Validación intra-laboratorio de la técnica de PCR en tiempo real para detección de Escherichia coli del serogrupo O157 en alimentos.

dc.contributor.advisorYepes Pérez, María del Socorro
dc.contributor.authorCarrero Contreras, Karent Alexandra
dc.contributor.researchgroupProducción, Estructura y Aplicación de Biomoléculas (PROBIOM)spa
dc.date.accessioned2021-07-08T14:29:16Z
dc.date.available2021-07-08T14:29:16Z
dc.date.issued2021-06-29
dc.descriptionilustraciones
dc.description.abstractEscherichia coli del serogrupo O157 pertenece al patotipo de las enterohemorrágicas, la más virulenta de E. coli, porque además de producir endotoxinas, libera dos exotoxinas conocidas como toxinas Shiga, Stx1 y Stx2 (Stx, Shiga toxin), causantes de graves patologías que pueden ser letales, como Colitis Hemorrágica (CH) y Síndrome Urémico Hemolítico (SUH), para personas con un sistema inmune deficiente o poco desarrollado (niños menores de cinco años y personas de la tercera edad). Esta STEC O157 (Shiga-Toxin producing E. coli) puede contaminar alimentos como productos cárnicos, derivados lácteos y vegetales, encontrándose también en aguas de consumo no tratadas. En la actualidad, la detección y la cuantificación de microrganismos patógenos en diferentes matrices alimenticias representan un gran reto para la industria. La técnica molecular qPCR-SYBR Green, entre otras, es sensible, rápida y específica, permitiendo detectar ADN de STEC del serogrupo O157, en un proceso automatizado que reduce ampliamente los tiempos de los procedimientos, con obtención de resultados en cuestión de horas, con un mínimo de contaminaciones y falsos positivos. En esta investigación se validaron cuatro protocolos de qPCR-SYBR Green para la detección específica de los genes rfbE (dos secuencias de oligonucleótidos), stx1 y sxt2 expresados por E. coli del serogrupo O157 (ATCC 43895), en muestras de carne molida bovina contaminada de forma artificial. Los parámetros de validación desarrollados fueron la selectividad, la sensibilidad y la robustez. Además, se hizo una comparación entre la qPCR-SYBR Green y otros métodos tradicionales como los gold standar, para determinar la confiabilidad de los protocolos. Las qPCR desarrolladas presentaron eficiencias entre 77 % y 97 % y una elevada linealidad (R2 0,99). Los límites de corte para cada secuencia de primers fueron: 3,1667 x 10-2 ng µL-1 para rfbE (primers rfbE y O157); 1,7228 x 10-3 ng µL-1 para stx1 y 3,5185 x 10-3 ng µL-1 para stx2. Tanto la inclusividad y la exclusividad fueron del 100 %, así como la precisión analítica, valor predictivo positivo y negativo. Además, fueron procesos bastante robustos. En la matriz contaminada se logró detectar hasta 4 UFC mL-1. Por los resultados obtenidos, los protocolos de qPCR-SYBR Green podrían implementarse para rastrear la presencia de E. coli O157 en el análisis rutinario de carne molida bovina, o como una prueba diagnóstica sencilla, rápida, altamente sensible y específica. (Tomado de la fuente)spa
dc.description.abstractEscherichia coli from serogroup O157 belongs to the enterohemorrhagic pathotype, the most virulent of E. coli, because in addition to producing endotoxins, it releases two exotoxins known as Shiga toxins, Stx1 and Stx2 (Stx, Shiga toxin), causing serious pathologies that can be lethal, such as Hemorrhagic Colitis (CH) and Hemolytic Uremic Syndrome (HUS), for people with a poor or poorly developed immune system (children under five and the elderly). This STEC (Shiga-Toxin producing E. coli) O157 can contaminate foods such as meat products, dairy products, vegetables, and is also found in untreated drinking water. Currently, the detection and quantification of pathogenic microorganisms in different food matrices represents a great challenge for the industry; the qPCR-SYBR Green molecular technique, among others, is sensitive, fast and specific, allowing the detection of STEC DNA from serogroup O157, in an automated process that greatly reduces procedure times, obtaining results in a matter of hours, with a minimum of contaminations and false positives. In this investigation, four qPCR-SYBR Green protocols were validated for the specific detection of the rfbE (two oligonucleotide sequences), stx1 and sxt2 genes expressed by E. coli from serogroup O157 (ATCC 43895), in samples of contaminated ground beef artificially. The validation parameters developed were selectivity, sensitivity and robustness. Also, a comparison was made between the qPCR-SYBR Green and other traditional methods such as the gold standard, to determine the reliability of the protocols. The developed qPCRs presented efficiencies between 77% and 97% and high linearity (R2 0.99). The cutoff limits for each sequence of primers were: 3.1667 x 10-2 ng µL-1 for rfbE (primers rfbE and O157); 1.7228 x 10-3 ng µL-1 for stx1 and 3.5185 x 10-3 ng µL-1 for stx2. Both inclusivity and exclusivity were 100%, as well as analytical precision, positive and negative predictive value. They were also quite robust processes. Up to 4 CFU mL-1 were detected in the contaminated matrix. Based on the results obtained, the qPCR-SYBR Green protocols could be implemented to track the presence of E. coli O157 in the routine analysis of bovine ground beef, or as a simple, rapid, highly sensitive and specific diagnostic test. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Químicaspa
dc.description.researchareaBioquímica, Biología Molecularspa
dc.format.extent160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79776
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de ciencias naturalesspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAbdulmawjood, A., Bülte, M., Cook, N., Roth, S., Schönenbrücher, H., & Hoorfar, J. (2003). Toward an international standard for PCR-based detection of Escherichia coli O157: Part 1. Assay development and multi-center validation. Journal of Microbiological Methods, 55(3), 775–786. https://doi.org/https://doi.org/10.1016/j.mimet.2003.08.012spa
dc.relation.referencesAcuña, P., Florentín, M., Rojas, N., Rodríguez, F., & Guillén, R. (2019). Estandarización de una técnica de PCR múltiple para la detección de los serogrupos O157, O104 y “big six” de Escherichia coli productora de la toxina Shiga (STEC). Memorias Del Instituto de Investigaciones En Ciencias de La Salud, 17 (2), 71–76.spa
dc.relation.referencesAguilera, P., Ruiz-Tachiquín, M.-E., Rocha, M., Pineda, B., & Chanez-Cardenas, M. (2014). PCR en tiempo real. Recopilado en: Herramientas moleculares aplicadas en ecología: aspectos teórico prácticos. 175-201. México.spa
dc.relation.referencesAllison, H. E., Sergeant, M. J., James, C. E., Saunders, J. R., Smith, D. L., Sharp, R. J., … McCarthy, A. J. (2003). Immunity Profiles of Wild-Type and Recombinant Shiga-Like Toxin-Encoding Bacteriophages and Characterization of Novel Double Lysogens. Infection and Immunity, 71(6), 3409–3418. https://doi.org/10.1128/IAI.71.6.3409-3418.2003spa
dc.relation.referencesAmani, J., Ahmadpour, A., Imani Fooladi, A. A., & Nazarian, S. (2015). Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA. The Brazilian Journal of Infectious Diseases : An Official Publication of the Brazilian Society of Infectious Diseases, 19(3), 278–284. https://doi.org/10.1016/j.bjid.2015.02.008spa
dc.relation.referencesAOAC. Coliform group and Escherichia coli in tree nut meats microbiological method, offical Method 966.24. 18 ed. Official methods of analysis of AOAC International.spa
dc.relation.referencesAU - Jiang, M., AU - Zhang, H., & AU - Pfeifer, B. A. (2013). The Logic, Experimental Steps, and Potential of Heterologous Natural Product Biosynthesis Featuring the Complex Antibiotic Erythromycin A Produced Through E. coli. JoVE, (71), e4346. https://doi.org/doi:10.3791/4346spa
dc.relation.referencesBaker, C. A., Rubinelli, P. M., Park, S. H., Carbonero, F., & Ricke, S. C. (2016). Shiga toxin-producing Escherichia coli in food: Incidence, ecology, and detection strategies. Food Control, 59, 407–419. https://doi.org/10.1016/j.foodcont.2015.06.011spa
dc.relation.referencesBalakrishnan, B., Barizuddin, S., Wuliji, T., & El-Dweik, M. (2016). A rapid and highly specific immunofluorescence method to detect Escherichia coli O157: H7 in infected meat samples. International Journal of Food Microbiology, 231, 54–62. https://doi.org/10.1016/j.ijfoodmicro.2016.05.017spa
dc.relation.referencesBergan, J., Dyve Lingelem, A. B., Simm, R., Skotland, T., & Sandvig, K. (2012). Shiga toxins. Toxicon, 60(6), 1085–1107. https://doi.org/https://doi.org/10.1016/j.toxicon.2012.07.016spa
dc.relation.referencesBolívar Zapata, F., Arias Ortiz, C. F., Ascacio Martínez, J. A., Barrera Saldaña, H. A., Bolívar Zapata, F. G., Bosch Guha, P., … Viniegra González, G. (2004). Fundamentos y casos exitosos de la biotecnología moderna.spa
dc.relation.referencesBrandal, L. T., Wester, A. L., Lange, H., Lobersli, I., Lindstedt, B. A., Vold, L., & Kapperud, G. (2015). Shiga toxin-producing escherichia coli infections in Norway, 1992-2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infectious Diseases, 15(1), 324–326. https://doi.org/10.1186/s12879-015-1017-6spa
dc.relation.referencesBroeders, S., Huber, I., Grohmann, L., Berben, G., Taverniers, I., Mazzara, M., … Morisset, D. (2014). Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science and Technology, Vol. 37. https://doi.org/10.1016/j.tifs.2014.03.008spa
dc.relation.referencesBrusa, V. (2015). Desarrollo y validación intralaboratorio de una metodología para la detección y aislamiento de escherichia coli productor de toxina shiga en carne bovina molida. desarrollo de estrategias de control. Universidad de la Plata. Argentina.spa
dc.relation.referencesBrusa, V., Aliverti, V., Aliverti, F., Ortega, E. E., de la Torre, J. H., Linares, L. H., … Leotta, G. A. (2012). Shiga toxin-producing Escherichia coli in beef retail markets from Argentina. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2012.00171spa
dc.relation.referencesBrusa, V., Galli, L., Linares, L. H., Ortega, E. E., Lirón, J. P., & Leotta, G. A. (2015). Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat. Journal of Microbiological Methods, 119, 10–17. https://doi.org/http://doi.org/10.1016/j.mimet.2015.09.013spa
dc.relation.referencesBryan, A., Youngster, I., & McAdam, A. J. (2015). Shiga Toxin Producing Escherichia coli. Clinics in Laboratory Medicine, 35(2), 247–272. https://doi.org/https://doi.org/10.1016/j.cll.2015.02.004spa
dc.relation.referencesBustin, S., & Huggett, J. (2017). qPCR primer design revisited. Biomolecular Detection and Quantification, 14, 19–28. https://doi.org/https://doi.org/10.1016/j.bdq.2017.11.001spa
dc.relation.referencesCamacho, A., Giles, M., Ortegón, A., Palao, M., Serrano, B., & Velázquez, O. (2009). Método para la determinación de bacterias coliformes, coliformes fecales y Escherichia coli por la técnica de diluciones en tubo múltiple (Número más Probable o NMP). México: Facultad de Química, UNAM.spa
dc.relation.referencesChan, Y. S., & Ng, T. B. (2016). Shiga toxins: from structure and mechanism to applications. Applied Microbiology and Biotechnology, Vol. 100. https://doi.org/10.1007/s00253-015-7236-3spa
dc.relation.referencesChart, H. (2000). VTEC enteropathogenicity. Journal of Applied Microbiology, 88(S1), 12S--23S. https://doi.org/10.1111/j.1365-2672.2000.tb05328.xspa
dc.relation.referencesCherla, R. P., Lee, S.-Y., & Tesh, V. L. (2003). Shiga toxins and apoptosis. FEMS Microbiology Letters, 228(2), 159–166. Retrieved from http://dx.doi.org/10.1016/S0378-1097(03)00761-4spa
dc.relation.referencesDean-Nystrom, E. A., Bosworth, B. T., Cray, W. C., & Moon, H. W. (1997). Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infection and Immunity, 65(5), 1842–1848. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC175228/spa
dc.relation.referencesDeisingh, A. K., & Thompson, M. (2004). Strategies for the detection of Escherichia coli O157:H7 in foods. Journal of Applied Microbiology, 96(3), 419–429. https://doi.org/10.1111/j.1365-2672.2003.02170.xspa
dc.relation.referencesElízaquivel Bárcenas, P. (2009). Detección y cuantificación de Escherichia coli 0157:H7 Listeria monocytogenes, Salmonella spp y Staphylococcus aureus en alimentos vegetales mediante PCR a tiempo real. Universidad de Valencia. España. Retrieved from http://roderic.uv.es/handle/10550/38154spa
dc.relation.referencesElizaquível, P., Sánchez, G., & Aznar, R. (2012). Quantitative detection of viable foodborne E. coli O157:H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25(2), 704–708. https://doi.org/10.1016/j.foodcont.2011.12.003spa
dc.relation.referencesFarfán-García, A. E., Ariza-Rojas, S. C., Vargas-Cárdenas, F. A., & Vargas-Remolina, L. V. (2016). Mecanismos de virulencia de Escherichia coli enteropatógena. Revista Chilena de Infectología, 33(4), 438–450. https://doi.org/10.4067/S0716-10182016000400009spa
dc.relation.referencesFarrokh, C., Jordan, K., Auvray, F., Glass, K., Oppegaard, H., Raynaud, S., … Cerf, O. (2013). Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. International Journal of Food Microbiology, 162(2), 190–212. https://doi.org/10.1016/j.ijfoodmicro.2012.08.008spa
dc.relation.referencesFerreira, M. R. A., Filho, E. G. F., Pinto, J. F. N., Dias, M., & Moreira, C. N. (2014). Isolation, prevalence, and risk factors for infection by shiga toxin-producing Escherichia coli (STEC) in dairy cattle. Tropical Animal Health and Production. https://doi.org/10.1007/s11250-014-0541-5spa
dc.relation.referencesFlórez, Mourenza, Á. (2013). Utilización de microorganismos para la producción de energías renovables. Universidad de la Coruña. Facultad de ciencias. Españaspa
dc.relation.referencesForootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L., & Kubista, M. (2017). Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomolecular Detection and Quantification, 12(Supplement C), 1–6. https://doi.org/https://doi.org/10.1016/j.bdq.2017.04.001spa
dc.relation.referencesFranco Anaya, P. A., Ramírez Medina, L. M., Orozco Ugarriza, M. E., & López Gutiérrez, L. A. (2013). Determination of Escherichia Coli and identification of the o157:h7 serotype in pork’s meat commercialized in the most important supermarkets in Cartagena, Colombia. Revista Lasallista de Investigación, 10(1), 91–100. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-44492013000100009&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesFrankel, G., Phillips, A. D., Trabulsi, L. R., Knutton, S., Dougan, G., & Matthews, S. (2001). Intimin and the host cell - Is it bound to end in Tir(s)? Trends in Microbiology, 9(5), 214–218. https://doi.org/10.1016/S0966-842X(01)02016-9spa
dc.relation.referencesFratamico, P. M., DebRoy, C., Liu, Y., Needleman, D. S., Baranzoni, G. M., & Feng, P. (2016). Advances in molecular serotyping and subtyping of Escherichia coli. Frontiers in Microbiology, Vol. 7. https://doi.org/10.3389/fmicb.2016.00644spa
dc.relation.referencesGaytán, M. O., Martínez-Santos, V. I., Soto, E., & González-Pedrajo, B. (2016). Type Three Secretion System in Attaching and Effacing Pathogens. Frontiers in Cellular and Infection Microbiology, 6. https://doi.org/10.3389/fcimb.2016.00129spa
dc.relation.referencesGe, B. L., Zhao, S. H., Hall, R., & Meng, J. H. (2002). A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli. Microbes and Infection, 4(3), 285–290. https://doi.org/10.1016/s1286-4579(02)01540-xspa
dc.relation.referencesGohar, A., Abdeltawab, N. F., Fahmy, A., & Amin, M. A. (2016). Development of safe, effective and immunogenic vaccine candidate for diarrheagenic Escherichia coli main pathotypes in a mouse model. BMC Research Notes, 9(1), 80. https://doi.org/10.1186/s13104-016-1891-zspa
dc.relation.referencesGoji, N., Mathews, A., Huszczynski, G., Laing, C. R., Gannon, V. P. J., Graham, M. R., & Amoako, K. K. (2015). A new pyrosequencing assay for rapid detection and genotyping of Shiga toxin, intimin and O157-specific rfbE genes of Escherichia coli. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2014.12.003spa
dc.relation.referencesGomes, T. A. T., Elias, W. P., Scaletsky, I. C. A., Guth, B. E. C., Rodrigues, J. F., Piazza, R. M. F., … Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology, 47(Suppl 1), 3–30. https://doi.org/10.1016/j.bjm.2016.10.015spa
dc.relation.referencesGracias, K. S., & McKillip, J. L. (2004). A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian Journal of Microbiology, 50(11), 883–890. https://doi.org/10.1139/w04-080spa
dc.relation.referencesGyles, C. L. (2007). Shiga toxin-producing Escherichia coli: An overview. Journal of Animal Science, 85, E45–E62. https://doi.org/10.2527/jas.2006-508spa
dc.relation.referencesHannaoui Rodríguez, E. J., Villalobos, L. B., & Martínez Nazaret, R. E. (2009). Escherichia coli shigatoxigénica: Patogénesis, diagnóstico y tratamiento. Revista de La Sociedad Venezolana de Microbiología, 29(1), 13–20. Retrieved from http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1315-25562009000100004&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesHeid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. PCR Methods & Applications. https://doi.org/10.1101/gr.6.10.986spa
dc.relation.referencesHoffman, M. A., Menge, C., Casey, T. A., Laegreid, W., Bosworth, B. T., & Dean-Nystrom, E. A. (2006). Bovine Immune Response to Shiga-Toxigenic Escherichia coli O157:H7. Clinical and Vaccine Immunology, 13(12), 1322–1327. https://doi.org/10.1128/CVI.00205-06spa
dc.relation.referencesHu, J., Wang, B., Fang, X., Means, W. J., McCormick, R. J., Gomelsky, M., & Zhu, M. J. (2013). C-di-GMP signaling regulates E. coli O157:H7 adhesion to colonic epithelium. Veterinary Microbiology. https://doi.org/10.1016/j.vetmic.2013.02.023spa
dc.relation.referencesHunt, J. M. (2010). Shiga Toxin–Producing Escherichia coli (STEC). Clinics in Laboratory Medicine, 30(1), 21–45. https://doi.org/10.1016/j.cll.2009.11.001spa
dc.relation.referencesHussein, H. S., & Bollinger, L. M. (2005). Prevalence of Shiga toxin-producing Escherichia coli in beef. Meat Science, 71(4), 676–689. https://doi.org/http://doi.org/10.1016/j.meatsci.2005.05.012spa
dc.relation.referencesIguchi, A., Thomson, N. R., Ogura, Y., Saunders, D., Ooka, T., Henderson, I. R., … Frankel, G. (2009). Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. Journal of Bacteriology, 91(1), 347–354. https://doi.org/10.1128/JB.01238-08spa
dc.relation.referencesISO 16140-2. Microbiology of the food chain - Method validation - Part 2: Protocol for the validation of alternative (proprietary) methods against a reference method. , (2016).spa
dc.relation.referencesJensen, B. H., Olsen, K. E. P., Struve, C., Krogfelt, K. A., & Petersen, A. M. (2014). Epidemiology and clinical manifestations of enteroaggregative escherichia coli. Clinical Microbiology Reviews, 27(3). https://doi.org/10.1128/CMR.00112-13spa
dc.relation.referencesJohannes, L., & Romer, W. (2010). Shiga toxins from cell biology to biomedical applications. Nat Rev Micro, 8(2), 105–116. Retrieved from http://dx.doi.org/10.1038/nrmicro2279spa
dc.relation.referencesJothikumar, N., & Griffiths, M. W. (2002). Rapid detection of Escherichia coli O157:H7 with multiplex real-time PCR assays. Appl Environ Microbiol, 68(6), 3169–3171. https://doi.org/10.1128/AEM.68.6.3169spa
dc.relation.referencesJure, M. A., Condorí, M. S., Terrazzino, G. P., Catalán, M. G., Campo, A. L., Zolezzi, G., … Castillo, M. (2015). Aislamiento y caracterización de Escherichia coli O157 en productos cárnicos bovinos y medias reses en la provincia de Tucumán. Revista Argentina de Microbiologia, 47(2), 125–131. https://doi.org/10.1016/j.ram.2015.03.006spa
dc.relation.referencesKagkli, D.-M., Weber, T. P., Van den Bulcke, M., Folloni, S., Tozzoli, R., Morabito, S., … Van den Eede, G. (2011). Application of the Modular Approach to an In-House Validation Study of Real-Time PCR Methods for the Detection and Serogroup Determination of Verocytotoxigenic. Applied and Environmental Microbiology, 77(19), 6954–6963. https://doi.org/10.1128/AEM.05357-11spa
dc.relation.referencesKargar, M., & Homayoon, M. (2015). Prevalence of shiga toxins (stx1, stx2), eaeA and hly genes of Escherichia coli O157:H7 strains among children with acute gastroenteritis in southern of Iran. Asian Pacific Journal of Tropical Medicine, 8(1), 24–28. https://doi.org/10.1016/S1995-7645(14)60182-6spa
dc.relation.referencesKarmali, M. A., Gannon, V., & Sargeant, J. M. (2010). Verocytotoxin-producing Escherichia coli (VTEC). Veterinary Microbiology, 140(3–4), 360–370. https://doi.org/http://doi.org/10.1016/j.vetmic.2009.04.011spa
dc.relation.referencesKavaliauskiene, S., Dyve Lingelem, A. B., Skotland, T., & Sandvig, K. (2017). Protection against Shiga Toxins. Toxins, 9(2), 44. https://doi.org/10.3390/toxins9020044spa
dc.relation.referencesKobayashi, N., Lee, K., Yamazaki, A., Saito, S., Furukawa, I., Kono, T., … Hara-Kudo, Y. (2013). Virulence Gene Profiles and Population Genetic Analysis for Exploration of Pathogenic Serogroups of Shiga Toxin-Producing Escherichia coli. Journal of Clinical Microbiology, 51(12), 4022–4028. https://doi.org/10.1128/JCM.01598-13spa
dc.relation.referencesKralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.00108spa
dc.relation.referencesKrüger, A., & Lucchesi, P. M. A. (2015). Shiga toxins and stx phages: highly diverse entities. Microbiology, 161(3), 451–462. Retrieved from http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000003spa
dc.relation.referencesLaw, D. (2000). Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. Journal of Applied Microbiology, 88(5), 729–745. https://doi.org/10.1046/j.1365-2672.2000.01031.xspa
dc.relation.referencesLeotta, G. A., Chinen, I., Epszteyn, S., Miliwebsky, E., Melamed, I. C., Motter, M., … Rivas, M. (2005). Validación de una técnica de PCR múltiple para la detección de Escherichia coli productor de toxina Shiga. Revista Argentina de Microbiología, 37(1), 1–10.spa
dc.relation.referencesLim, J. Y., Yoon, J., & Hovde, C. J. (2010). A brief overview of Escherichia coli O157:H7 and its plasmid O157. Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.0908.08007spa
dc.relation.referencesLopera-Barrero, N. M., Povh, J. A., Ribeiro, R. P., Gomes, P. C., Jacometo, C. B., & Silva Lopes, T. da. (2008). Comparación de protocolos de extracción de ADN con muestras de aleta y larva de peces: extracción modifi cada con cloruro de sodio. Ciencia e Investigación Agraria, 35, 77–86. Retrieved from https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-16202008000100008&nrm=isospa
dc.relation.referencesLópez Antuñano, F. J., & Mota, J. (2000). Desarrollo de agentes inmunizantes contra el dengue TT - Development of immunizing agents against dengue. Revista Panamericana de Salud Pública, 7(5), 285–292. https://doi.org/10.1590/S1020-49892000000500001spa
dc.relation.referencesLow, J. C., McKendrick, I. J., McKechnie, C., Fenlon, D., Naylor, S. W., Currie, C., … Gally, D. L. (2005). Rectal Carriage of Enterohemorrhagic Escherichia coli O157 in Slaughtered Cattle. Applied and Environmental Microbiology, 71(1), 93–97. https://doi.org/10.1128/AEM.71.1.93-97.2005spa
dc.relation.referencesMainil, J. (1999). Shiga/Verocytotoxins and Shiga/ verotoxigenic Escherichia coli in animals. In Veterinary research (Vol. 30).spa
dc.relation.referencesMainil, J. (2013). Escherichia coli virulence factors. Veterinary Immunology and Immunopathology, 152(1–2). https://doi.org/10.1016/j.vetimm.2012.09.032spa
dc.relation.referencesMartínez Manrique, C. E. (2006). Modulación de la respuesta inmune: tendencias actuales. Revista Cubana de Investigaciones Biomédicas, 25. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002006000400009&lng=es&tlng=esspa
dc.relation.referencesMead, P. S., & Griffin, P. M. (1998). Escherichia coli O157 : H7. The Lancet, 352, 1207–1212. https://doi.org/10.1016/S0140-6736(98)01267-7spa
dc.relation.referencesMelton-Celsa, A., Mohawk, K., Teel, L., & O’Brien, A. (2012). Pathogenesis of Shiga-toxin producing Escherichia coli. Current Topics in Microbiology and Immunology. https://doi.org/10.1007/82_2011_176spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo rural, & Ministerio de Salud y Protección Social. (2015). Resolución número 00002690 de 2015. (0), 4.spa
dc.relation.referencesMoxley, R. A. (2004). Escherichia coli O157:H7: an update on intestinal colonization and virulence mechanisms. Animal Health Research Reviews, 5(1), 15–33. https://doi.org/DOI: 10.1079/AHRR200463spa
dc.relation.referencesNewell, D. G., & La Ragione, R. M. (2018). Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): Where are we now regarding diagnostics and control strategies? Transboundary and Emerging Diseases, 65. https://doi.org/10.1111/tbed.12789spa
dc.relation.referencesNguyen, Y., & Sperandio, V. (2012). Enterohemorrhagic E. coli (EHEC) pathogenesis. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2012.00090spa
dc.relation.referencesNTC-ISO/IEC 17025. Requisitos generales para la competencia de los laboratorios de ensayo y calibración. , (2017).spa
dc.relation.referencesNyambe, S., Burgess, C., Whyte, P., & Bolton, D. (2017). An investigation of vtx2 bacteriophage transduction to different Escherichia coli patho-groups in food matrices and nutrient broth. Food Microbiology, 68, 1–6. https://doi.org/https://doi.org/10.1016/j.fm.2017.06.004spa
dc.relation.referencesO’brien, A. D., Tesh, V. L., Donohue-Rolfe, A., Jackson, M. P., Olsnes, S., Sandvig, K., … Keusch, G. . (1992). Shiga Toxin: Biochemistry, Genetics, Mode of Action, and Role in Pathogenesis. Sansonetti P.J. (Eds) Pathogenesis of Shigellosis. Current Topics in Microbiology and Immunology, 180, 65–94. https://doi.org/https://doi.org/10.1007/978-3-642-77238-2_4spa
dc.relation.referencesOchoa, T. J., Mercado, E. H., Durand, D., Rivera, F. P., Mosquito, S., Contreras, C., … Ruiz, J. (2011). Frecuencia y patotipos de Escherichia coli diarrogénica en niños peruanos con y sin diarrea. Revista Peruana de Medicina Experimental y Salud Publica. https://doi.org/10.1590/S1726-46342011000100003spa
dc.relation.referencesOrganización Mundial de Sanidad Animal, OIE. (2018). Escherichia Coli Verocitotoxigénica. Recopilado en Manual de la pruebas de diagnóstico y de las vacunas para los animales terrestres, (pp. 1–12), 27ª ed. https://www.oie.int/es/que-hacemos/normas/codigos-y-manuales/acceso-en-linea-al-manual-terrestre/spa
dc.relation.referencesOmisakin, F., MacRae, M., Ogden, I. D., & Strachan, N. J. C. (2003). Concentration and Prevalence of Escherichia coli O157 in Cattle Feces at Slaughter. Applied and Environmental Microbiology, 69(5), 2444–2447. https://doi.org/10.1128/AEM.69.5.2444-2447.2003spa
dc.relation.referencesOSEK, J., & DACKO, J. (2001). Development of a PCR-Based Method for Specific Identification of Genotypic Markers of Shiga Toxin-Producing Escherichia coli Strains. Journal of Veterinary Medicine, Series B, 48(Pulawy, Poland), 771–778. https://doi.org/https://doi.org/10.1046/j.1439-0450.2001.00508.xspa
dc.relation.referencesPage, A. V, & Liles, W. C. (2013). Enterohemorrhagic Escherichia coli Infections and the Hemolytic-Uremic Syndrome. Medical Clinics of North America, 97(4), 681–695. https://doi.org/https://doi.org/10.1016/j.mcna.2013.04.001spa
dc.relation.referencesPalomino-Camargo, C., & González-Muñoz, Y. (2002). Técnicas moleculares para la detección e identificación de patógenos en alimentos: ventajas y limitaciones. Revista Peruana de Medicina Experimental y Salud Pública, 31(3), 535–546. Retrieved from http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S1726-46342014000300020&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesPanigatti, M. C., Griffa, C., Boglione, R., Gentinetta, F., & Cassina, D. (2012). USO DE ESCHERICHIA COLI PARA BIORREMEDIACIÓN DE EFLUENTES CONTAMINADOS POR CROMO (VI). Avances en Ciencias e Ingeniería, 3(2), 11–24. Retrieved from http://www.redalyc.org/articulo.oa?id=323627686002spa
dc.relation.referencesPatiño, P. J., & López, M. T. (2006). Replicación del ADN. In F. E. Biogénesis (Ed.), Biología de la célula (pp. 119–132).spa
dc.relation.referencesPaton, J. C., & Paton, A. W. (1998). Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia coli Infections. Clinical Microbiology Reviews, 11(3), 450–479. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC88891/spa
dc.relation.referencesPennington, H. (2010). Escherichia coli O157. The Lancet, 376(9750), 1428–1435. https://doi.org/https://doi.org/10.1016/S0140-6736(10)60963-4spa
dc.relation.referencesPiedrahita, D., Márquez, T., & Máttar, S. (2001). DETECCIÓN DE Escherichia coli 0157: H7 EN POBLACIONES PORCINAS, CANAL BOVINA Y PRODUCTOS CÁRNICOS EN EL DEPARTAMENTO DE CÓRDOBA. Revista MVZ Córdoba, 6, (2), 2001, 119-126.spa
dc.relation.referencesPolito, M. G., & Kirsztajn, G. M. (2010). Microangiopatias trombóticas: púrpura trombocitopênica trombótica e síndrome hemolítico-urêmica. Jornal Brasileiro de Nefrologia, 32(3), 303–315. https://doi.org/10.1590/S0101-28002010000300013spa
dc.relation.referencesPoolman, J. T. (2017). Escherichia coli. In International Encyclopedia of Public Health (pp. 585–593). https://doi.org/10.1016/B978-0-12-803678-5.00504-Xspa
dc.relation.referencesPrado J, V., & Cavagnaro S.M, F. (2008). Síndrome hemolítico urémico asociado a infección intestinal por Escherichia coli productora de shigatoxina (STEC) en pacientes chilenos: aspectos clínicos y epidemiológicos. Revista Chilena de Infectología, 25(6), 435–444. https://doi.org/10.4067/S0716-10182008000600003spa
dc.relation.referencesPrice, S. B., Wright, J. C., DeGraves, F. J., Castanie-Cornet, M.-P., & Foster, J. W. (2004). Acid Resistance Systems Required for Survival of Escherichia coli O157:H7 in the Bovine Gastrointestinal Tract and in Apple Cider Are Different. Applied and Environmental Microbiology, 70(8), 4792–4799. https://doi.org/10.1128/AEM.70.8.4792-4799.2004spa
dc.relation.referencesQUIAGEN. (2016). QIAamp DNA Mini Blood Mini Handbook - EN. Retrieved from https://www.qiagen.com/ie/resources/resourcedetail?id=62a200d6-faf4-469b-b50f-2b59cf738962&lang=enspa
dc.relation.referencesRiemann, H. P., & Cliver, D. O. (1998). Escherichia Coli O157:H7. Veterinary Clinics of North America: Food Animal Practice, 14(1), 41–48. https://doi.org/10.1016/S0749-0720(15)30278-4spa
dc.relation.referencesRivas, L., Mellor, G. E., Gobius, K., & Fegan, N. (2015). Detection and Typing Strategies for Pathogenic Escherichia coli (R. W. Hartel, Ed.). https://doi.org/10.1007/978-1-4939-2346-5spa
dc.relation.referencesRivas, M., Leotta, G., & Chinen, I. (2008). Manual de Procedimientos “Detección de STEC 0157 en alimentos.” Instituto Nacional de Enfermedades Infecciosas, 1–10.spa
dc.relation.referencesRodríguez, L., Torres, V., Martínez, Jay, O., Noda, A. C., & Herrera, M. (2011). Modelos para estimar la dinámica de crecimiento de Pennisetum purpureum vc. Cuba CT-169. Revista Cubana de Ciencia Agrícola, 45(4), 349–354. Retrieved from https://biblat.unam.mx/es/revista/revista-cubana-de-ciencia-agricola/articulo/modelos-para-estimar-la-dinamica-de-crecimiento-de-pennisetum-purpureum-vc-cuba-ct-169spa
dc.relation.referencesRodríguez, M. &, Rodríguez, W. (2006). Métodos físico-químicos en Biotecnología (2006-II). Instituto de Biotecnología. Universidad Autónoma de México.spa
dc.relation.referencesRoldán, M. L., Chinen, I., Otero, J. L., Miliwebsky, E. S., Alfaro, N., Burns, P., & Rivas, M. (2007). Aislamiento, caracterización y subtipificación de cepas de Escherichia coli O157:H7 a partir de productos cárnicos y leche. Revista Argentina de Microbiologia, 39(2), 113–119.spa
dc.relation.referencesSandvig, K., Lingelem, A. B. D., Skotland, T., & Bergan, J. (2015). 10 - Shiga toxins: properties and action on cells (J. Alouf, D. Ladant, & M. R. B. T.-T. C. S. of B. P. T. (Fourth E. Popoff, Eds.). https://doi.org/https://doi.org/10.1016/B978-0-12-800188-2.00010-0spa
dc.relation.referencesShaikh, N., & Tarr, P. I. (2003). Escherichia coli O157:H7 Shiga Toxin-Encoding Bacteriophages: Integrations, Excisions, Truncations, and Evolutionary Implications. Journal of Bacteriology, 185(21), 6495–6495. https://doi.org/10.1128/JB.185.21.6495.2003spa
dc.relation.referencesSidari, R., & Caridi, A. (2011). Methods for Detecting Enterohaemorrhagic Escherichia Coli in Food. Food Reviews International, 27(2), 134–153. https://doi.org/10.1080/87559129.2010.535232spa
dc.relation.referencesSingh, P., & Mustapha, A. (2015). Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis. International Journal of Food Microbiology, 215, 101–108. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2015.08.022spa
dc.relation.referencesSmith, J. L., Fratamico, P. M., & Gunther, N. W. (2014). Shiga toxin-producing escherichia coli. Advances in Applied Microbiology, 86. https://doi.org/10.1016/B978-0-12-800262-9.00003-2spa
dc.relation.referencesSolano-Flórez, G., Márquez-Cardona, M. del P., & Schuler, I. (2009). Optimización de la extracción de ADN de Passiflora ligularis para el análisis por medio de marcadores moleculares. Universitas Scientiarum, 14(1), 16–22. https://doi.org/https://doi.org/10.11144/javeriana.SC14-1.odlespa
dc.relation.referencesSpano, G., Beneduce, L., Terzi, V., Stanca, A. M., & Massa, S. (2005). Real-time PCR for the detection of Escherichia coli O157:H7 in dairy and cattle wastewater. Letters in Applied Microbiology, 40(3), 164–171. https://doi.org/10.1111/j.1472-765X.2004.01634.xspa
dc.relation.referencesSpitz, M. (2000). VACUNAS DE ADN DESNUDO. Medicina (Buenos Aires), 60, 639–644.spa
dc.relation.referencesStaley, T. E., Jones, E. W., & Corley, L. D. (1969). Attachment and penetration of Escherichia coli into intestinal epithelium of the ileum in newborn pigs. The American Journal of Pathology, 56(3), 371–392. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013587/spa
dc.relation.referencesSun, J., Ji, J., Sun, Y., Abdalhai, M. H., Zhang, Y., & Sun, X. (2015). DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods. Biosensors and Bioelectronics, 70, 239–245. https://doi.org/10.1016/j.bios.2015.03.009spa
dc.relation.referencesSzalo, I. M., Goffaux, F., Pirson, V., Piérard, D., Ball, H., & Mainil, J. (2002). Presence in bovine enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherichia coli of genes encoding for putative adhesins of human EHEC strains. Research in Microbiology, 153(10), 653–658. https://doi.org/https://doi.org/10.1016/S0923-2508(02)01379-7spa
dc.relation.referencesTaminiau, B., Korsak, N., Lemaire, C., Delcenserie, V., & Daube, G. (2014). Validation of real-time PCR for detection of six major pathogens in seafood products. Food Control, 44, 130–137. https://doi.org/https://doi.org/10.1016/j.foodcont.2014.03.031spa
dc.relation.referencesTuttle, J., Gomez, T., Doyle, M. P., Wells, J. G., Zhao, T., Tauxe, R. V, & Griffin, P. M. (1999). Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiology and Infection, 122(2), 185–192. https://doi.org/10.1017/s0950268898001976spa
dc.relation.referencesValat, C., Auvray, F., Forest, K., Métayer, V., Gay, E., Peytavin de Garam, C., … Haenni, M. (2012). Phylogenetic Grouping and Virulence Potential of Extended-Spectrum-β-Lactamase-Producing <span class="named-content genus-species" id="named-content-1">Escherichia coli</span> Strains in Cattle. Applied and Environmental Microbiology, 78(13), 4677 LP – 4682. https://doi.org/10.1128/AEM.00351-12spa
dc.relation.referencesVan Giau, V., Nguyen, T. T., Nguyen, T. K. O., Le, T. T. H., & Nguyen, T. D. (2016). A novel multiplex PCR method for the detection of virulence-associated genes of Escherichia coli O157:H7 in food. 3 Biotech, 6(1), 5. https://doi.org/10.1007/s13205-015-0319-0spa
dc.relation.referencesWalk, S. T., Alm, E. W., Gordon, D. M., Ram, J. L., Toranzos, G. A., Tiedje, J. M., & Whittam, T. S. (2009). Cryptic lineages of the genus Escherichia. Applied and Environmental Microbiology, 75(20), 6534–6544. https://doi.org/10.1128/AEM.01262-09spa
dc.relation.referencesWalpole, R., Myers, R., & Myers, S. (1999). Probabilidad y estadística para ingenieros, 6a ed. (6a ed.). México.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembIndustrias alimenticias
dc.subject.lembAlimentos - Análisis
dc.subject.proposalSTECspa
dc.subject.proposalqPCR- SYBR Greenspa
dc.subject.proposalSUHspa
dc.subject.proposalStx1spa
dc.subject.proposalStx2spa
dc.subject.proposalLímite de cortespa
dc.subject.proposalInclusividadspa
dc.subject.proposalExclusividadspa
dc.subject.proposalCut-off limiteng
dc.subject.proposalExclusivityspa
dc.subject.proposalInclusivityeng
dc.titleValidación intra-laboratorio de la técnica de PCR en tiempo real para detección de Escherichia coli del serogrupo O157 en alimentos.spa
dc.title.translatedIntra-laboratory validation of the real-time PCR technique for detection of Escherichia coli of serogroup O157 in food.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializada
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090443848.2021.pdf
Tamaño:
4.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: