Desarrollo y evaluación de un prototipo para el monitoreo en tiempo real del crecimiento de cultivos biológicos en biorreactores industriales

dc.contributor.advisorRincón Fulla, Marlon
dc.contributor.advisorPalacio Bedoya, Juan Luis
dc.contributor.authorBejar Caceres, Brayan Daniel
dc.contributor.orcidBejar Caceres, Brayan Daniel [0000-0002-8828-0208]spa
dc.date.accessioned2025-04-17T16:19:57Z
dc.date.available2025-04-17T16:19:57Z
dc.date.issued2024
dc.descriptionIlustraciones, tablas, gráficas
dc.description.abstractEn el ámbito de la biotecnología, el monitoreo continuo y preciso de la concentración celular es esencial para optimizar el crecimiento de biomasa en cultivos biológicos. Los biorreactores y fermentadores (dispositivos diseñados específicamente para el cultivo de diversas células, entre ellas bacterias y levaduras) dependen de la medición de parámetros como temperatura, presión, pH y oxígeno disuelto, en donde la estimación de la concentración celular es igualmente crítica para implementar sistemas de control de lazo cerrado que permita automatizar al máximo el proceso. Las técnicas ópticas, y en particular, la medida de la densidad óptica, se implementa comercialmente y permite caracterizar el crecimiento y evolución de células en suspensiones acuosas en el biorreactor, aprovechando los fenómenos fundamentales de interacción de la luz con la materia como la absorción y dispersión, sin alterar las propiedades biológicas del sistema. No obstante, para las Pymes en Colombia, los sensores de densidad óptica comerciales suelen tener un alto costo, lo que dificulta su adopción en industrias con recursos limitados, como las dedicadas a la producción de cervezas artesanales, inoculantes biológicos y biosimilares, entre otros. En este trabajo se presenta el desarrollo de un instrumento óptico de bajo costo que permite monitorear en tiempo real el crecimiento de biomasa en biorreactores y fermentadores, siendo compatible con los estándares industriales de conexión y comunicación en este tipo de sistemas. El dispositivo aprovecha el fenómeno de la dispersión de la luz generada por las células en suspensión para estimar la concentración celular. En particular, el elemento sensor que se introduce en el biorreactor se encapsula en un material polimérico compatible con los procesos de esterilización in situ, que sustituye el clásico acero inoxidable de los dispositivos comerciales, y se desarrolló un sistema de acondicionamiento de señales que permite controlar la emisión de luz para generar una intensidad lumínica constante en el tiempo, ante el ruido electromagnético y a las variaciones de temperatura, obteniendo una resolución en las medidas de 0.002 e inferior al 1% en la escala de medida en unidades arbitrarias. Esta solución no solo busca hacer más accesible la automatización de procesos productivos en la industria biotecnológica colombiana, sino también, mejorar la calidad del producto final y optimizar el tiempo de producción para incrementar el margen de beneficio. (Tomado de la fuente)spa
dc.description.abstractIn the field of biotechnology, continuous and accurate monitoring of cell concentration is essential to optimize biomass growth in biological cultures. Bioreactors and fermenters (devices specifically designed for cultivating various cells, including bacteria and yeasts) depend on the measurement of parameters such as temperature, pressure, pH, and dissolved oxygen, where the estimation of cell concentration is equally critical to implement closed-loop control systems that allow maximum automation of the process. Optical techniques, and in particular, the measurement of optical density, are commercially implemented to characterize cell growth and evolution in aqueous suspensions within the bioreactor, by taking advantage of fundamental light-matter interactions, such as absorption and scattering, without altering the biological properties of the system. However, for SMEs (Small and Medium-sized Enterprises) in Colombia, commercial optical density sensors tend to have a high cost, which hinders their adoption in industries with limited resources, such as those dedicated to the production of craft beers, biological inoculants and biosimilars, among others. This work presents the development of a low-cost optical instrument that allows real-time monitoring of biomass growth in bioreactors and fermenters, compatible with industrial standars of connection and communication in these types of systems. The device takes advantage of orking principles are based on light scattered by cells to estimate cell concentration. In particular, the sensor that is introduced into the bioreactor is encapsulated in a polymeric material compatible with sterilization processes in situ}, which replaces the classic stainless steel of commercial devices, and a signal conditioning system was developed to control light emission to generate constant light intensity over time, in the face of electromagnetic noise and temperature variations, obtaining a measurement resolution of 0.002, lower than 1% on the measurement scale in arbitrary units. This solution not only seeks to make the automation of production processes in the Colombian biotechnology industry more accessible, but also, to improve the quality of the final product and optimize production time in order to increase profit margin.eng
dc.description.curricularareaFísica.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Físicaspa
dc.format.extent75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87964
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesK. v. R. Tramper, Johannes, Basic Bioreactor Design. Boca Raton: CRC Press, Apr. 1991.spa
dc.relation.referencesV. Vojinovic, J. M. S. Cabral, and L. P. Fonseca, “Real-time bioprocess monitoring: Part I: In situ sensors,” Sensors and Actuators B: Chemical, vol. 114, no. 2, pp. 1083–1091, Apr. 2006. [Online]. Available:spa
dc.relation.referencesD. Schrenk and A. Cartus, Eds., Chemical Contaminants and Residues in Food. Duxford: Springer, Jul. 2017.spa
dc.relation.referencesF. Jacquet, M.-H. Jeuffroy, J. Jouan, E. Le Cadre, I. Litrico, T. Malausa, X. Reboud, and C. Huyghe, “Pesticide-free agriculture as a new paradigm for research,” Agronomy for Sustainable Development, vol. 42, no. 1, p. 8, Jan. 2022. [Online]. Available: https://doi.org/10.1007/s13593-021-00742-8spa
dc.relation.referencesL. S. Rösner, F. Walter, C. Ude, G. T. John, and S. Beutel, “Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring,” Bioengineering, vol. 9, no. 12, p. 762, Dec. 2022, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2306-5354/9/12/762spa
dc.relation.referencesJ. H. T. Luong, K. A. Mahmoud, and K. B. Male, “2.60 - Instrumentation and Analytical Methods,” in Comprehensive Biotechnology (Third Edition), M. Moo- Young, Ed. Oxford: Pergamon, Jan. 2011, pp. 893–903. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/B9780444640468001087spa
dc.relation.references“On-line Biomass Sensors.” [Online]. Available: https://solidabiotech.com/product/ biomass-sensors/spa
dc.relation.references“Sondas de densidad celular del ASD12.” [Online]. Available: https://www.optek.com/es/ asd12-n.aspspa
dc.relation.referencesM.-T. I. I. a. r. reserved, “Turb Sensor InPro8100/S/205.” [Online]. Available: https://www.mt.com/int/en/home/products/Process-Analytics/turbidity-meter/ turbidity-sensor/turb-sensor-inpro8100-s-205.htmlspa
dc.relation.referencesL.-M. Mauerhofer, P. Pappenreiter, C. Paulik, A. H. Seifert, S. Bernacchi, and S. K.-M. R. Rittmann, “Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology,” Folia Microbiologica, vol. 64, no. 3, pp. 321–360, May 2019. [Online]. Available: http://link.springer.com/10.1007/s12223-018-0658-4spa
dc.relation.referencesS. Vaidyanathan, G. Macaloney, J. Vaughan, B. McNeil, and L. M. Harvey, “Monitoring of Submerged Bioprocesses,” Critical Reviews in Biotechnology, vol. 19, no. 4, pp. 277–316, Jan. 1999, publisher: Taylor & Francis _eprint: https://doi.org/10.1080/0738-859991229161. [Online]. Available: https://doi.org/10.1080/0738-859991229161spa
dc.relation.referencesL. Olsson and J. Nielsen, “On-line and in situ monitoring of biomass in submerged cultivations,” Trends in Biotechnology, vol. 15, no. 12, pp. 517–522, Dec. 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167779997011360spa
dc.relation.references] A. L. Koch, “Growth Measurement,” in Methods for General and Molecular Mi- crobiology. John Wiley & Sons, Ltd, 2007, pp. 172–199, section: 9 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1128/9781555817497.ch9. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555817497.ch9spa
dc.relation.referencesM. Butler, M. Spearman, and K. Braasch, “Monitoring Cell Growth, Viability, and Apoptosis,” in Animal Cell Biotechnology: Methods and Protocols, ser. Methods in Molecular Biology, R. Pörtner, Ed. Totowa, NJ: Humana Press, 2014, pp. 169–192. [Online]. Available: https://doi.org/10.1007/978-1-62703-733-4_12spa
dc.relation.referencesF. Alimagham, J. Winterburn, B. Dolman, P. M. Domingues, F. Everest, M. Platkov, S. Basov, G. Izakson, A. Katzir, S. R. Elliott, and T. Hutter, “Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor,” Biochemical Engineering Journal, vol. 167, p. 107889, Mar. 2021. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S1369703X20304435spa
dc.relation.referencesJ. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Applied Optics, vol. 32, no. 19, pp. 3585–3595, Jul. 1993, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?uri= ao-32-19-3585spa
dc.relation.referencesK. Azil, A. Altuncu, K. Ferria, S. Bouzid, S. A. Sadık, and F. E. Durak, “A faster and accurate optical water turbidity measurement system using a CCD line sensor,” Optik, vol. 231, p. 166412, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0030402621001455spa
dc.relation.referencesM. Yousif, H. Burdett, C. Wellen, S. Mandal, G. Arabian, D. Smith, and R. J. Sorichetti, “An innovative approach to correct data from in-situ turbidity sensors for surface water monitoring,” Environmental Modelling & Software, vol. 155, p. 105461, Sep. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364815222001669spa
dc.relation.referencesJ. Trevathan, W. Read, and A. Sattar, “Implementation and Calibration of an IoT Light Attenuation Turbidity Sensor,” Internet of Things, vol. 19, p. 100576, Aug. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2542660522000671spa
dc.relation.referencesT. G. Mayerhöfer, S. Pahlow, and J. Popp, “The Bouguer-Beer-Lambert Law: Shining Light on the Obscure,” ChemPhysChem, vol. 21, no. 18, pp. 2029–2046, 2020, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cphc.202000464. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/cphc.202000464spa
dc.relation.referencesJ. L. Palacio Bedoya and M. Fulla, “Modelo Físico-Matemático para la Estimación del Tama- ño de Partículas en Suspensiones Coloidales de Baja Dilucón,” CINTEX, vol. 20, pp. 53–68, Jun. 2015.spa
dc.relation.referencesC. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Ltd, 1998, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527618156.fmatter. [Online]. Availa- ble: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527618156.fmatterspa
dc.relation.referencesR. W. Boyd, Nonlinear Optics, Third Edition, 3rd ed. USA: Academic Press, Inc., Mar. 2008spa
dc.relation.referencesJ. Lakowicz, Principles of fluorescence spectroscopy, ser. Principles of Fluorescence Spec- troscopy. Springer, 2006, pages: 954.spa
dc.relation.references14:00-17:00, “ISO 7027-1:2016.” [Online]. Available: https://www.iso.org/standard/62801. htmlspa
dc.relation.referencesJ. Rocher, J. M. Jimenez, J. Tomas, and J. Lloret, “Low-Cost Turbidity Sensor to Determine Eutrophication in Water Bodies,” Sensors, vol. 23, no. 8, p. 3913, Jan. 2023, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/23/8/3913spa
dc.relation.referencesM. W. Prairie, S. H. Frisbie, K. K. Rao, A. H. Saksri, S. Parbat, and E. J. Mitchell, “An accurate, precise, and affordable light emitting diode spectrophotometer for drinking water and other testing with limited resources,” PLOS ONE, vol. 15, no. 1, p. e0226761, Jan. 2020, publisher: Public Library of Science. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226761spa
dc.relation.referencesA. M. Cao y Paz, J. M. Acevedo, J. D. Gandoy, A. del Rio Vazquez, C. M.-P. Freire, and M. L. Soria, “Plastic Optical Fiber Sensor for Real Time Density Measurements in Wine Fermentation,” in 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, May 2007, pp. 1–5, iSSN: 1091-5281. [Online]. Available: https://ieeexplore.ieee.org/document/4258431spa
dc.relation.referencesM. Ramezani, G. Ferrentino, K. Morozova, and M. Scampicchio, “Multiple Light Scattering Measurements for Online Monitoring of Milk Fermentation,” Foods (Basel, Switzerland), vol. 10, no. 7, p. 1582, Jul. 2021.spa
dc.relation.referencesM. M. Paradkar, R. S. Singhal, and P. R. Kulkarni, “An approach to the detection of synthetic milk in dairy milk: 2. Detection of detergents,” In- ternational Journal of Dairy Technology, vol. 53, no. 3, pp. 92–95, 2000, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1471-0307.2000.tb02667.x. [Onli- ne]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-0307.2000.tb02667.xspa
dc.relation.referencesR. Fan, M. Ebrahimi, H. Quitmann, M. Aden, and P. Czermak, “An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production,” Sensors, vol. 16, no. 3, p. 411, Mar. 2016, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/16/3/411spa
dc.relation.referencesK. Karakostas, S. Gkagkanis, K. Katsaliaki, P. Köllensperger, A. Hatzopoulos, and M. E. Kiziroglou, “Portable optical blood scattering sensor,” Microelectronic Engineering, vol. 217, p. 111129, Sep. 2019. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0167931719302850spa
dc.relation.referencesW. Shao, H. Zhang, and H. Zhou, “Fine Particle Sensor Based on Multi-Angle Light Scattering and Data Fusion,” Sensors, vol. 17, no. 5, p. 1033, May 2017, number: 5 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/17/5/1033spa
dc.relation.referencesS. Molaie and P. Lino, “Review of the Newly Developed, Mobile Optical Sensors for Real- Time Measurement of the Atmospheric Particulate Matter Concentration,” Micromachines, vol. 12, no. 4, p. 416, Apr. 2021, number: 4 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-666X/12/4/416spa
dc.relation.referencesL. He, H. Wu, J. Li, B. Li, Y. Sun, P. Jiang, X. Wang, and G. Lin, “Solid Particle Swarm Measurement in Jet Fuel Based on Mie Scattering Theory and Extinction Method,” Sensors, vol. 23, no. 5, p. 2837, Jan. 2023, number: 5 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/23/5/2837spa
dc.relation.references“OUSBT66 – Analysis OEM.” [Online]. Available: https://www.analysis-oem.com/product/optical-insertion-probe-designed-for-use-with-the-model-ocm44p-transmitter-to-monitor-cell-mass-in-bacterial-fermentation-and-mammalian-cell-culture-applications/spa
dc.relation.references“Sensors – Cerex Inc.” [Online]. Available: https://www.cerexinc.com/sensors/spa
dc.relation.references“Kemtrak Turbidimeters.” [Online]. Available: https://www.southforkinst.com/ kemtrak-turbidimeter/spa
dc.relation.references“TF56-N Turbidity Sensor measures scattered light / turbidity.” [Online]. Available: https://www.optek.com/en/turbidity/tf56-inline-turbidity-sensor.aspspa
dc.relation.references“DTF16 Turbidity Sensor: 3 Measurement angles 0°, 11° and 90°.” [Online]. Available: https://www.optek.com/en/turbidity/dtf16-inline-turbidimeter.aspspa
dc.relation.referencesA. M. Salgado, R. O. M. Folly, and B. Valdman, “Biomass monitoring by use of a continuous on-line optical sensor,” Sensors and Actuators B: Chemical, vol. 75, no. 1, pp. 24–28, Apr. 2001. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0925400500006924spa
dc.relation.referencesM. He, S. K. Nguang, X. M. Li, G. F. Qin, and X. D. Chen, “Cost Optical Sensor for Online Measurement of Biomass,” Developments in Chemi- cal Engineering and Mineral Processing, vol. 13, no. 1-2, pp. 63–70, 2005, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/apj.5500130107. [Online]. Avai- lable: https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.5500130107spa
dc.relation.referencesM. G. Macey, Ed., Flow Cytometry. Totowa, NJ: Humana Press, 2007. [Online]. Available: http://link.springer.com/10.1007/978-1-59745-451-3spa
dc.relation.referencesN. R. Abu-Absi, B. M. Kenty, M. E. Cuellar, M. C. Borys, S. Sakhamuri, D. J. Strachan, M. C. Hausladen, and Z. J. Li, “Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectros- copy probe,” Biotechnology and Bioengineering, vol. 108, no. 5, pp. 1215–1221, 2011, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.23023. [Online]. Availa- ble: https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.23023spa
dc.relation.referencesK. A. Esmonde-White, M. Cuellar, and I. R. Lewis, “The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing,” Analytical and Bioanalytical Che- mistry, vol. 414, no. 2, pp. 969–991, Jan. 2022.spa
dc.relation.referencesN. Wei, J. You, K. Friehs, E. Flaschel, and T. W. Nattkemper, “An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning,” Biotechnology and Bioengineering, vol. 97, no. 6, pp. 1489–1500, Aug. 2007.spa
dc.relation.referencesH. P. Schwan, “Biological effects of non-ionizing radiations: Cellular properties and interactions,” Annals of Biomedical Engineering, vol. 16, no. 3, pp. 245–263, May 1988. [Online]. Available: https://doi.org/10.1007/BF02368002spa
dc.relation.referencesB. Rigaud, J. P. Morucci, and N. Chauveau, “Bioelectrical impedance techniques in medici- ne. Part I: Bioimpedance measurement. Second section: impedance spectrometry,” Critical Reviews in Biomedical Engineering, vol. 24, no. 4-6, pp. 257–351, 1996.spa
dc.relation.referencesI. K’Owino and O. Sadik, “Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring,” Electroanalysis, vol. 17, no. 23, pp. 2101–2113, Dec. 2005. [Online]. Available: https://analyticalsciencejournals.onlinelibrary. wiley.com/doi/10.1002/elan.200503371spa
dc.relation.referencesP. M. Patel, A. Bhat, and G. H. Markx, “A comparative study of cell death using electrical capacitance measurements and dielectrophoresis,” Enzyme and Microbial Technology, vol. 43, no. 7, pp. 523–530, Dec. 2008. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0141022908002445spa
dc.relation.referencesH. Shafaghat, G. D. Najafpour, S. P. Rezaei, and M. Sharifzadeh, “Optimal growth of Saccharomyces cerevisiae (PTCC 24860) on pretreated molasses for ethanol production: Application of response surface methodology,” Chemical Industry and Chemical Engineering Quarterly, vol. 16, no. 2, pp. 199–206, 2010. [Online]. Available: https://doiserbia.nb.rs/Article.aspx?ID=1451-93721000029Sspa
dc.relation.referencesM. S. Boon, W. P. Serena Saw, and M. Mariatti, “Magnetic, dielectric and thermal stability of Ni–Zn ferrite-epoxy composite thin films for electronic applications,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 5, pp. 755–760, Mar. 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304885311006676spa
dc.relation.referencesI. Liakos, A. M. Grumezescu, and A. M. Holban, “Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy,” Molecules, vol. 19, no. 8, pp. 12 710–12 726, Aug. 2014, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1420-3049/19/8/12710spa
dc.relation.referencesE. F. Schubert, Light-Emitting Diodes (3rd Edition, 2018). E. Fred Schubert, Feb. 2018, google-Books-ID: GEFKDwAAQBAJ.spa
dc.relation.referencesD.-C. Choi, Y. S. Kim, K.-B. Kim, and S.-N. Lee, “Spontaneous Emission Studies for Blue and Green InGaN-Based Light-Emitting Diodes and Laser Diodes,” Photonics, vol. 11, no. 2, p. 135, Feb. 2024, number: 2 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2304-6732/11/2/135spa
dc.relation.referencesC. D. Kelley, A. Krolick, L. Brunner, A. Burklund, D. Kahn, W. P. Ball, and M. Weber-Shirk, “An Affordable Open-Source Turbidimeter,” Sensors, vol. 14, no. 4, pp. 7142–7155, Apr. 2014, number: 4 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/14/4/7142spa
dc.relation.referencesA. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, M. A. Khan, A. Sarua, and M. Kuball, “Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm,” Applied Physics Letters, vol. 81, no. 18, pp. 3491–3493, Oct. 2002. [Online]. Available: https://pubs.aip.org/apl/article/81/18/3491/ 511295/Self-heating-effects-at-high-pump-currents-in-deepspa
dc.relation.referencesX. Cao, S. LeBoeuf, K. Kim, P. Sandvik, E. Stokes, A. Ebong, D. Walker, J. Kretchmer, J. Lin, and H. Jiang, “Investigation of radiative tunneling in GaN/InGaN single quantum well light-emitting diodes,” Solid-State Electronics, vol. 46, no. 12, pp. 2291–2294, Dec. 2002. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0038110102001909spa
dc.relation.referencesX. A. Cao and S. F. LeBoeuf, “Current and Temperature Dependent Characteristics of Deep-Ultraviolet Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3414–3417, Dec. 2007, conference Name: IEEE Transactions on Electron Devices. [Online]. Available: https://ieeexplore.ieee.org/document/4383016spa
dc.relation.referencesB. H. Suits, Electronics for Physicists: An Introduction, ser. Undergraduate Lecture Notes in Physics. Cham: Springer International Publishing, 2020. [Online]. Available: http://link.springer.com/10.1007/978-3-030-39088-4spa
dc.relation.referencesM. A. Pérez García, Instrumentación electronica. Ediciones Paraninfo, S.A., Jan. 2014.spa
dc.relation.references“BPW34, BPW34S Photo Detectors | Vishay.” [Online]. Available: https://www.vishay.com/ en/product/81521/spa
dc.relation.references“LMC6081 data sheet, product information and support | TI.com.” [Online]. Available: https://www.ti.com/product/LMC6081spa
dc.relation.referencesR. Lyons, Understanding Digital Signal Processing. Pearson Education International, 2011. [Online]. Available: https://books.google.com.co/books?id=c8IT_gAACAAJspa
dc.relation.referencesFilter Design Tool.” [Online]. Available: https://webench.ti.com/filter-design-tool/spa
dc.relation.referencesTI, “FilterPro™ User’s Guide,” Texas Intruments, Application Note, 1991. [Online]. Available: https://www.ti.com/lit/an/sbfa001c/sbfa001c.pdfspa
dc.relation.references“Ingress Protection (IP) ratings.” [Online]. Available: https://www.iec.ch/ip-ratingsspa
dc.relation.references“M8/M12 Connector System.” [Online]. Available: https://www.te.com/en/products/ connectors/circular-connectors/intersection/m8m12.htmlspa
dc.relation.referencesV. T. Inc, “Bogatin’s Practical Guide to Prototype Bread- board and PCB Design 1st edition | 9781630818487, 9781630818487,” 2021. [Online]. Available: https://www.vitalsource.com/products/ bogatin-39-s-practical-guide-to-prototype-breadboard-eric-bogatin-v9781630818487spa
dc.relation.referencesA. F. Usuga Rodríguez, D. Barrios Hernández, M. C. Botero Aguirre, M. Lopera Castaño, M. Olivera Angel, and L. G. Palacio Baena, “Análisis de la variación de la calidad de leche en Colombia 2008-2019,” Revista MVZ Córdoba, vol. 26, no. 2, pp. e2005–e2005, Apr. 2021, number: 2. [Online]. Available: https://revistamvz.unicordoba.edu.co/article/view/e2005spa
dc.relation.referencesS. Stocker, F. Foschum, P. Krauter, F. Bergmann, A. Hohmann, C. Scalfi Happ, and A. Kienle, “Broadband Optical Properties of Milk,” Applied Spectroscopy, vol. 71, no. 5, pp. 951–962, May 2017.spa
dc.relation.referencesT. Katsumata, H. Aizawa, S. Komuro, S. Ito, and T. Matsumoto, “Quantitative analysis of fat and protein concentrations of milk based on fibre-optic evaluation of back scattering intensity,” International Dairy Journal, vol. 109, p. 104743, Oct. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0958694620301138spa
dc.relation.referencesN. A. I. M. Kamil, W. Z. W. Ismail, S. R. Balakrishnan, M. Sahrim, I. Ismail, and J. Jamaludin, “Study on Optical Properties of Milk based on Light Propagation Theory,” Journal of Physics: Conference Series, vol. 2071, no. 1, p. 012006, Oct. 2021, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/2071/1/012006spa
dc.relation.referencesG. Haugaard and J. D. Pettinati, “Photometric Milk Fat Determination1,” Journal of Dairy Science, vol. 42, no. 8, pp. 1255–1275, Aug. 1959. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022030259907301spa
dc.relation.references. J. Doan, “Some Factors Affecting the Fat Clumping Produced in Milk and Cream Mixtures When Homogenized*,” Journal of Dairy Science, vol. 12, no. 3, pp. 211–230, May 1929. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022030229935724spa
dc.relation.referencesL. V. Ogden, P. Walstra, and H. A. Morris, “Homogenization-lnduced Clustering of Fat Globules in Cream and Model Systems1,” Journal of Dairy Science, vol. 59, no. 10, pp. 1727–1737, Oct. 1976. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S002203027684430Xspa
dc.relation.referencesQ. Xin, H. Zhi Ling, T. Jian Long, and Y. Zhu, “The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology,” Optics and Lasers in Engineering, vol. 44, no. 8, pp. 858–869, Aug. 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0143816605000655spa
dc.relation.referencesA. Gowri, A. S. Rajamani, B. Ramakrishna, and V. V. R. Sai, “U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring,” Optical Fiber Technology, vol. 47, pp. 15–20, Jan. 2019. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1068520018305078spa
dc.relation.referencesP. Dalgaard, T. Ross, L. Kamperman, K. Neumeyer, and T. A. McMeekin, “Estimation of bacterial growth rates from turbidimetric and viable count data,” International Journal of Food Microbiology, vol. 23, no. 3, pp. 391–404, Nov. 1994. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0168160594901651spa
dc.relation.referencesB. R. Gibson, S. J. Lawrence, J. P. R. Leclaire, C. D. Powell, and K. A. Smart, “Yeast res- ponses to stresses associated with industrial brewery handling,” FEMS microbiology reviews, vol. 31, no. 5, pp. 535–569, Sep. 2007.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocDensidad óptica
dc.subject.agrovocBiorreactores
dc.subject.agrovocAgentes fermentadores
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivosspa
dc.subject.lembCultivo de celulas
dc.subject.lembBiomasa
dc.subject.lembInstrumentos ópticos
dc.subject.lembBiotecnología
dc.subject.lembDispositivos de precisión
dc.subject.proposalCultivo celularspa
dc.subject.proposalDensidad ópticaspa
dc.subject.proposalSensor de densidad ópticaspa
dc.subject.proposalBiorreactorspa
dc.subject.proposalFermentadorspa
dc.subject.proposalCell cultureeng
dc.subject.proposalOptical densityeng
dc.subject.proposalOptical density sensoreng
dc.subject.proposalBioreactoreng
dc.subject.proposalFermentereng
dc.titleDesarrollo y evaluación de un prototipo para el monitoreo en tiempo real del crecimiento de cultivos biológicos en biorreactores industrialesspa
dc.title.translatedDevelopment and evaluation of a prototype for real-time monitoring of biological culture growth in industrial bioreactorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
602185.2024.pdf
Tamaño:
5.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: