Calibración del ensayo CPTu para el depósito lacustre de Bogotá

dc.contributor.advisorRodríguez Granados, Edgar Eduardo
dc.contributor.authorBarón Castro, Maira Alejandra
dc.coverage.cityBogotá
dc.date.accessioned2021-06-22T19:35:34Z
dc.date.available2021-06-22T19:35:34Z
dc.date.issued2021
dc.descriptionilustracionesspa
dc.description.abstractMediante el uso del ensayo de penetración con cono y medición de presión de poros (CPTu), es posible el cálculo de múltiples geoparámetros útiles para la caracterización del suelo y el diseño geotécnico, la mayoría de los parámetros geotécnicos que pueden obtenerse del ensayo provienen de correlaciones empíricas que requieren calibración con otras técnicas de exploración del subsuelo y ensayos de laboratorio. El trabajo plasmado en este documento presenta la caracterización geotécnica del depósito lacustre de Bogotá y los resultados de la calibración de los principales parámetros de interés geotécnico obtenidos del piezocono, que ostentan un alto grado de incertidumbre. Se realizó la calibración de las ecuaciones existentes o la generación de nuevos modelos que permitan la definición de parámetros de clasificación del suelo como el peso unitario total y parámetros asociados a la resistencia del material del depósito, su historia de esfuerzos y rigidez, como la resistencia al corte no drenado, la relación de sobre consolidación (RSC) y la velocidad de onda de corte. Los resultados se obtuvieron mediante análisis estadísticos y matemáticos a partir de la recopilación de información de campañas exploratorias localizadas en la zona de estudio, para un total de 140 perforaciones mecánicas, 87 piezoconos con longitudes de hasta 50 m y los ensayos de campo y laboratorio asociados. Los modelos matemáticos obtenidos en la investigación ofrecen mejores resultados con respecto a las ecuaciones actuales más comunes. Para la resistencia al corte no drenado se presenta una zonificación del Nkt que depende de la profundidad y la ubicación en el depósito. Para parámetros como la RSC y la velocidad de onda de corte se encontraron valores del coeficiente de determinación (R2) iguales a 0.61 y 0.95, respectivamente. En cuanto al peso unitario total y el ángulo de fricción interna del suelo, los resultados se ajustan a la tendencia general de los ensayos de laboratorio de referencia, con valores medios de 13 kN/m3 y 21°, respectivamente. (Texto tomado de la fuente)spa
dc.description.abstractIt is possible to calculate multiple parameters useful for soil characterization and geotechnical design using the Piezocone Penetration Test (CPTu). Most of the geotechnical parameters that can be estimated from the CPTu data are obtained using empirical correlations that require calibration and verification with other subsoil exploration techniques and laboratory tests. This document presents a geotechnical characterization of the Bogotá lacustrine deposit and the results of the calibration of the main parameters of geotechnical interest, which has a high degree of uncertainty. Calibration of existing equations or generation of new models was performed in order to define the soil classification parameters such as unit weight, and parameters associated with the deposit resistance, stress history and stiffness, such as undrained shear strength, overconsolidation ratio (OCR) and shear wave velocity. Results were obtained through statistical and mathematical analysis. Data of soil exploration campaigns distributed throughout the study area that included 140 mechanical perforations and 87 CPTu to depths of up to 50 m was compiled for the calibration. Mathematic models obtained during the research, provide better results regarding the current equations. For the undrained shear strength, a Nkt zonification is presented, which depends on the depth and location of the deposit. Parameters such as the OCR and the shear wave velocity show values of the coefficient of determination (R2) of 0.61 and 0.95, respectively. In terms of the unit weight and the intern friction angle, the results follow a general trend concerning to the laboratory test, with mean values of 13 kN/m3 and 21° respectively. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Civil - Geotecniaspa
dc.description.researchareaModelación y Análisis en Geotecniaspa
dc.format.extent124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79677
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAlmeida, M., Marques, M., & Baroni, M. (2010). Geotechnical parameters of very soft clays from CPTu. 2nd International Symposium on Cone Penetration Testing.spa
dc.relation.referencesASTM INTERNATIONAL. (01 de 05 de 2021). ASTM. Obtenido de https://la.astm.org/spa
dc.relation.referencesBagińska, I., Kawa, M., & Łydżba, D. (2020). Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu tests results. Engineering Geology, 276(February), 105759. https://doi.org/10.1016/j.enggeo.2020.105759spa
dc.relation.referencesCampanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Penetration Testing. Proc. 2nd European Symposium, Amsterdam, January 1982, 507–512.spa
dc.relation.referencesChang, M. F. (1990). Interpretation of overconsolidation ratio from in situ test in Recent clay deposits in Singapore and Malaysia.spa
dc.relation.referencesChen, B. S. Y., & Mayne, P. W. (1996). Statistical relationships between piezocone measurements and stress history of clays. Canadian Geotechnical Journal, 33(3), 488–498. https://doi.org/10.1139/t96-070spa
dc.relation.referencesConsorcio Troncales Bogotá. (2019). Factibilidad y actualización, complementación, ajustes de los estudios y diseños, y estudios y diseños para la ampliación y extensión de la Avenida Ciudad de Cali al sistema Transmilenio, entre la Avenida Circunvalar del Sur y la Avenida Calle 170. Bogotá, Contrato No. 1352 de 2017.spa
dc.relation.referencesEslami, A., & Fellenius, B. H. (2004). CPT and CPTu data for soil profile interpretation: Review of methods and a proposed new approach. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(B1), 69–86.spa
dc.relation.referencesEslami, Abolfazl, Akbarimehr, D., Aflaki, E., & Hajitaheriha, M. M. (2020). Geotechnical site characterization of the Lake Urmia super-soft sediments using laboratory and CPTu records. Marine Georesources and Geotechnology, 38(10), 1223–1234. https://doi.org/10.1080/1064119X.2019.1672121spa
dc.relation.referencesFayed, A. L., & Mousa, A. A. (2020). Shear Wave Velocity in the East Nile Delta Clay: Correlations with Static CPT Measurements. Geotechnical and Geological Engineering, 38(2), 2303–2315. https://doi.org/10.1007/s10706-019-01089-4spa
dc.relation.referencesZonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones, 21 (2010). https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/spa
dc.relation.referencesGiretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and analysis for a carbonate sand. Geotechnique, 68(4), 345–357. https://doi.org/10.1680/jgeot.16.P.312spa
dc.relation.referencesGuo, Y., Zhang, G., & Liu, S. (2020). Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Engineering Geology, 276(June), 105712. https://doi.org/10.1016/j.enggeo.2020.105712spa
dc.relation.referencesHammam, A. H., Abel-Salam, A. I., & Yousf, M. A. (2017). On the evaluation of pre-consolidation pressure of undisturbed saturated clays. HBRC Journal, 13(1), 47–53. https://doi.org/10.1016/j.hbrcj.2015.02.003spa
dc.relation.referencesHeidari, P., & Ghazavi, M. (2021). Statistical Evaluation of CPT and CPTu Based Methods for Prediction of Axial Bearing Capacity of Piles. Geotechnical and Geological Engineering, 39(2), 1259–1287. https://doi.org/10.1007/s10706-020-01557-2spa
dc.relation.referencesIDECA. (24 de 05 de 2020). Mapas IDECA. Obtenido de https://www.ideca.gov.co/recursos/mapas/curva-de-nivel-bogota-dcspa
dc.relation.referencesIDU. (2021). REPOSITORIO INSTITUCIONAL IDU. Obtenido de https://webidu.idu.gov.co/jspui/spa
dc.relation.referencesGeología de la Sabana de Bogotá, (2005). https://doi.org/10.1043/0003-9985(2001)125<1579:CGAWLG>2.0.CO;2spa
dc.relation.referencesKarlsrud, K., Lunne, T., Kort, D., & Strandvik, S. (2005). CPTU correlations for clays. https://doi.org/10.3233/978-1-61499-656-9-693spa
dc.relation.referencesKonkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259(June), p. 105–187. https://doi.org/10.1016/j.enggeo.2019.105187spa
dc.relation.referencesKottegoda, N., & Rosso, R. (2008). Applied Statistics for Civil and Environmental Engineers (Second). Blackwell Malden, MA.spa
dc.relation.referencesKulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design (Report No. EPRI-EL-6800), Electric Power Research Institute., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. In Ostigov. https://doi.org/EPRI-EL-6800spa
dc.relation.referencesLadd, C., & Foott, R. (1974). New Design Procedure for Stability of Soft Clays (p. 24).spa
dc.relation.referencesLong, M., & Donohue, S. (2010). Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Canadian Geotechnical Journal, 47(7), 709–718. https://doi.org/10.1139/T09-133spa
dc.relation.referencesMadiai, C., & Simoni, G. (2004). Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. International Symposium on Geotechnical and Geophysical Site Characterization, January 2004, 1687–1694.spa
dc.relation.referencesMayne, P. (2016). Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27–55.spa
dc.relation.referencesMayne, P. W. (2005). Integrated ground behavior: In-situ and lab tests. Deformation Characteristics of Geomaterials : Recent Investigations and Prospects - International Symposium on Deformation Characteristics of Geomaterials, ISLyon 2003, June, 155–177.spa
dc.relation.referencesMayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652. https://doi.org/10.1201/noe0415426916.ch2spa
dc.relation.referencesMayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU N kt cone factor for undrained strength of clays. Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, August, 423–429.spa
dc.relation.referencesMayne, P. W., & Rix, G. J. (1995). Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, 35(2), 107–110. https://doi.org/10.3208/sandf1972.35.2_107spa
dc.relation.referencesMayne, P. W., Christopher, B. R., & DeJong, J. (2001). Manual on Subsurface Investigations. Nat. Highway Inst. Sp. Pub. FHWA NHI-01--031. Fed. Highway Administ, Washington, DC, 394. https://doi.org/10.17226/25379spa
dc.relation.referencesMayne, P. W., & Benoît, J. (2020). Analytical CPTU Models Applied to Sensitive Clay at Dover, New Hampshire. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 04020130. https://doi.org/10.1061/(asce)gt.1943-5606.0002378spa
dc.relation.referencesMendoza, C., Caicedo, B., & Lopez, F. (2019). Geotechnical behavior of Bogotá lacustrine soil through its geological history. XVII European Conference on Soil Mechanics and Geotechnical Engineering, October. https://doi.org/10.32075/17ECSMGE-2019-0017spa
dc.relation.referencesTitulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente, Titulo A REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 1 (2010).spa
dc.relation.referencesMo, P. Q., Gao, X. W., Yang, W., & Yu, H. S. (2020). A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 44(7), 1053–1076. https://doi.org/10.1002/nag.3050spa
dc.relation.referencesMotaghedi, H., & Eslami, A. (2014). Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arabian Journal for Science and Engineering, 39(6), 4363–4376. https://doi.org/10.1007/s13369-014-1022-xspa
dc.relation.referencesNorwegian Geotechnical Institute. (2019). CPTU CORRELATIONS FOR CLAYS.spa
dc.relation.referencesR (3.6.1). (2019). R for Statistical Computing, Multiplataforma (Windows), R Development Core Team. Obtenido de https://www.r-project.org/spa
dc.relation.referencesRobertson, P. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044spa
dc.relation.referencesRobertson, P., & Cabal, K. (2010). Estimating soil unit weight from CPT. In 2nd International Symposium on Cone Penetration Testing, May, 2–40, Vol 2, 575-583.spa
dc.relation.referencesRobertson, P., & Cabal, K. (2015). Guide to Cone Penetration Testing (6th Edition). Gregg Drilling & Testing, Inc. www.greggdrilling.comspa
dc.relation.referencesRobertson, P. K. (2009). Interpretation of cone penetration tests - A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065spa
dc.relation.referencesRobertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1986). Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 791–803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791)spa
dc.relation.referencesRobertson, P. K. (2010). Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, 2(May), Vol 2, 575–583.spa
dc.relation.referencesSchervish, M. J. (1996). P values: What they are and what they are not. American Statistician, 50(3), 203–206. https://doi.org/10.1080/00031305.1996.10474380spa
dc.relation.referencesSenneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of soil parameters from piezocone tests. Transportation Research Record, 1235, 24–37.spa
dc.relation.referencesTorres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005spa
dc.relation.referencesTroncoso, P. (2018). Evaluación del método de medición del perfil de velocidad de ondas de corte SPT-sísmico. Universidad de Concepción.spa
dc.relation.referencesVardon, P. J., Baltoukas, D., & Peuchen, J. (2018). Thermal Cone Penetration Test (T-CPT). Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, June, 649–655.spa
dc.relation.referencesVardon, P. J., Baltoukas, D., & Peuchen, J. (2019). Interpreting and validating the thermal cone penetration test (T-CPT). Geotechnique, 69(7), 580–592. https://doi.org/10.1680/jgeot.17.P.214spa
dc.relation.referencesWasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108spa
dc.rightsDerechos Reservados al Autor, 2021
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalCPTuspa
dc.subject.proposalResistencia al corte no drenadospa
dc.subject.proposalRSCspa
dc.subject.proposalVelocidad de onda de cortespa
dc.subject.proposalDepósito lacustrespa
dc.subject.proposalArcillas blandasspa
dc.subject.proposalUndrained shear strengtheng
dc.subject.proposalOCReng
dc.subject.proposalShear wave velocityeng
dc.subject.proposalLacustrine depositeng
dc.subject.proposalSoft clayseng
dc.subject.unescoMecánica de los suelos
dc.subject.unescoSoil mechanics
dc.subject.unescoTransporte urbano
dc.subject.unescoUrban transport
dc.titleCalibración del ensayo CPTu para el depósito lacustre de Bogotáspa
dc.title.translatedCalibration of the CPTu for lacustrine deposit of Bogotáeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026574991_2021.pdf
Tamaño:
5.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: