Caracterización tribológica de recubrimientos de alta entropía de VCrNbMoTaW, producidos por el proceso co-Sputtering en acero AISI 4140

dc.contributor.advisorVelasco Estrada, Leonardospa
dc.contributor.advisorOlaya Flórez, Jhon Jairospa
dc.contributor.authorBetancourt Coronado, Yamid Efrénspa
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.contributor.researchgroupInformation-Guided Design, Automation and Nanotechnologyspa
dc.date.accessioned2023-06-26T20:53:35Z
dc.date.available2023-06-26T20:53:35Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractDebido a sus propiedades físicas y químicas los materiales multifuncionales o aleaciones de alta entropía han sido estudiados extensamente a partir del 2004, cuándo Yeh.J y Cantor.B publicaron sus investigaciones sobre materiales combinados y manufacturados con el fin mejorar las propiedades, adicional a esto con sorpresa encontraron que las concentraciones de los materiales son cuasiequiatómicas, además detectaron que los materiales principales llegan a ser una sola fase cristalina de la combinación de los elementos o componentes predominantes. Con base en los estudios previos se realizó el estudio de los materiales producidos mediante una fusión de materiales a una escala nanométrica. Por tal motivo, en este trabajo se presenta el análisis de las propiedades de películas nanoestructuradas de VCrNbMoTaW depositadas sobre sustratos acero 4140 utilizando magnetrones individuales en configuración confocal sputtering (DC y RF), con el objetivo de analizar la influencia de la cantidad de elementos constitucionales sobre la estructura cristalina, microestructura y resistencia al desgaste. La estructura de los recubrimientos fue caracterizada mediante difracción de rayos X (XRD), adicional a esto se halló el tamaño de grano y el parámetro de red. Simultáneamente, se determinó la composición química de cada uno de los materiales, para ello se usaron dos técnicas: Espectroscopia de energía dispersiva (EDS) con la que se determina la concentración de elementos a nivel local, y espectroscopia de fotoelectrones emitidos por rayos (XPS) para determinar la composición química general. Por otro lado, la morfología se evaluó mediante microscopia de fuerza atómica, (AFM) con la que se determinó el coeficiente de fricción y la forma y geometría generada en la superficie del recubrimiento, estás imágenes se contrastaron contra los resultados obtenidos con las fotografías tomadas por el microscopio electrónica de barrido (SEM); las propiedades de desgaste se estudiaron usando pruebas de rayado (scratch test), y pin en disco (pin on disc). Por último, se realizó la toma de nanodureza de cada una de las películas delgadas, el equipo con el que se realizó la técnica entrega los resultados de la dureza y del módulo de Young. Al realizar los ensayos mencionados y contrastar contra la bibliografía, se encuentra como resultado preliminar que las películas son monofásicas policristalinas y que la resistencia al desgaste mejora en función de la concentración de Vanadio, Niobio y Tantalio en las películas. El mecanismo de desgaste en las películas será discutido durante la presentación de este trabajo. (Texto tomado de la fuente).spa
dc.description.abstractDue to their physical and chemical properties, multifunctional materials or high entropy alloys have been extensively studied since 2004, when Yeh.J and Cantor.B published their research on combined and manufactured materials in order to improve their properties, in addition to this, with surprise, they found that the concentrations of the materials are equiatomic or very close to being equiatomic, they also detected that the main materials become a phase of the combination of the predominant elements or components. Based on the previous studies, the study of the materials produced by a fusion of materials at a nanometric scale was carried out. For this reason, this work presents the analysis of the properties of VCrNbMoTaW nanostructured films deposited on 4140 steel substrates using individual magnetrons in confocal sputtering DC and RF configuration, with the objective of analyzing the influence of the amount of constituent elements on the crystalline structure, microstructure and wear resistance. The structure of the coatings was characterized by X-ray diffraction (XRD), in addition to this, the grain size and the lattice parameter were found. Simultaneously, the chemical composition of each of the materials was determined using two techniques: energy dispersive spectroscopy (EDS) to determine the concentration of elements at a local level, and X-ray photoelectron spectroscopy (XPS) to determine the general chemical composition. On the other hand, the morphology was evaluated by atomic force microscopy (AFM) with which the friction coefficient and the shape and geometry generated on the surface of the coating were determined, these images were contrasted against the results obtained with the photographs taken by the scanning electron microscope (SEM); the wear properties were studied using scratch tests and pin on disc. Finally, the nanoduration of each of the thin films was taken; the equipment used to perform the technique provides the results of hardness and Young's modulus. By performing the mentioned tests and contrasting against the literature, it is found as a preliminary result that the films are polycrystalline single phase and that the wear resistance improves as a function of the concentration of Vanadium, Niobium and Tantalum in the films. The wear mechanism in the films will be discussed during the presentation of this work.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaIngeniería de superficies y nanomaterialesspa
dc.format.extent159 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84075
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesB. Cantor, “Multicomponent high-entropy Cantor alloys”, Prog. Mater. Sci., vol. 120, núm. July 2020, p. 100754, 2021.spa
dc.relation.referencesJ.-W. Yeh y S.-J. Lin, “Breakthrough applications of high-entropy materials”, J. Mater. Res., vol. 33, núm. 19, pp. 3129–3137, 2018.spa
dc.relation.referencesD. B. Miracle y O. N. Senkov, “A critical review of high entropy alloys and related concepts”, Acta Mater., vol. 122, pp. 448–511, 2017.spa
dc.relation.referencesM.-H. Tsai y J.-W. Yeh, “High-Entropy Alloys: A Critical Review”, Mater. Res. Lett., vol. 2, núm. 3, pp. 107–123, jul. 2014.spa
dc.relation.referencesY. Zhang et al., “Microstructures and properties of high-entropy alloys”, Prog. Mater. Sci., vol. 61, pp. 1–93, 2014.spa
dc.relation.referencesS. B. Hung, C. J. Wang, Y. Y. Chen, J. W. Lee, y C. L. Li, “Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings”, Surf. Coatings Technol., vol. 375, núm. April, pp. 802–809, 2019.spa
dc.relation.referencesP. Wang, Y. Bu, J. Liu, Q. Li, H. Wang, y W. Yang, “Atomic deformation mechanism and interface toughening in metastable high entropy alloy”, Mater. Today, vol. 37, pp. 64–73, 2020.spa
dc.relation.referencesJ.-W. Yeh et al., “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., vol. 6, núm. 5, pp. 299–303, may 2004.spa
dc.relation.referencesS. Wang, “Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy”, Entropy, vol. 15, núm. 12. pp. 5536–5548, 2013.spa
dc.relation.referencesC. S. Barrett y T. B. Massalski, Structure of Metals. Wiley, 1980.spa
dc.relation.referencesB. Cantor, I. T. H. Chang, P. Knight, y A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Mater. Sci. Eng. A, vol. 375–377, pp. 213–218, 2004.spa
dc.relation.referencesP. K. Huang, J. W. Yeh, T. T. Shun, y S. K. Chen, “Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating”, Adv. Eng. Mater.,spa
dc.relation.referencesT. K. Chen, M. S. Wong, T. T. Shun, y J. W. Yeh, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering”, Surf. Coatings Technol., vol. 200, núm. 5–6, pp. 1361–1365, 2005.spa
dc.relation.referencesC.-Y. Hsu, J.-W. Yeh, S.-K. Chen, y T.-T. Shun, “Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition”, Metall. Mater. Trans. A, vol. 35, núm. 5, pp. 1465–1469, 2004.spa
dc.relation.referencesE. P. George, D. Raabe, y R. O. Ritchie, “High-entropy alloys”, pp. 1–54.spa
dc.relation.referencesM. Shipman, “New ‘high-entropy’ alloy is as light as aluminum, as strong as titanium alloys”, 2014.spa
dc.relation.referencesK. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, y C. C. Koch, “A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures”, Mater. Res. Lett., vol. 3, núm. 2, pp. 95–99, abr. 2015.spa
dc.relation.referencesY. Lynn, “A Metallic Alloy That is Tough and Ductile at Cryogenic Temperatures”, News from Berkeley Lab, 2014.spa
dc.relation.referencesJ.-W. Yeh, “Recent progress in high-entropy alloys”, Eur. J. Control - EUR J Control, vol. 31, pp. 633–648, dic. 2006.spa
dc.relation.referencesS. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, Curr. Sci., vol. 85, nov. 2003.spa
dc.relation.referencesR. S. Mishra y S. S. Nene, “Some Unique Aspects of Mechanical Behavior of Metastable Transformative High Entropy Alloys”, Metall. Mater. Trans. A, vol. 52, núm. 3, pp. 889–896, 2021.spa
dc.relation.referencesA. Sarkar et al., “High‐Entropy Oxides: Fundamental Aspects and Electrochemical Properties”, Adv. Mater., vol. 31, jun. 2019.spa
dc.relation.referencesW. Zhijun, S. Guo, y C. Liu, “Phase Selection in High-Entropy Alloys: From Nonequilibrium to Equilibrium”, JOM, vol. 66, oct. 2014.spa
dc.relation.referencesX. Yang, Y. Zhang, y P. K. Liaw, “Microstructure and compressive properties of NbTiVTaAlx high entropy alloys”, Procedia Eng., vol. 36, pp. 292–298, 2012.spa
dc.relation.referencesA. Poulia, E. Georgatis, A. Lekatou, y A. E. Karantzalis, “Microstructure and wear behavior of a refractory high entropy alloy”, Int. J. Refract. Met. Hard Mater., vol. 57, pp. 50–63, 2016.spa
dc.relation.referencesS. Schweidler et al., “Synthesis and Characterization of High-Entropy CrMoNbTaVW Thin Films Using High-Throughput Methods”, Adv. Eng. Mater., vol. 25, núm. 2, p. 2200870, 2023.spa
dc.relation.referencesY. Gao et al., “Synthesis and Corrosion behavior of Mo15Nb20Ta10Ti35V20 refractory high entropy alloy”, Mater. Des., vol. 228, p. 111820, 2023.spa
dc.relation.referencesG. C. Gruber, A. Lassnig, S. Zak, C. Gammer, M. J. Cordill, y R. Franz, “Thermal stability of MoNbTaTiW, MoNbTaVW and CrMoNbTaW thin films deposited by high power impulse magnetron sputtering”, Surf. Coatings Technol., vol. 454, núm. October 2022, p. 129189, 2023.spa
dc.relation.referencesZ. Ren et al., “FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent”, J. Colloid Interface Sci., vol. 468, pp. 313–323, 2016.spa
dc.relation.referencesF. Ureña-Begara, A. Crunteanu, y J. P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature”, Appl. Surf. Sci., vol. 403, pp. 717–727, 2017.spa
dc.relation.referencesV. F. D. Soares et al., “Structure and high temperature oxidation of Zr(1-x)Mo(x)N thin films deposited by reactive magnetron sputtering”, Appl. Surf. Sci., vol. 485, núm. April, pp. 490–495, 2019.spa
dc.relation.referencesP. V. Kiryukhantsev-Korneev et al., “Effects of doping with Zr and Hf on the structure and properties of Mo-Si-B coatings obtained by magnetron sputtering of composite targets”, Surf. Coatings Technol., vol. 442, núm. January, 2022.spa
dc.relation.referencesP. Phadke, J. M. Sturm, R. W. E. van de Kruijs, y F. Bijkerk, “Sputtering and nitridation of transition metal surfaces under low energy, steady state nitrogen ion bombardment”, Appl. Surf. Sci., vol. 505, núm. November 2019, p. 144529, 2020.spa
dc.relation.referencesP. Tiwari, J. Jaiswal, y R. Chandra, “Optical and electrical tunability in vertically aligned MoS2 thin films prepared by DC sputtering: Role of film thickness”, Vacuum, vol. 198, núm. September 2021, p. 110903, 2022.spa
dc.relation.referencesX. Y. Li, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, y K. Hashimoto, “Electrochemical and XPS studies of the passivation behavior of sputter-deposited Cr-Ta alloys in 12 M HCl”, Corros. Sci., vol. 40, núm. 9, pp. 1587–1604, 1998.spa
dc.relation.referencesI. N. Demchenko, Y. Melikhov, Y. Syryanyy, I. Zaytseva, P. Konstantynov, y M. Chernyshova, “Effect of argon sputtering on XPS depth-profiling results of Si/Nb/Si”, J. Electron Spectros. Relat. Phenomena, vol. 224, pp. 17–22, 2018.spa
dc.relation.referencesJ. Zhang et al., “A novel surface design for preparing a Mo-10%Nb sputtering target with ultra-low oxygen content: Coating a NbC layer on Nb powder particles via chemical vapour reaction under CH4 atmosphere”, Surf. Coatings Technol., vol. 400, núm. May, p. 126213, 2020.spa
dc.relation.referencesA. A. El-Moneim, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, y K. Hashimoto, “XPS and electrochemical studies on the corrosion behaviour of sputter-deposited amorphous Mn-Nb alloys in a neutral chloride solution”, Corros. Sci., vol. 40, núm. 9, pp. 1513–1531, 1998.spa
dc.relation.referencesP.-C. Jiang, J. Chen, y Y. Lin, “Structural and electrical characteristics of W–N thin films prepared by reactive rf sputtering”, J. Vac. Sci. Technol. A - J VAC SCI TECHNOL A, vol. 21, may 2003.spa
dc.relation.referencesA. P. Shpak, A. M. Korduban, L. M. Kulikov, T. V. Kryshchuk, N. B. Konig, y V. O. Kandyba, “XPS studies of the surface of nanocrystalline tungsten disulfide”, J. Electron Spectros. Relat. Phenomena, vol. 181, núm. 2–3, pp. 234–238, 2010.spa
dc.relation.referencesJ. A. Wilks, N. P. Magtoto, J. A. Kelber, y V. Arunachalam, “Interfacial reactions during sputter deposition of Ta and TaN films on organosilicate glass: XPS and TEM results”, Appl. Surf. Sci., vol. 253, núm. 14, pp. 6176–6184, 2007.spa
dc.relation.referencesV. R. R. Medicherla, S. Majumder, D. Paramanik, y S. Varma, “Formation of self-organized Ta nano-structures by argon ion sputtering of Ta foil: XPS and AFM study”, J. Electron Spectros. Relat. Phenomena, vol. 180, núm. 1–3, pp. 1–5, 2010.spa
dc.relation.referencesY. Su, W. Huang, T. Zhang, C. Shi, R. Hu, y Z. Wang, “Tribological properties and microstructure of monolayer and multilayer Ta coatings prepared by magnetron sputtering”, Vacuum, vol. 189, núm. September 2020, p. 110250, 2021.spa
dc.relation.referencesX. Feng, K. Zhang, Y. Zheng, H. Zhou, y Z. Wan, “Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering”, Mater. Chem. Phys., vol. 239, p. 121991, 2020.spa
dc.relation.referencesL. Vegard, “Die Konstitution der Mischkristalle und die Raumfüllung der Atome”, Zeitschrift für Phys., vol. 5, núm. 1, pp. 17–26, 1921.spa
dc.relation.referencesA. R. Denton y N. W. Ashcroft, “Vegard’s law.”, Phys. Rev. A, At. Mol. Opt. Phys., vol. 43, núm. 6, pp. 3161–3164, mar. 1991.spa
dc.relation.referencesW. Henández Muñoz, “Caracterización de la microestructura y resistencia a la corrosión de las multicapas de nitruro de niobio y niobio depositadas con el sistema sputtering magnetrón desbalanceado”, p. 123, 2011.spa
dc.relation.referencesS. Gorsse, M. H. Nguyen, O. N. Senkov, y D. B. Miracle, “Database on the mechanical properties of high entropy alloys and complex concentrated alloys”, Data Br., vol. 21, pp. 2664–2678, 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalTribologíaspa
dc.subject.proposalXRDeng
dc.subject.proposalSEMeng
dc.subject.proposalAFMeng
dc.subject.proposalXPSeng
dc.subject.proposalEDSeng
dc.subject.proposalScratch Testeng
dc.subject.proposalTribologyeng
dc.subject.proposalRecubrimientosspa
dc.subject.proposalCo-sputteringeng
dc.subject.proposalPin on disceng
dc.subject.proposalNanodurezaspa
dc.subject.proposalAlta entropíaspa
dc.subject.proposalEquiatómicospa
dc.subject.proposalCoatingseng
dc.subject.proposalNano-hardnesseng
dc.subject.proposalEquiatomiceng
dc.subject.proposalHigh entropyeng
dc.subject.unescoEnsayo de materialesspa
dc.subject.unescoMaterials testingeng
dc.subject.unescoTecnología de materialesspa
dc.subject.unescoMaterials engineeringeng
dc.subject.unescoAcerospa
dc.subject.unescoSteeleng
dc.titleCaracterización tribológica de recubrimientos de alta entropía de VCrNbMoTaW, producidos por el proceso co-Sputtering en acero AISI 4140spa
dc.title.translatedTribological Characterization of high entropy VCrNbMoTaW VCrNbMoTaW thin films, produced by the the co-Sputtering process on AISI 4140 steeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032417728.2023.pdf
Tamaño:
8.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: