Calibración del ensayo CPTu para el depósito lacustre de Bogotá
dc.contributor.advisor | Rodríguez Granados, Edgar Eduardo | |
dc.contributor.author | Barón Castro, Maira Alejandra | |
dc.coverage.city | Bogotá | |
dc.date.accessioned | 2021-06-22T19:35:34Z | |
dc.date.available | 2021-06-22T19:35:34Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones | spa |
dc.description.abstract | Mediante el uso del ensayo de penetración con cono y medición de presión de poros (CPTu), es posible el cálculo de múltiples geoparámetros útiles para la caracterización del suelo y el diseño geotécnico, la mayoría de los parámetros geotécnicos que pueden obtenerse del ensayo provienen de correlaciones empíricas que requieren calibración con otras técnicas de exploración del subsuelo y ensayos de laboratorio. El trabajo plasmado en este documento presenta la caracterización geotécnica del depósito lacustre de Bogotá y los resultados de la calibración de los principales parámetros de interés geotécnico obtenidos del piezocono, que ostentan un alto grado de incertidumbre. Se realizó la calibración de las ecuaciones existentes o la generación de nuevos modelos que permitan la definición de parámetros de clasificación del suelo como el peso unitario total y parámetros asociados a la resistencia del material del depósito, su historia de esfuerzos y rigidez, como la resistencia al corte no drenado, la relación de sobre consolidación (RSC) y la velocidad de onda de corte. Los resultados se obtuvieron mediante análisis estadísticos y matemáticos a partir de la recopilación de información de campañas exploratorias localizadas en la zona de estudio, para un total de 140 perforaciones mecánicas, 87 piezoconos con longitudes de hasta 50 m y los ensayos de campo y laboratorio asociados. Los modelos matemáticos obtenidos en la investigación ofrecen mejores resultados con respecto a las ecuaciones actuales más comunes. Para la resistencia al corte no drenado se presenta una zonificación del Nkt que depende de la profundidad y la ubicación en el depósito. Para parámetros como la RSC y la velocidad de onda de corte se encontraron valores del coeficiente de determinación (R2) iguales a 0.61 y 0.95, respectivamente. En cuanto al peso unitario total y el ángulo de fricción interna del suelo, los resultados se ajustan a la tendencia general de los ensayos de laboratorio de referencia, con valores medios de 13 kN/m3 y 21°, respectivamente. (Texto tomado de la fuente) | spa |
dc.description.abstract | It is possible to calculate multiple parameters useful for soil characterization and geotechnical design using the Piezocone Penetration Test (CPTu). Most of the geotechnical parameters that can be estimated from the CPTu data are obtained using empirical correlations that require calibration and verification with other subsoil exploration techniques and laboratory tests. This document presents a geotechnical characterization of the Bogotá lacustrine deposit and the results of the calibration of the main parameters of geotechnical interest, which has a high degree of uncertainty. Calibration of existing equations or generation of new models was performed in order to define the soil classification parameters such as unit weight, and parameters associated with the deposit resistance, stress history and stiffness, such as undrained shear strength, overconsolidation ratio (OCR) and shear wave velocity. Results were obtained through statistical and mathematical analysis. Data of soil exploration campaigns distributed throughout the study area that included 140 mechanical perforations and 87 CPTu to depths of up to 50 m was compiled for the calibration. Mathematic models obtained during the research, provide better results regarding the current equations. For the undrained shear strength, a Nkt zonification is presented, which depends on the depth and location of the deposit. Parameters such as the OCR and the shear wave velocity show values of the coefficient of determination (R2) of 0.61 and 0.95, respectively. In terms of the unit weight and the intern friction angle, the results follow a general trend concerning to the laboratory test, with mean values of 13 kN/m3 and 21° respectively. (Texto tomado de la fuente) | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Civil - Geotecnia | spa |
dc.description.researcharea | Modelación y Análisis en Geotecnia | spa |
dc.format.extent | 124 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79677 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Civil y Agrícola | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Almeida, M., Marques, M., & Baroni, M. (2010). Geotechnical parameters of very soft clays from CPTu. 2nd International Symposium on Cone Penetration Testing. | spa |
dc.relation.references | ASTM INTERNATIONAL. (01 de 05 de 2021). ASTM. Obtenido de https://la.astm.org/ | spa |
dc.relation.references | Bagińska, I., Kawa, M., & Łydżba, D. (2020). Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu tests results. Engineering Geology, 276(February), 105759. https://doi.org/10.1016/j.enggeo.2020.105759 | spa |
dc.relation.references | Campanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Penetration Testing. Proc. 2nd European Symposium, Amsterdam, January 1982, 507–512. | spa |
dc.relation.references | Chang, M. F. (1990). Interpretation of overconsolidation ratio from in situ test in Recent clay deposits in Singapore and Malaysia. | spa |
dc.relation.references | Chen, B. S. Y., & Mayne, P. W. (1996). Statistical relationships between piezocone measurements and stress history of clays. Canadian Geotechnical Journal, 33(3), 488–498. https://doi.org/10.1139/t96-070 | spa |
dc.relation.references | Consorcio Troncales Bogotá. (2019). Factibilidad y actualización, complementación, ajustes de los estudios y diseños, y estudios y diseños para la ampliación y extensión de la Avenida Ciudad de Cali al sistema Transmilenio, entre la Avenida Circunvalar del Sur y la Avenida Calle 170. Bogotá, Contrato No. 1352 de 2017. | spa |
dc.relation.references | Eslami, A., & Fellenius, B. H. (2004). CPT and CPTu data for soil profile interpretation: Review of methods and a proposed new approach. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(B1), 69–86. | spa |
dc.relation.references | Eslami, Abolfazl, Akbarimehr, D., Aflaki, E., & Hajitaheriha, M. M. (2020). Geotechnical site characterization of the Lake Urmia super-soft sediments using laboratory and CPTu records. Marine Georesources and Geotechnology, 38(10), 1223–1234. https://doi.org/10.1080/1064119X.2019.1672121 | spa |
dc.relation.references | Fayed, A. L., & Mousa, A. A. (2020). Shear Wave Velocity in the East Nile Delta Clay: Correlations with Static CPT Measurements. Geotechnical and Geological Engineering, 38(2), 2303–2315. https://doi.org/10.1007/s10706-019-01089-4 | spa |
dc.relation.references | Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones, 21 (2010). https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/ | spa |
dc.relation.references | Giretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and analysis for a carbonate sand. Geotechnique, 68(4), 345–357. https://doi.org/10.1680/jgeot.16.P.312 | spa |
dc.relation.references | Guo, Y., Zhang, G., & Liu, S. (2020). Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Engineering Geology, 276(June), 105712. https://doi.org/10.1016/j.enggeo.2020.105712 | spa |
dc.relation.references | Hammam, A. H., Abel-Salam, A. I., & Yousf, M. A. (2017). On the evaluation of pre-consolidation pressure of undisturbed saturated clays. HBRC Journal, 13(1), 47–53. https://doi.org/10.1016/j.hbrcj.2015.02.003 | spa |
dc.relation.references | Heidari, P., & Ghazavi, M. (2021). Statistical Evaluation of CPT and CPTu Based Methods for Prediction of Axial Bearing Capacity of Piles. Geotechnical and Geological Engineering, 39(2), 1259–1287. https://doi.org/10.1007/s10706-020-01557-2 | spa |
dc.relation.references | IDECA. (24 de 05 de 2020). Mapas IDECA. Obtenido de https://www.ideca.gov.co/recursos/mapas/curva-de-nivel-bogota-dc | spa |
dc.relation.references | IDU. (2021). REPOSITORIO INSTITUCIONAL IDU. Obtenido de https://webidu.idu.gov.co/jspui/ | spa |
dc.relation.references | Geología de la Sabana de Bogotá, (2005). https://doi.org/10.1043/0003-9985(2001)125<1579:CGAWLG>2.0.CO;2 | spa |
dc.relation.references | Karlsrud, K., Lunne, T., Kort, D., & Strandvik, S. (2005). CPTU correlations for clays. https://doi.org/10.3233/978-1-61499-656-9-693 | spa |
dc.relation.references | Konkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259(June), p. 105–187. https://doi.org/10.1016/j.enggeo.2019.105187 | spa |
dc.relation.references | Kottegoda, N., & Rosso, R. (2008). Applied Statistics for Civil and Environmental Engineers (Second). Blackwell Malden, MA. | spa |
dc.relation.references | Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design (Report No. EPRI-EL-6800), Electric Power Research Institute., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. In Ostigov. https://doi.org/EPRI-EL-6800 | spa |
dc.relation.references | Ladd, C., & Foott, R. (1974). New Design Procedure for Stability of Soft Clays (p. 24). | spa |
dc.relation.references | Long, M., & Donohue, S. (2010). Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Canadian Geotechnical Journal, 47(7), 709–718. https://doi.org/10.1139/T09-133 | spa |
dc.relation.references | Madiai, C., & Simoni, G. (2004). Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. International Symposium on Geotechnical and Geophysical Site Characterization, January 2004, 1687–1694. | spa |
dc.relation.references | Mayne, P. (2016). Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27–55. | spa |
dc.relation.references | Mayne, P. W. (2005). Integrated ground behavior: In-situ and lab tests. Deformation Characteristics of Geomaterials : Recent Investigations and Prospects - International Symposium on Deformation Characteristics of Geomaterials, ISLyon 2003, June, 155–177. | spa |
dc.relation.references | Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652. https://doi.org/10.1201/noe0415426916.ch2 | spa |
dc.relation.references | Mayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU N kt cone factor for undrained strength of clays. Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, August, 423–429. | spa |
dc.relation.references | Mayne, P. W., & Rix, G. J. (1995). Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, 35(2), 107–110. https://doi.org/10.3208/sandf1972.35.2_107 | spa |
dc.relation.references | Mayne, P. W., Christopher, B. R., & DeJong, J. (2001). Manual on Subsurface Investigations. Nat. Highway Inst. Sp. Pub. FHWA NHI-01--031. Fed. Highway Administ, Washington, DC, 394. https://doi.org/10.17226/25379 | spa |
dc.relation.references | Mayne, P. W., & Benoît, J. (2020). Analytical CPTU Models Applied to Sensitive Clay at Dover, New Hampshire. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 04020130. https://doi.org/10.1061/(asce)gt.1943-5606.0002378 | spa |
dc.relation.references | Mendoza, C., Caicedo, B., & Lopez, F. (2019). Geotechnical behavior of Bogotá lacustrine soil through its geological history. XVII European Conference on Soil Mechanics and Geotechnical Engineering, October. https://doi.org/10.32075/17ECSMGE-2019-0017 | spa |
dc.relation.references | Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente, Titulo A REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 1 (2010). | spa |
dc.relation.references | Mo, P. Q., Gao, X. W., Yang, W., & Yu, H. S. (2020). A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 44(7), 1053–1076. https://doi.org/10.1002/nag.3050 | spa |
dc.relation.references | Motaghedi, H., & Eslami, A. (2014). Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arabian Journal for Science and Engineering, 39(6), 4363–4376. https://doi.org/10.1007/s13369-014-1022-x | spa |
dc.relation.references | Norwegian Geotechnical Institute. (2019). CPTU CORRELATIONS FOR CLAYS. | spa |
dc.relation.references | R (3.6.1). (2019). R for Statistical Computing, Multiplataforma (Windows), R Development Core Team. Obtenido de https://www.r-project.org/ | spa |
dc.relation.references | Robertson, P. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044 | spa |
dc.relation.references | Robertson, P., & Cabal, K. (2010). Estimating soil unit weight from CPT. In 2nd International Symposium on Cone Penetration Testing, May, 2–40, Vol 2, 575-583. | spa |
dc.relation.references | Robertson, P., & Cabal, K. (2015). Guide to Cone Penetration Testing (6th Edition). Gregg Drilling & Testing, Inc. www.greggdrilling.com | spa |
dc.relation.references | Robertson, P. K. (2009). Interpretation of cone penetration tests - A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065 | spa |
dc.relation.references | Robertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1986). Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 791–803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791) | spa |
dc.relation.references | Robertson, P. K. (2010). Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, 2(May), Vol 2, 575–583. | spa |
dc.relation.references | Schervish, M. J. (1996). P values: What they are and what they are not. American Statistician, 50(3), 203–206. https://doi.org/10.1080/00031305.1996.10474380 | spa |
dc.relation.references | Senneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of soil parameters from piezocone tests. Transportation Research Record, 1235, 24–37. | spa |
dc.relation.references | Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005 | spa |
dc.relation.references | Troncoso, P. (2018). Evaluación del método de medición del perfil de velocidad de ondas de corte SPT-sísmico. Universidad de Concepción. | spa |
dc.relation.references | Vardon, P. J., Baltoukas, D., & Peuchen, J. (2018). Thermal Cone Penetration Test (T-CPT). Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, June, 649–655. | spa |
dc.relation.references | Vardon, P. J., Baltoukas, D., & Peuchen, J. (2019). Interpreting and validating the thermal cone penetration test (T-CPT). Geotechnique, 69(7), 580–592. https://doi.org/10.1680/jgeot.17.P.214 | spa |
dc.relation.references | Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108 | spa |
dc.rights | Derechos Reservados al Autor, 2021 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.proposal | CPTu | spa |
dc.subject.proposal | Resistencia al corte no drenado | spa |
dc.subject.proposal | RSC | spa |
dc.subject.proposal | Velocidad de onda de corte | spa |
dc.subject.proposal | Depósito lacustre | spa |
dc.subject.proposal | Arcillas blandas | spa |
dc.subject.proposal | Undrained shear strength | eng |
dc.subject.proposal | OCR | eng |
dc.subject.proposal | Shear wave velocity | eng |
dc.subject.proposal | Lacustrine deposit | eng |
dc.subject.proposal | Soft clays | eng |
dc.subject.unesco | Mecánica de los suelos | |
dc.subject.unesco | Soil mechanics | |
dc.subject.unesco | Transporte urbano | |
dc.subject.unesco | Urban transport | |
dc.title | Calibración del ensayo CPTu para el depósito lacustre de Bogotá | spa |
dc.title.translated | Calibration of the CPTu for lacustrine deposit of Bogotá | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience | General | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026574991_2021.pdf
- Tamaño:
- 5.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: