field calibration method for the filter-based magnetograph by the residual network. Astronomy & Astrophysics, 646:A41, 2021. | spa |
dc.relation.references | S. R. Habbal, M. Druckmüller, H. Morgan, A. Ding, J. Johnson, H. Druckmüllerová, A. Daw, M. B. Arndt, M. Dietzel, and J. Saken. Thermodynamics of the solar corona and evolution of the solar magnetic field as inferred from the total solar eclipse observations of 11 july 2010. 2011. URL https://ntrs.nasa.gov/api/citations/20110011240/downloads/ 20110011240.pdf. | spa |
dc.relation.references | J. P. Halpern. Scattering of radiation with polarization. URL https://www.astro.umd. edu/~jph/notes3.pdf. Lecture notes, Columbia University. | spa |
dc.relation.references | C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna- peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard- Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2. | spa |
dc.relation.references | R. E. Higgins, D. F. Fouhey, D. Zhang, S. K. Antiochos, G. Barnes, J. T. Hoeksema, K. Leka, Y. Liu, P. W. Schuck, and T. I. Gombosi. Fast and accurate emulation of the sdo/hmi stokes inversion with uncertainty quantification. The Astrophysical Journal, 911(2):130, 2021. | spa |
dc.relation.references | R. E. Higgins, D. F. Fouhey, S. K. Antiochos, G. Barnes, M. C. Cheung, J. T. Hoeksema, K. Leka, Y. Liu, P. W. Schuck, and T. I. Gombosi. Synthia: a synthetic inversion ap- proximation for the stokes vector fusing sdo and hinode into a virtual observatory. The Astrophysical Journal Supplement Series, 259(1):24, 2022. | spa |
dc.relation.references | J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55. | spa |
dc.relation.references | R. Jarolim, M. E. Molnar, B. Tremblay, R. Centeno, and M. Rempel. Pinn me: A physics- informed neural network framework for accurate milne-eddington inversions of solar mag- netic fields, 2025. URL https://arxiv.org/abs/2502.13924. | spa |
dc.relation.references | G. Jiang, H. He, J. Yan, and P. Xie. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Transactions on Industrial Electronics, 66(4): 3196–3207, 2019. doi: 10.1109/TIE.2018.2844805. | spa |
dc.relation.references | H. Jiang, Q. Li, Y. Xu, W. Hsu, K. Ahn, W. Cao, J. T. L. Wang, and H. Wang. Inferring Line- of-sight Velocities and Doppler Widths from Stokes Profiles of GST/NIRIS Using Stacked Deep Neural Networks. ApJ, 939(2):66, Nov. 2022. doi: 10.3847/1538-4357/ac927e. | spa |
dc.relation.references | E. Khomenko, N. Vitas, M. Collados, and A. de Vicente. Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery. A&A, 604:A66, Aug. 2017. doi: 10.1051/0004-6361/201630291. | spa |
dc.relation.references | S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 1d convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151:107398, 2021. ISSN 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2020.107398. URL https://www.sciencedirect.com/science/article/pii/S0888327020307846. | spa |
dc.relation.references | I. Knyazeva, A. Plotnikov, T. Medvedeva, and N. Makarenko. Multi-output deep learning framework for solar atmospheric parameters inferring from stokes profiles. In Advances in Neural Computation, Machine Learning, and Cognitive Research V: Selected Papers from the XXIII International Conference on Neuroinformatics, October 18-22, 2021, Moscow, Russia, pages 299–307. Springer, 2022. | spa |
dc.relation.references | C. C. J. Kuo. Understanding Convolutional Neural Networks with A Mathematical Model. arXiv e-prints, art. arXiv:1609.04112, Sept. 2016. doi: 10.48550/arXiv.1609.04112. | spa |
dc.relation.references | A. Lagg, S. K. Solanki, H. P. Doerr, M. J. Martínez González, T. Riethmüller, M. Collados Vera, R. Schlichenmaier, D. Orozco Suárez, M. Franz, A. Feller, C. Kuckein, W. Schmidt, A. Asensio Ramos, A. Pastor Yabar, O. von der Lühe, C. Denker, H. Balthasar, R. Volkmer, J. Staude, A. Hofmann, K. Strassmeier, F. Kneer, T. Waldmann, J. M. Borrero, M. Sobotka, M. Verma, R. E. Louis, R. Rezaei, D. Soltau, T. Berkefeld, M. Sigwarth, D. Schmidt, C. Kiess, and H. Nicklas. Probing deep photospheric lay- ers of the quiet Sun with high magnetic sensitivity. A&A, 596:A6, Nov. 2016. doi: 10.1051/0004-6361/201628489. | spa |
dc.relation.references | Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computa- tion, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541. | spa |
dc.relation.references | B. Lites, R. Casini, J. Garcia, and H. Socas-Navarro. A suite of community tools for spectro- polarimetric analysis . Mem. Soc. Astron. Italiana, 78:148, Jan. 2007. | spa |
dc.relation.references | H. Liu, Y. Xu, J. Wang, J. Jing, C. Liu, J. T. Wang, and H. Wang. Inferring vector magnetic fields from stokes profiles of gst/niris using a convolutional neural network. The Astrophysical Journal, 894(1):70, 2020. | spa |
dc.relation.references | V. Martínez Pillet, J. Del Toro Iniesta, A. Álvarez-Herrero, V. Domingo, J. Bonet, L. González Fernández, A. López Jiménez, C. Pastor, J. Gasent Blesa, P. Mellado, et al. The imaging magnetograph experiment (imax) for the sunrise balloon-borne solar obser- vatory. Solar Physics, 268:57–102, 2011. | spa |
dc.relation.references | I. Milić and R. Gafeira. Mimicking spectropolarimetric inversions using convolutional neural networks. Astronomy & Astrophysics, 644:A129, 2020. | spa |
dc.relation.references | I. Milić and M. van Noort. Spectropolarimetric nlte inversion code snapi. Astronomy & Astrophysics, 617:A24, 2018. | spa |
dc.relation.references | L. Mistryukova, A. Plotnikov, A. Khizhik, I. Knyazeva, M. Hushchyn, and D. Derkach. Stokes inversion techniques with neural networks: analysis of uncertainty in parameter estimation. Solar Physics, 298(8):98, 2023. | spa |
dc.relation.references | NASA. Layers of the sun, October 2012. URL https://www.nasa.gov/image-article/ layers-of-sun/. Accessed: 2025-04-06. | spa |
dc.relation.references | NASA. What is the sun’s corona?, 2024a. URL https://spaceplace.nasa.gov/sun-corona/en/. Accessed: 2025-04-21. | spa |
dc.relation.references | NASA. Nasa’s parker solar probe and the curious case of the hot corona, 2024b. URL https://www.nasa.gov/science-research/heliophysics/ nasas-parker-solar-probe-and-the-curious-case-of-the-hot-corona/. Accessed: 2025-04-21. | spa |
dc.relation.references | NOAA Space Weather Prediction Center. A Note on NOAA SEC Active Region Num- bers. https://umbra.nascom.nasa.gov/eit/plan/region_numbers.html, 2002. De- scribes the NOAA active region numbering system for solar observations, in use since January 5, 1972. | spa |
dc.relation.references | L. J. November and G. W. Simon. Precise proper-motion measurement of solar granulation. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 333, Oct. 1, 1988, p. 427-442., 333: 427–442, 1988. | spa |
dc.relation.references | N. S. Observatory. Chromosphere, 2025. URL https://nso.edu/for-public/ sun-science/chromosphere/. Accessed: 2025-04-21. | spa |
dc.relation.references | C. M. Osborne, J. A. Armstrong, and L. Fletcher. Radynversion: learning to invert a solar flare atmosphere with invertible neural networks. The Astrophysical Journal, 873(2):128, 2019. | spa |
dc.relation.references | N. Otsu et al. A threshold selection method from gray-level histograms. Automatica, 11 (285-296):23–27, 1975. | spa |
dc.relation.references | T. pandas development team. pandas-dev/pandas: Pandas, Feb. 2020. URL https://doi. org/10.5281/zenodo.3509134. | spa |
dc.relation.references | A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv e-prints, art. arXiv:1912.01703, Dec. 2019. doi: 10.48550/arXiv.1912.01703. | spa |
dc.relation.references | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon- del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. | spa |
dc.relation.references | W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO), volume 275. Jan. 2012. doi: 10.1007/s11207-011-9841-3. | spa |
dc.relation.references | M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686–707, 2019. | spa |
dc.relation.references | A. A. Ramos and C. D. Baso. Stokes inversion based on convolutional neural networks. Astronomy & Astrophysics, 626:A102, 2019. | spa |
dc.relation.references | O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. page arXiv:1505.04597, May 2015. doi: 10.48550/arXiv.1505.04597. | spa |
dc.relation.references | S. Rose. The radiative opacity at the sun centre—a code comparison study. Journal of Quantitative Spectroscopy and Radiative Transfer, 71(2-6):635–638, 2001. | spa |
dc.relation.references | B. Ruiz Cobo and J. C. del Toro Iniesta. Inversion of Stokes Profiles. ApJ, 398:375, Oct. 1992. doi: 10.1086/171862. | spa |
dc.relation.references | L. Schanne. Normalization of spectra – continuum normalization, November 2017. URL https://lotharschanne.wordpress.com/ normalization-of-spectra-continuum-normalization/. Accessed: 2025-04-06. | spa |
dc.relation.references | J. Schou, P. H. Scherrer, R. I. Bush, R. Wachter, S. Couvidat, M. C. Rabello-Soares, R. S. Bogart, J. Hoeksema, Y. Liu, T. Duvall, et al. Design and ground calibration of the helioseismic and magnetic imager (hmi) instrument on the solar dynamics observatory (sdo). Solar Physics, 275:229–259, 2012. | spa |
dc.relation.references | A. I. Shapiro, H. Peter, and S. K. Solanki. The sun’s atmosphere. Max Planck Institute for Solar System Research, 2019a. Available at: https://www2.mps.mpg.de/projects/solve/files/Solar_Atmosphere.pdf. | spa |
dc.relation.references | A. I. Shapiro, H. Peter, and S. K. Solanki. The sun’s atmosphere, 2019b. URL https:// www2.mps.mpg.de/projects/solve/files/Solar_Atmosphere.pdf. Max Planck Institute for Solar System Research. | spa |
dc.relation.references | H. Socas-Navarro. Feature extraction techniques for the analysis of spectral polarization pro- files. The Astrophysical Journal, 620(1):517, 2005a. | spa |
dc.relation.references | H. Socas-Navarro. Strategies for spectral profile inversion using artificial neural networks. The Astrophysical Journal, 621(1):545, 2005b. | spa |
dc.relation.references | H. Socas-Navarro, J. de la Cruz Rodriguez, A. A. Ramos, J. T. Bueno, and B. R. Cobo. An open-source, massively parallel code for non-lte synthesis and inversion of spectral lines and zeeman-induced stokes profiles. Astronomy & Astrophysics, 577:A7, 2015. | spa |
dc.relation.references | S. Solanki, P. Barthol, S. Danilovic, A. Feller, A. Gandorfer, J. Hirzberger, T. Riethmüller, M. Schüssler, J. Bonet, V. M. Pillet, et al. Sunrise: instrument, mission, data, and first results. The Astrophysical Journal Letters, 723(2):L127, 2010. | spa |
dc.relation.references | R. F. Stein. Magneto-convection. Philosophical Transactions of the Royal Society of London Series A, 370(1970):3070–3087, July 2012. doi: 10.1098/rsta.2011.0533. | spa |
dc.relation.references | R. F. Stein, A. Nordlund, and D. Georgobiani. Photospheric Magnetic Fields from Magneto- Convection Simulations. art. 95, Mar. 2012. | spa |
dc.relation.references | J. Stenflo. Solar Magnetic Fields: Polarized Radiation Diagnostics, volume 189. 1994. doi: 10.1007/978-94-015-8246-9. | spa |
dc.relation.references | J. O. Stenflo. Calibration of the 6302/6301 stokes v line ratio in terms of the 5250 line ratio. Astronomy Astrophysics, 555:A132, 2013. Discusses magnetic sensitivity and calibration of Fe I 6301.5 and 6302.5 Stokes V signals. | spa |
dc.relation.references | H. Tian. Probing the solar transition region: current status and future perspectives. Research in Astronomy and Astrophysics, 17(11):110, Oct. 2017. doi: 10.1088/1674-4527/17/11/110. | spa |
dc.relation.references | S. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, et al. The solar optical telescope for the hinode mission: an overview. Solar Physics, 249:167–196, 2008. | spa |
dc.relation.references | S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors. scikit-image: image processing in Python. PeerJ, 2:e453, 6 2014. ISSN 2167-8359. doi: 10.7717/peerj.453. URL https: //doi.org/10.7717/peerj.453. | spa |
dc.relation.references | J. Varsik, C. Plymate, P. Goode, A. Kosovichev, W. Cao, R. Coulter, K. Ahn, N. Gorceix, and S. Shumko. Control and operation of the 1.6 m new solar telescope in big bear. In Ground- based and Airborne Instrumentation for Astronomy V, volume 9147, pages 1747–1756. SPIE, 2014. | spa |
dc.relation.references | P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen- riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2. | spa |
dc.relation.references | A. Vögler. Three-dimensional simulations of magneto-convection in the solar photosphere. PhD thesis, Georg August University of Gottingen, Germany, Jan. 2003. | spa |
dc.relation.references | A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde. Simulations of magneto-convection in the solar photosphere-equations, methods, and results of the muram code. Astronomy & Astrophysics, 429(1):335–351, 2005. | spa |
dc.relation.references | A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using time-delay neural networks. volume 37, pages 328–339. 1989. doi: 10.1109/29.21701. | spa |
dc.relation.references | S. Wedemeyer, G. Fleishman, J. de la Cruz Rodríguez, S. Gunár, J. M. da Silva Santos, P. Antolin, J. C. Guevara Gómez, M. Szydlarski, and H. Eklund. Prospects and challenges of numerical modelling of the Sun at millimetre wavelengths. Frontiers in Astronomy and Space Sciences, 9:335, Nov. 2022. doi: 10.3389/fspas.2022.967878. | spa |
dc.relation.references | C. Xu, J. Wang, H. Li, Z. Hu, X. Bai, J. Lin, H. Liu, Z. Jin, and K. Ji. Nnhmc: An efficient stokes inversion method using a neural network (nn) model combined with the hamiltonian monte carlo (hmc) algorithm. The Astrophysical Journal, 977(1):101, 2024. | spa |
dc.relation.references | K. E. Yang, L. A. Tarr, M. Rempel, S. C. Dodds, S. A. Jaeggli, P. Sadowski, T. A. Schad, I. Cunnyngham, J. Liu, Y. Glaser, et al. Spectropolarimetric inversion in four dimensions with deep learning (spin4d). i. overview, magnetohydrodynamic modeling, and stokes profile synthesis. The Astrophysical Journal, 976(2):204, 2024. | spa |
dc.relation.references | A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep Learning. Cambridge University Press, 2021. URL https://d2l.ai. | spa |
dc.relation.references | Z. Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pages 1–2, 2018. doi: 10.1109/ IWQoS.2018.8624183. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.ddc | 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.proposal | Solar physics | eng |
dc.subject.proposal | Spectropolarimetry | eng |
dc.subject.proposal | Radiative transfer | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Deep learning | eng |
dc.subject.proposal | Neural networks | eng |
dc.subject.proposal | Physics-informed models | eng |
dc.subject.proposal | Física solar | spa |
dc.subject.proposal | Espectropolarimetría | spa |
dc.subject.proposal | Transferencia radiativa | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Aprendizaje profundo | spa |
dc.subject.proposal | Redes neuronales | spa |
dc.subject.proposal | Modelos informados por la física | spa |
dc.subject.unesco | Solar activity | eng |
dc.subject.unesco | Actividad solar | spa |
dc.subject.unesco | Artificial intelligence | eng |
dc.subject.unesco | Inteligencia artificial | spa |
dc.subject.unesco | Astrophysics | eng |
dc.subject.unesco | Astrofísica | spa |
dc.title | Implementation of artificial intelligence techniques for the inversion of the Stokes parameters in the solar context | eng |
dc.title.translated | Implementación de técnicas de inteligencia artificial para la inversión de parámetros de Stokes en el contexto solar | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1193441159.2025.pdf
- Tamaño:
- 3.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Astronomía
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: