Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia

dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.authorRamírez Del Río, Juan Esteban
dc.coverage.countryColombia
dc.date.accessioned2022-02-28T13:16:00Z
dc.date.available2022-02-28T13:16:00Z
dc.date.issued2022-02-25
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLas energías renovables no convencionales como la fotovoltaica y la eólica, actualmente lideran la transición energética y año tras año su capacidad instalada crece alrededor del mundo, lo cual se debe principalmente a que este tipo de tecnologías se han vuelto mucho más competitivas, reduciendo sus costos de instalación a niveles nunca registrados. Para el caso de la energía solar fotovoltaica esta ha reducido sus costos de instalación en más del 80% en los últimos diez años, mientras que la energía renovable más utilizada a nivel mundial, la generación hidroeléctrica, ha ido perdiendo su poderío debido a los impactos ambientales que se presentan con su construcción y a la reducción de costos de las renovables no convencionales. Lo anterior, ha estado reflejado principalmente en los mercados asiáticos, europeos y norteamericanos, mientras que otros países apenas han iniciado la implementación a gran escala de las fuentes de energía renovable no convencional como resultado de la generación de incentivos por parte de los gobiernos locales. Colombia es una muestra de aquellos países con una incipiente participación en la instalación de fuentes de energía renovable no convencional, contando con alrededor del 68% de generación hidroeléctrica en su matriz energética. Teniendo como referencia la expedición de la Ley 1715 de 2014, se espera que aumente la capacidad de generación en no convencionales y así, se diversifique su matriz energética. Ante esto, este trabajo busca comparar financieramente las tecnologías fotovoltaica e hidroeléctrica en Colombia, con la finalidad de determinar para qué rangos de capacidad instalada una tecnología es más viable que la otra. (texto tomado de la fuente)spa
dc.description.abstractNon-conventional renewable energies such as photovoltaic and wind power are currently leading the energy transition and year by year their installed capacity grows around the world, which is mainly since these technologies have become more competitive, reducing their installation costs to levels never recorded before. In the case of photovoltaic solar energy, it has reduced its installation costs by more than 80% in the last ten years, while the most widely used renewable energy worldwide, hydroelectric, has been losing its power due to the great environmental impacts of its implementation and the reduction of costs of non-conventional renewables. This has been mainly reflected in the Asian, European, and North American markets, while other countries have just started the large-scale implementation of non-conventional renewable energy sources because of the generation of incentives by local governments. Colombia is a sample of those countries with an incipient participation in the installation of non-conventional renewable energy sources, having around 68% of hydro energy in its energy matrix. With the issuance of Law 1715 of 2014 as a reference, it is expected to increase the non-conventional generation capacity and thus, diversify its energy matrix. In view of this, this work seeks to financially compare photovoltaic and hydroelectric technologies in Colombia, to determine for which ranges of installed capacity one technology is more viable than the other.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Sistemas Energéticosspa
dc.format.extent116 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81068
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesAcolgen. (2017). Análisis de la evolución del Cargo por Confiabilidad.spa
dc.relation.referencesAghahosseini, A., Bogdanov, D., Barbosa, L. S. N. S., & Breyer, C. (2019). Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renewable and Sustainable Energy Reviews, 105(January), 187–205. https://doi.org/10.1016/j.rser.2019.01.046spa
dc.relation.referencesBanco de la República de Colombia. (2021a). Índice de Precios al Consumidor (IPC). https://www.banrep.gov.co/es/estadisticas/indice-precios-consumidor-ipcspa
dc.relation.referencesBanco de la República de Colombia. (2021b). Tasa Representativa del Mercado (TRM - Peso por dólar). https://www.banrep.gov.co/es/estadisticas/trmspa
dc.relation.referencesBlakers, A., Lu, B., & Stocks, M. (2017). 100% renewable electricity in Australia. Energy, 133, 471–482. https://doi.org/10.1016/j.energy.2017.05.168spa
dc.relation.referencesBloomberg NEF. (2020). New Energy Outlook 2020 (Issue October). https://bnef.turtl.co/story/neo2018?teaser=truespa
dc.relation.referencesCastillo-Ramírez, A., Mejía-Giraldo, D., & Giraldo-Ocampo, J. D. (2016). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171spa
dc.relation.referencesChahín, C., & Eudora. (2021). Análisis de las plantas menores en el contexto actual y futuro del mercado de energía mayorista colombiano.spa
dc.relation.referencesClauser, C., & Ewert, M. (2018). The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy – Review and case study. Renewable and Sustainable Energy Reviews, 82(October 2017), 3683–3693. https://doi.org/10.1016/j.rser.2017.10.095spa
dc.relation.referencesCongreso de la República de Colombia. (1981). Ley 56 de 1981.spa
dc.relation.referencesCongreso de la República de Colombia. (1993). Ley 99 de 1993.spa
dc.relation.referencesCongreso de la República de Colombia. (2014). Ley 1715 de 2014.spa
dc.relation.referencesCongreso de la República de Colombia. (2015). Ley 1753 de 2015.spa
dc.relation.referencesCongreso de la República de Colombia. (2016). Ley 1819 De 2016.spa
dc.relation.referencesCongreso de la República de Colombia. (2018). Ley 1943 de 2018.spa
dc.relation.referencesCongreso de la República de Colombia. (2019). Ley 1955 de 2019.spa
dc.relation.referencesCREG. (1995). Resolución CREG 024 de 1995.spa
dc.relation.referencesCREG. (1996a). Resolución CREG 084 de 1996.spa
dc.relation.referencesCREG. (1996b). Resolución CREG 085 de 1996.spa
dc.relation.referencesCREG. (1996c). Resolución CREG 086 de 1996.spa
dc.relation.referencesCREG. (2001). Resolución CREG 039 de 2001.spa
dc.relation.referencesCREG. (2006). Resolución CREG 071 de 2006.spa
dc.relation.referencesCREG. (2009). Resolución CREG 051 de 2009.spa
dc.relation.referencesCREG. (2011). Resolución CREG 157 de 2011.spa
dc.relation.referencesCREG. (2013). Resolución CREG 174 de 2013.spa
dc.relation.referencesCREG. (2015). Resolución CREG 024 de 2015.spa
dc.relation.referencesCREG. (2018). Resolución CREG 030 de 2018. In Mme (p. 13).spa
dc.relation.referencesCREG. (2019). Resolución CREG 096 de 2019.spa
dc.relation.referencesDamodaran, A. (2012). Investment Valuation (Third Edit). John Wiley & Sons, Inc.spa
dc.relation.referencesEIA. (2021a). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2021 (Issue January). https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdfspa
dc.relation.referencesEIA. (2021b). Levelized Cost of New Generation Resources in the Annual Energy Outlook 2021 (Issue January).spa
dc.relation.referencesFernández, P. (2008). Métodos de Valorización de Empresas. IESE Business School - Universidad de Navarra.spa
dc.relation.referencesGómez, E., & Diez, J. (2015). Evaluación financiera de proyectos (Segunda Ed).spa
dc.relation.referencesHolguín, E. S., Flores Chacón, R., & Gamarra, P. S. (2019). Sustainable and Renewable Business Model to Achieve 100% Rural Electrification in Perú by 2021. 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. https://doi.org/10.1109/ISGT-LA.2019.8895439spa
dc.relation.referencesIEA. (2020a). Projected Cost of Generating Electricity (Issue January). https://ncdc.gov.ng/themes/common/docs/protocols/111_1579986179.pdfspa
dc.relation.referencesIEA. (2020b). World Energy Outlook 2020 (Vol. 0, Issue October). https://www.iea.org/reports/world-energy-outlook-2020spa
dc.relation.referencesIEA. (2021). World Energy Outlook 2021. https://www.eia.gov/pressroom/presentations/AEO2021_Release_Presentation.pdfspa
dc.relation.referencesIRENA. (2020). Renewable Energy Capacity Highlights 31 March 2020 (Vol. 00, Issue March 2020). www.irena.org/publications.spa
dc.relation.referencesIRENA. (2021a). Renewable Energy Capacity Highlights. https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021spa
dc.relation.referencesIRENA. (2021b). Renewable Power Generation Costs in 2020. In International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdfspa
dc.relation.referencesLanshina, T. A., “Skip” Laitner, J. A., Potashnikov, V. Y., & Barinova, V. A. (2018). The slow expansion of renewable energy in Russia: Competitiveness and regulation issues. Energy Policy, 120(July 2017), 600–609. https://doi.org/10.1016/j.enpol.2018.05.052spa
dc.relation.referencesLAZARD. (2020). Lazard’s Levelized Cost of Energy Analysis - Version 14.0 (Issue October).spa
dc.relation.referencesLondoño, M. A. (2019). Evaluación financiera de un proyecto hidroeléctrico a partir del análisis de las leyes 1715 de 2014 y 1819 de 2016. Estudio de caso de una compañía del sector eléctrico. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARIspa
dc.relation.referencesMatsuo, Y., & Komiyama, R. (2021). System LCOE of variable renewable energies: a case study of Japan’s decarbonized power sector in 2050. Sustainability Science, 16(2), 449–461. https://doi.org/10.1007/s11625-021-00914-1spa
dc.relation.referencesMeza, C. G., Zuluaga Rodríguez, C., D’Aquino, C. A., Amado, N. B., Rodrigues, A., & Sauer, I. L. (2019). Toward a 100% renewable island: A case study of Ometepe’s energy mix. Renewable Energy, 132, 628–648. https://doi.org/10.1016/j.renene.2018.07.124spa
dc.relation.referencesMinisterio de Minas y Energía. (2021). Transición energética : un legado para el presente y el futuro de Colombia.spa
dc.relation.referencesNguyen, P. A., Abbott, M., & Nguyen, T. L. T. (2019). The development and cost of renewable energy resources in Vietnam. Utilities Policy, 57(September 2017), 59–66. https://doi.org/10.1016/j.jup.2019.01.009spa
dc.relation.referencesNREL. (2021a). Annual Technology Baseline. https://atb.nrel.gov/electricity/2021/hydropower#capital_expenditures_(capex)spa
dc.relation.referencesNREL. (2021b). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. National Renewable Energy Laboratory, September, 1–120. https://www.nrel.gov/docs/fy21osti/77324.pdfspa
dc.relation.referencesOLADE. (2020). Panorama Energético de América Latina y el Caribe 2020. http://biblioteca.olade.org/opac-tmpl/Documentos/old0456b.pdfspa
dc.relation.referencesOxera Consulting Ltd. (2011). Discount rates for low-carbon and renewable generation technologies. April, 52.spa
dc.relation.referencesRam, M., Child, M., Aghahosseini, A., Bogdanov, D., Lohrmann, A., & Breyer, C. (2018). A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production, 199, 687–704. https://doi.org/10.1016/j.jclepro.2018.07.159spa
dc.relation.referencesReichenberg, L., Hedenus, F., Odenberger, M., & Johnsson, F. (2018). The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe. Energy, 152, 914–924. https://doi.org/10.1016/j.energy.2018.02.061spa
dc.relation.referencesREN21. (2020). Renewables 2020 Global Status Report. https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).htmlspa
dc.relation.referencesREN21. (2021). Renewables 2021 Global Status Report. https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).htmlspa
dc.relation.referencesRestrepo, Y., Gaitan, S., & Franco, C. J. (2017). Methodology for the financial valuation of a power plant under regulatory changes. IEEE Latin America Transactions, 15(8), 1453–1459. https://doi.org/10.1109/TLA.2017.7994792spa
dc.relation.referencesShea, R. P., & Ramgolam, Y. K. (2019). Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius. Renewable Energy, 132, 1415–1424. https://doi.org/10.1016/j.renene.2018.09.021spa
dc.relation.referencesShen, W., Chen, X., Qiu, J., Hayward, J. A., Sayeef, S., Osman, P., Meng, K., & Dong, Z. Y. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133(March). https://doi.org/10.1016/j.rser.2020.110301spa
dc.relation.referencesTimilsina, G. R. (2021). Are renewable energy technologies cost competitive for electricity generation? Renewable Energy, 180, 658–672. https://doi.org/10.1016/j.renene.2021.08.088spa
dc.relation.referencesTimilsina, G., & Shah, K. (2020). Are Renewable Energy Technologies Competitive? Proceedings of the 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change, ICUE 2020, 2018(October). https://doi.org/10.1109/ICUE49301.2020.9307150spa
dc.relation.referencesTimmerberg, S., Sanna, A., Kaltschmitt, M., & Finkbeiner, M. (2019). Renewable electricity targets in selected MENA countries – Assessment of available resources, generation costs and GHG emissions. Energy Reports, 5, 1470–1487. https://doi.org/10.1016/j.egyr.2019.10.003spa
dc.relation.referencesTimmons, D., Dhunny, A. Z., Elahee, K., Havumaki, B., Howells, M., Khoodaruth, A., Lema-Driscoll, A. K., Lollchund, M. R., Ramgolam, Y. K., Rughooputh, S. D. D. V., & Surroop, D. (2019). Cost minimization for fully renewable electricity systems: A Mauritius case study. Energy Policy, 133(July). https://doi.org/10.1016/j.enpol.2019.110895spa
dc.relation.referencesTran, T. T. D., & Smith, A. D. (2017). Evaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector. Renewable and Sustainable Energy Reviews, 80(April), 1372–1388. https://doi.org/10.1016/j.rser.2017.05.228spa
dc.relation.referencesTran, T. T. D., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied Energy, 216(January), 157–171. https://doi.org/10.1016/j.apenergy.2018.02.024spa
dc.relation.referencesTu, Q., Betz, R., Mo, J., & Fan, Y. (2019). The profitability of onshore wind and solar PV power projects in China - A comparative study. Energy Policy, 132(May 2019), 404–417. https://doi.org/10.1016/j.enpol.2019.05.041spa
dc.relation.referencesUPME;Universidad de Antioquia. (2015). Costos Nivelados De Generación De Electricidad En Colombia - Hidroeléctricas.spa
dc.relation.referencesUPME. (2014). Atlas de radiación solar de Colombia. In Unidad de Planeación Minero Energética (Vol. 0).spa
dc.relation.referencesUPME. (2015). Integración de las Energías Renovables No Convencionales en Colombia. In Unidad de Planeación Minero Energética. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdfspa
dc.relation.referencesUPME, UPB, IGAC, COLCIENCIAS, & IDEAM. (2015). Atlas Potencial Hidroenergético de Colombia. http://bdigital.upme.gov.co/handle/001/1336spa
dc.relation.referencesXiao, M., Junne, T., Haas, J., & Klein, M. (2021). Plummeting costs of renewables - Are energy scenarios lagging? Energy Strategy Reviews, 35(December 2020), 100636. https://doi.org/10.1016/j.esr.2021.100636spa
dc.relation.referencesXM S.A. E.S.P. (2017a). Cargo por Confiabilidad. https://www.xm.com.co/Promocin Primera Subasta de Energa Firme/Forms/DispForm.aspx?ID=5spa
dc.relation.referencesXM S.A. E.S.P. (2017b). Informe de operación del SIN y Administración del Mercado 2017. 323.spa
dc.relation.referencesXM S.A. E.S.P. (2019). Subasta energía firme: tercera subasta de energía firme (2022 - 2023). https://www.xm.com.co/Paginas/Mercado-de-energia/tercera-subasta-de-energia-firme.aspxspa
dc.relation.referencesXM S.A. E.S.P. (2021a). Análisis energético de largo plazo mpode - Resultado de estudios. Análisis energético de largo plazo mpode - resultado de estudiosspa
dc.relation.referencesXM S.A. E.S.P. (2021b). Obligaciones de Energía Firme. https://www.xm.com.co/Paginas/Mercado-de-energia/obligacion-de-energia-firme.aspxspa
dc.relation.referencesXM S.A. E.S.P. (2021c). PARATEC. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidadspa
dc.relation.referencesXM S.A. E.S.P. (2021d). XM Portal BI. http://portalbissrs.xm.com.co/Paginas/Home.aspxspa
dc.relation.referencesYao, Y., Xu, J. H., & Sun, D. Q. (2021). Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. Journal of Cleaner Production, 285, 124827. https://doi.org/10.1016/j.jclepro.2020.124827spa
dc.relation.referencesZappa, W., Junginger, M., & van den Broek, M. (2019). Is a 100% renewable European power system feasible by 2050? Applied Energy, 233–234(January 2018), 1027–1050. https://doi.org/10.1016/j.apenergy.2018.08.109spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcRecursos energéticos renovables
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembSistemas de energía fotovoltaica
dc.subject.lembPhotovoltaic power systems
dc.subject.lembEnergía solar
dc.subject.lembRenewable energy sources
dc.subject.proposalFotovoltaicaspa
dc.subject.proposalHidroeléctricaspa
dc.subject.proposalViabilidad financieraspa
dc.subject.proposalLCOEeng
dc.subject.proposalPhotovoltaiceng
dc.subject.proposalHydroelectriceng
dc.subject.proposalFinancial viabilityeng
dc.titleComparación de las tecnologías fotovoltaica e hidroeléctrica en Colombiaspa
dc.title.translatedComparison of photovoltaic and hydroelectric technologies in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152703752_2022.pdf
Tamaño:
1.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: