Síntesis y caracterización de nanopartículas de almidón (de mango y maíz) obtenidos por medio de nanoprecipitación para su uso como floculante

dc.contributor.advisorPineda Gomez, Posidia
dc.contributor.authorLondoño Urrea, Silvia Alejandra
dc.contributor.orcidLondoño Urrea, Silvia Alejandra [0000-0001-6858-8240]spa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2024-01-23T14:36:39Z
dc.date.available2024-01-23T14:36:39Z
dc.date.issued2023
dc.descriptionfotografías, graficas, ilustraciones, tablasspa
dc.description.abstractUsando materiales orgánicos considerados como desecho (semilla de mango) es posible hacer uso de estos como materia prima para generar nuevas aplicaciones. El objetivo de este trabajo fue sintetizar nanopartículas de almidón usando como fuente el maíz y la almendra de la semilla de mango, considerada un desecho agrícola, con el fin de estudiar sus características y proponer una aplicación ambiental. Se empleó el método químico nanoprecipitación para la síntesis de las nanopartículas. La investigación se realizó en varias etapas, en donde se extrajo el almidón de las fuentes botánicas, se estudiaron sus características morfológicas, estructurales y térmicas para conocer su estado inicial. Luego se procedió a sintetizar las nanopartículas con el método químico nanoprecipitación. Las características del almidón y de sus nanopartículas fueron evaluadas aplicando técnicas como microscopia electrónica de barrido de alta resolución para la determinación de la morfología, barrido dinámico de luz para determinar el tamaño de aglomerados de las nanopartículas, difracción de rayos-X, para determinar la estructura de los almidones y el cambio cuando son nanopartículas, análisis termogravimétrico para determinar las propiedades térmicas del almidón y sus nanopartículas, y calorimetría diferencial de barrido para determinar la temperatura de gelatinización de los almidones nativos y espectroscopia infrarroja por transformada de Fourier para la determinación de los grupos funcionales en almidones nativos, modificados y sus nanopartículas. Por último, se exploró si estas nanopartículas sirven para el tratamiento de aguas como floculante. Para este fin, el almidón fue acetilado para permitir su mejor interacción con el agua fría. Se desarrolló una prueba de jarras para determinar la dosi del floculante y se midió pH, turbidez, conductividad eléctrica y color aparente del agua antes y después del tratamiento. Los resultados muestran que se obtuvieron nanopartículas con forma esférica con tamaños variables según la fuente botánica; las nanopartículas de semilla de mango presentan mayor tamaño que las de maíz. Al usar las nanopartículas como floculante, se obtiene una remoción en los parámetros de turbidez y color aparente mayor del 95% mientras que el pH y conductividad no se ven afectados. Las nanopartículas de almidón resultan ser una buena opción al ser usadas como floculante orgánico en el tratamiento de aguas, además de ser obtenidas por un método de bajo costo, fácil operación y usando fuentes de almidón consideradas desecho (Texto tomado de la fuente)spa
dc.description.abstractUsing organic materials considered as waste (mango seed) it is possible to make use of them as raw material to generate new applications. The objective of this work was to synthesize starch nanoparticles using corn and mango seed kernels, considered as agricultural waste, as a source, in order to study their characteristics and propose an environmental application. The chemical nanoprecipitation method was used for the synthesis of the nanoparticles. The research was carried out in several stages, where the starch was extracted from the botanical sources, its morphological, structural and thermal characteristics were studied to know its initial state. Then the nanoparticles were synthesized using the chemical nanoprecipitation method. The characteristics of starch and its nanoparticles were evaluated by applying techniques such as high-resolution scanning electron microscopy to determine the morphology, dynamic light scanning to determine the agglomerate size of the nanoparticles, X-ray diffraction to determine the structure of the starches and the change when they are nanoparticles, thermogravimetric analysis to determine the thermal properties of starch and its nanoparticles, differential scanning calorimetry to determine the gelatinization temperature of native starches, and Fourier transform infrared spectroscopy to determine the functional groups in native and modified starches and their nanoparticles. Finally, it was explored whether these nanoparticles are useful for water treatment as flocculants. For this purpose, the starch was acetylated to allow its better interaction with cold water. A jar test was developed to determine the dosage of the flocculant and pH, turbidity, electrical conductivity and apparent color of the water were measured before and after treatment. The results show that spherical-shaped nanoparticles were obtained with variable sizes depending on the botanical source; mango seed nanoparticles are larger than corn nanoparticles. When using nanoparticles as a flocculant, the turbidity and apparent color parameters were removed by more than 95%, while pH and conductivity were not affected. Starch nanoparticles turn out to be a good option when used as organic flocculant in water treatment, in addition to being obtained by a low-cost method, easy to operate and using starch sources considered as waste.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.methodsFase 1: extracción de los almidones de semilla de mango y maíz Fase 2: síntesis de nanopartículas a traves de método de nanoprecipitación para ambos almidones Fase 3: coagulación/floculación de almidones nativos y sus nanopartículasspa
dc.description.researchareaFísica de alimentosspa
dc.format.extentxviii, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85406
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesAbdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134–1140. https://doi.org/10.1016/j.foodchem.2006.10.017spa
dc.relation.referencesAcevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules, 111, 498–504. https://doi.org/10.1016/j.ijbiomac.2018.01.063spa
dc.relation.referencesAcosta, L. (2006). Estado del arte del tratamiento de aguas por coagulación-floculación. ICIDCA : Sobre Los Derivados de La Caña de Azúcar, 40(2), 10–17.spa
dc.relation.referencesAgi, A., Junin, R., Gbadamosi, A., Abbas, A., Azli, N. B., & Oseh, J. (2019). Influence of nanoprecipitation on crystalline starch nanoparticle formed by ultrasonic assisted weak-acid hydrolysis of cassava starch and the rheology of their solutions. Chemical Engineering and Processing - Process Intensification, 142(June), 107556. https://doi.org/10.1016/j.cep.2019.107556spa
dc.relation.referencesAguilar, M. I., Sáez, J., Lloréns, M., Soler, A., & Ortuño, J. F. (2002). Tratamiento físico-químico de aguas residuales: coagulación-floculación - M. I. Aguilar. https://books.google.com.co/books/about/Tratamiento_físico_químico_de_aguas_re.html?id=8vlQBXPvhAUC&printsec=frontcover&source=kp_read_button&hl=es&redir_esc=y#v=onepage&q&f=falsespa
dc.relation.referencesAlvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Físico-Químico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas. Información Tecnológica, 19(1), 19–28. https://doi.org/10.4067/S0718-07642008000100004spa
dc.relation.referencesAngellier, H., Putaux, J.-L., Molina-Boisseau, S., Dupeyre, D., & Dufresne, A. (2005). Starch Nanocrystal Fillers in an Acrylic Polymer Matrix. Macromolecular Symposia, 221(1), 95–104. https://doi.org/10.1002/masy.200550310spa
dc.relation.referencesArrieta Almario, Á., Jaramillo Muñoz, A., & Palencia Luna, M. (2015). Películas conductoras de almidón de yuca (cassava) como material para un acumulador electroquímico de carga (batería) /Conductive films from cassava starch as material for an electrochemical accumulator (battery). Rev Soc Quím Perú, 81(4).spa
dc.relation.referencesAschenbrenner, E., Bley, K., Koynov, K., Makowski, M., Kappl, M., Landfester, K., & Weiss, C. K. (2013). Using the Polymeric Ouzo Effect for the Preparation of Polysaccharide-Based Nanoparticles. Langmuir, 29(28), 8845–8855. https://doi.org/10.1021/la4017867spa
dc.relation.referencesAyadi, F., Bayer, I. S., Marras, S., & Athanassiou, A. (2016). Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release. Carbohydrate Polymers, 136, 282–291. https://doi.org/10.1016/j.carbpol.2015.09.033spa
dc.relation.referencesBadenhuizen, N. P. (1969). The biogenesis of starch granules in higher plants. Appleton-Century-Crofts. https://cir.nii.ac.jp/crid/1130000795703174144.bib?lang=enspa
dc.relation.referencesBeMiller, J., & Whistler, R. (2009). Starch:Chemistry and technology (Third Edit).spa
dc.relation.referencesBhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? In Journal of Controlled Release (Vol. 235, pp. 337–351). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2016.06.017spa
dc.relation.referencesBilati, U., Allémann, E., & Doelker, E. (2005). Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. European Journal of Pharmaceutical Sciences, 24(1), 67–75. https://doi.org/10.1016/j.ejps.2004.09.011spa
dc.relation.referencesBiliaderis, C. G., Page, C. M., Maurice, T. J., & Juliano, B. O. (1986). Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry, 34(1), 6–14. https://doi.org/10.1021/jf00067a002spa
dc.relation.referencesBressani, R., Breuner, M., & Ortiz, M. A. (1989). Contenido de fibra ácido- y neutro-detergente y de minerales menores en maíz y su tortilla. Arch. Latinoam. Nutr, 382–391spa
dc.relation.referencesCampelo, P. H., Sant’Ana, A. S., & Pedrosa Silva Clerici, M. T. (2020). Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 33, 136–140. https://doi.org/10.1016/j.cofs.2020.04.007spa
dc.relation.referencesChang, Y., Hu, Z., Wang, P., & Zhou, J. (2021). Synthesis, characterization, and flocculation performance of cationic starch nanoparticles. Carbohydrate Polymers, 269. https://doi.org/10.1016/j.carbpol.2021.118337spa
dc.relation.referencesChang, Y., Yan, X., Wang, Q., Ren, L., Tong, J., & Zhou, J. (2017). High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chemistry, 227, 369–375. https://doi.org/10.1016/j.foodchem.2017.01.111spa
dc.relation.referencesChi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W., & Wang, P. (2008). Effect of acetylation on the properties of corn starch. Food Chemistry, 106(3), 923–928. https://doi.org/10.1016/j.foodchem.2007.07.002spa
dc.relation.referencesChin, S. F., Pang, S. C., & Tay, S. H. (2011). Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers, 86(4), 1817–1819. https://doi.org/10.1016/j.carbpol.2011.07.012spa
dc.relation.referencesde Graaf, R. A., Broekroelofs, A., & Janssen, L. P. B. M. (1998). The Acetylation of Starch by Reactive Extrusion. Starch - Stärke, 50(5), 198–205. https://doi.org/10.1002/(SICI)1521-379X(199805)50:5<198::AID-STAR198>3.0.CO;2-spa
dc.relation.referencesDonovan, J. W. (1979). Phase transitions of the starch-water system. Biopolymers, 18(2), 263–275. https://doi.org/10.1002/bip.1979.360180204spa
dc.relation.referencesEbeling, J. M., Rishel, K. L., & Sibrell, P. L. (2005). Screening and evaluation of polymers as flocculation aids for the treatment of aquacultural effluents. Aquacultural Engineering, 33(4), 235–249. https://doi.org/10.1016/j.aquaeng.2005.02.001spa
dc.relation.referencesEl-Naggar, M. E., El-Rafie, M. H., El-sheikh, M. A., El-Feky, G. S., & Hebeish, A. (2015). Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. International Journal of Biological Macromolecules, 81, 718–729. https://doi.org/10.1016/j.ijbiomac.2015.09.005spa
dc.relation.referencesEl-Sheikh, M. A. (2017). New technique in starch nanoparticles synthesis. Carbohydrate Polymers, 176, 214–219. https://doi.org/10.1016/j.carbpol.2017.08.033spa
dc.relation.referencesFAO, F. and A. O. of U. N. (2019). Prospect for global production bananas and tropical fruits 2019-2028. www.fao.orgspa
dc.relation.referencesFarrag, Y., Ide, W., Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2018). Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules, 114, 426–433. https://doi.org/10.1016/j.ijbiomac.2018.03.134spa
dc.relation.referencesFernández Valenciano, A. F., Sánchez Chávez, E., Fernández Valenciano, A. F., & Sánchez Chávez, E. (2017). Estudio de las propiedades fisicoquímicas y calidad nutricional en distintas variedades de frijol consumidas en México. Nova Scientia, 9(18), 133–148. https://doi.org/10.21640/NS.V9I18.763spa
dc.relation.referencesFerraz, C. A., Fontes, R. L. S., Fontes-Sant’Ana, G. C., Calado, V., López, E. O., & Rocha-Leão, M. H. M. (2019). Extraction, Modification, and Chemical, Thermal and Morphological Characterization of Starch From the Agro-Industrial Residue of Mango ( Mangifera indica L ) var. Ubá. Starch - Stärke, 71(1–2), 1800023. https://doi.org/10.1002/star.201800023spa
dc.relation.referencesFerreira, S., Araujo, T., Souza, N., Rodrigues, L., Lisboa, H. M., Pasquali, M., Trindade, G., & Rocha, A. P. (2019). Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. Journal of Agriculture and Food Research, 1, 100012. https://doi.org/10.1016/j.jafr.2019.100012spa
dc.relation.referencesFowomola, M. A. (2010). some nutrients and antinutrients contents of mango (Magnifera indica) seed. African Journal of Food Science, 4(8), 472–476. https://doi.org/10.5897/AJFS.9000268spa
dc.relation.referencesGlaring, M. A., Koch, C. B., & Blennow, A. (2006). Genotype-Specific Spatial Distribution of Starch Molecules in the Starch Granule: A Combined CLSM and SEM Approach. Biomacromolecules, 7(8), 2310–2320. https://doi.org/10.1021/bm060216espa
dc.relation.referencesGong, B., Liu, W., Tan, H., Yu, D., Song, Z., & Lucia, L. A. (2016). Understanding shape and morphology of unusual tubular starch nanocrystals. Carbohydrate Polymers, 151, 666–675. https://doi.org/10.1016/J.CARBPOL.2016.06.010spa
dc.relation.referencesGunaratne, A., & Hoover, R. (2002). Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 49(4), 425–437. https://doi.org/10.1016/S0144-8617(01)00354-Xspa
dc.relation.referencesGutiérrez, G., Morán, D., Marefati, A., Purhagen, J., Rayner, M., & Matos, M. (2020). Synthesis of controlled size starch nanoparticles (SNPs). Carbohydrate Polymers, 250. https://doi.org/10.1016/j.carbpol.2020.116938spa
dc.relation.referencesGutiérrez-Cortez, E., Hernadez-Becerra, E., Londoño-Restrepo, S. M., & Rodriguez-García, M. E. (2021). Physicochemical characterization of Amaranth starch insulated by mechanical separations. International Journal of Biological Macromolecules, 177, 430–436. https://doi.org/10.1016/j.ijbiomac.2021.02.138spa
dc.relation.referencesGuzmán, L., Villabona, Á., Tejada, C., & García, R. (2013). Reducción de la turbidez del agua usando coagulantes naturales: una revisión/ Reduction of water turbidity using natural coagulants: a review. Revista U.D.C.A Actualidad y Divulgación Científica, 16(1), 253–262.spa
dc.relation.referencesHan, J. A., & Lim, S. T. (2004). Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydrate Polymers, 55(2), 193–199. https://doi.org/10.1016/J.CARBPOL.2003.09.006spa
dc.relation.referencesHebeish, A., El-Rafie, M. H., EL-Sheikh, M. A., & El-Naggar, M. E. (2014). Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. Journal of Inorganic and Organometallic Polymers and Materials, 24(3), 515–524. https://doi.org/10.1007/s10904-013-0004-xspa
dc.relation.referencesHedayati, S., Niakousari, M., & Mohsenpour, Z. (2020). Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment. International Journal of Biological Macromolecules, 143, 136–142. https://doi.org/10.1016/J.IJBIOMAC.2019.12.003spa
dc.relation.referencesHerrera, M. E. T. (2015). Evaluación del almidón de papa como floculante para el tratamiento de aguas residuales domésticas. Alimentech, Ciencia y Tecnología Alimentaria, 13(2), 123. https://doi.org/10.24054/16927125.v2.n2.2015.1877spa
dc.relation.referencesHsien-Chin, H. W., And, W. V, & Sarko, A. (1978). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Polymers, 27–40.spa
dc.relation.referencesHu, K., & McClements, D. J. (2015). Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles. Food Hydrocolloids, 44(April), 101–108. https://doi.org/10.1016/j.foodhyd.2014.09.015spa
dc.relation.referencesHwang J., & Kokini I. (1992). Contribution of the side branches to rheological properties of pectins. Carbohydrate Polymers, 19(No.1), 41–50. https://www.sciencedirect.com/science/article/pii/014486179290053Sspa
dc.relation.referencesImberty, A., Buléon, A., Tran, V., & Péerez, S. (1991). Recent Advances in Knowledge of Starch Structure. Starch - Stärke, 43(10), 375–384. https://doi.org/10.1002/star.19910431002spa
dc.relation.referencesIturriaga, L. (2001). Estudio de las propiedades fisicoquímicas de almidón y su relación con la adhesividad de grano de arroz cocido de siete genotipos argentinos.spa
dc.relation.referencesJeevahan, J., & Chandrasekaran, M. (2019). Nanoedible films for food packaging: a review. Journal of Materials Science, 54(19), 12290–12318. https://doi.org/10.1007/s10853-019-03742-yspa
dc.relation.referencesKainuma, K., & French, D. (1971). Nägeli amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers, 10(9), 1673–1680. https://doi.org/10.1002/bip.360100920spa
dc.relation.referencesKaur, J., Kaur, G., Sharma, S., & Jeet, K. (2018). Cereal starch nanoparticles—A prospective food additive: A review. Critical Reviews in Food Science and Nutrition, 58(7), 1097–1107. https://doi.org/10.1080/10408398.2016.1238339spa
dc.relation.referencesKaur, M., Sandhu, K. S., Singh, N., & Lim, S. T. (2011). Amylose content, molecular structure, physicochemical properties and in vitro digestibility of starches from different mung bean (Vigna radiata L.) cultivars. Starch/Staerke, 63(11), 709–716. https://doi.org/10.1002/star.201100053spa
dc.relation.referencesKaur, M., Singh, N., Sandhu, K. S., & Guraya, H. S. (2004). Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of some Indian mango cultivars (Mangifera indica L.). Food Chemistry, 85(1), 131–140. https://doi.org/10.1016/j.foodchem.2003.06.013spa
dc.relation.referencesKempaiah, R., Gurappa, G., Tomar, R., Poletto, M., Luiz, H., Junior, O., Annadurai, V., & Somashekar, R. (2020). FTIR and WAXS studies on six vegetal fibers. Cellulose Chem Technol, 54(3-4), 187–197.spa
dc.relation.referencesKim, H., Han, J., Kweon, D., Park, J., & Lim, S. (2013). Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydrate Polymers, 93(2), 582–588. https://doi.org/10.1016/j.carbpol.2012.12.050spa
dc.relation.referencesKim, H., Park, S. S., & Lim, S. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011spa
dc.relation.referencesKim, H.-Y., Lee, J. H., Kim, J.-Y., Lim, W.-J., & Lim, S.-T. (2012). Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch - Stärke, 64(5), 367–373. https://doi.org/10.1002/star.201100105spa
dc.relation.referencesKittiphoom, S. (2012). Utilization of mango seed. International Food Research Journal, 19(4), 1325–1335.spa
dc.relation.referencesKizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912–3918. https://doi.org/10.1021/jf011652pspa
dc.relation.referencesLaura Acosta-Bastar, A., & Roberto Hernández-Barajas, J. (2021). Dinámica de fluidos computacional del proceso de coagulación/floculación empleando almidón de malanga como floculante para potabilización de aguas. Revista Mesoamericana de Investigación, 1.spa
dc.relation.referencesLaven, P. (2010). Separating diffraction from scattering: the million-dollar challenge. Journal of Nanophotonics, 4(1), 041593. https://doi.org/10.1117/1.3374327spa
dc.relation.referencesLeCorre, D., Bras, J., & Dufresne, A. (2011). Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 13(12), 7193–7208. https://doi.org/10.1007/s11051-011-0634-2spa
dc.relation.referencesLecorre, D., Bras, J., & Dufresne, A. (2012). Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydrate Polymers, 87(1), 658–666. https://doi.org/10.1016/j.carbpol.2011.08.042spa
dc.relation.referencesLiu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., & Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. In Starch/Staerke (Vol. 65, Issues 1–2, pp. 48–60). https://doi.org/10.1002/star.201200198spa
dc.relation.referencesLiu, X., Yu, L., Liu, H., Chen, L., & Li, L. (2009). Thermal decomposition of corn starch with different Amylose/Amylopectin ratios in open and sealed systems. Cereal Chemistry, 86(4), 383–385. https://doi.org/10.1094/CCHEM-86-4-0383spa
dc.relation.referencesLondoño-Restrepo, S. M., Jeronimo-Cruz, R., Millán-Malo, B. M., Rivera-Muñoz, E. M., & Rodriguez-García, M. E. (2019). Effect of the Nano Crystal Size on the X-ray Diffraction Patterns of Biogenic Hydroxyapatite from Human, Bovine, and Porcine Bones. Scientific Reports 2019 9:1, 9(1), 1–12. https://doi.org/10.1038/s41598-019-42269-9spa
dc.relation.referencesLopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., & Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers, 89(9), 761–768. https://doi.org/10.1002/bip.21005spa
dc.relation.referencesLue, J. T. (2001). A review of characterization and physical property studies of metallic nanoparticles. Journal of Physics and Chemistry of Solids, 62(9–10), 1599–1612. https://doi.org/10.1016/S0022-3697(01)00099-3spa
dc.relation.referencesMaaruf, A. G., Che Man, Y. B., Asbi, B. A., Junainah, A. H., & Kennedy, J. F. (2001). Effect of water content on the gelatinisation temperature of sago starch. Carbohydrate Polymers, 46(4), 331–337. https://doi.org/10.1016/S0144-8617(00)00335-0spa
dc.relation.referencesMaherali, N., & Hochedlinger, K. (2008). Guidelines and Techniques for the Generation of Induced Pluripotent Stem Cells. In Cell Stem Cell (Vol. 3, Issue 6, pp. 595–605). https://doi.org/10.1016/j.stem.2008.11.008spa
dc.relation.referencesMantilla Escanlante, D. C., & Guzman, L. (2013). Extracción y modificación de plátano cuatro filos (mussa ABB del subgrupo silver bluggoe) para posible uso en el tratamiento de potabilización de aguas. https://repositorio.unicartagena.edu.co/handle/11227/294spa
dc.relation.referencesMarcó, L., Azario, R., Metzler, C., & García, M. del C. (2004). La turbidez como indicador básico de calidad de aguas potabilizadas a partir de fuentes superficiales. Propuestas a propósito del estudio del sistema de potabilización y distribución en la ciudad de Concepción del Uruguay (Entre Ríos, Argentina). Higiene y Sanidad Ambiental, 4(11), 72–82.spa
dc.relation.referencesMarta, H., Rizki, D. I., Mardawati, E., Djali, M., Mohammad, M., & Cahyana, Y. (2023). Starch Nanoparticles: Preparation, Properties and Applications. In Polymers (Vol. 15, Issue 5). MDPI. https://doi.org/10.3390/polym15051167spa
dc.relation.referencesMartínez Fernández, M. (2019). Sistemas multiparticulares para vectorización de fármacos en el tratamiento de la tuberculosis [Trabajo de grado]. Universidad Complutense.spa
dc.relation.referencesMartínez Rivas, C. J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A., Galindo Rodríguez, S. A., Román, R. Á., Fessi, H., & Elaissari, A. (2017). Nanoprecipitation process: From encapsulation to drug delivery. In International Journal of Pharmaceutics (Vol. 532, Issue 1, pp. 66–81). Elsevier B.V. https://doi.org/10.1016/j.ijpharm.2017.08.064spa
dc.relation.referencesMedina, C., Paredes, A., Rodriguez, M. E., Moreno, M., Camacho, D. B., García, D., & Ojeda, C. (2010). Evaluación de dos métodos de extracción de almidón a partir de cotiledones de mango. Biagro, 67–74. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612010000100009spa
dc.relation.referencesMendoza Perez, R. J., Ronda Balbás, F., & Villanueva Barrero, M. (2015). Efecto del PH y de la proteína de soja sobre propiedades funcionales y de empastado de almidones de maíz,arroz,patata y tapioca. Trabajo fin de máster Curso 2014/15.spa
dc.relation.referencesMinakawa, A. F. K., Faria-Tischer, P. C. S., & Mali, S. (2019). Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chemistry, 283(May 2018), 11–18. https://doi.org/10.1016/j.foodchem.2019.01.015spa
dc.relation.referencesMinisterio de ambiente, vivienda y desarrollo territorial y desarrollo de protección social: Resolución 2115 de 2007, 1 (2007).spa
dc.relation.referencesMishra, S., & Rai, T. (2006). Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids, 20(5), 557–566. https://doi.org/10.1016/j.foodhyd.2005.01.001spa
dc.relation.referencesMontoya, J., Quintero, V. D., & Lucas, J. C. (2014). Evaluación fisicotérmica y reológica de harian y almidón de plátano Dominico Hartón (Musa paradisiaca ABB)/ Thermal and rheological evaluation of flour and starch form banana dominico Harton (Musa paradisiaca ABB). Temas Agrarios, 19(2), 214–233.spa
dc.relation.referencesMorales-Sánchez, E., Cabrera-Ramírez, A. H., Gaytán-Martínez, M., Mendoza-Zuvillaga, A. L., Velázquez, G., Méndez-Montealvo, M. G., & Rodríguez-García, M. E. (2021). Heating-cooling extrusion cycles as a method to improve the physicochemical properties of extruded corn starch. International Journal of Biological Macromolecules, 188, 620–627. https://doi.org/10.1016/j.ijbiomac.2021.07.189spa
dc.relation.referencesMutis González, N. (2019). Estudio de las modificaciones fisicoquímicas originadas por la inclusión de minerales en la matriz del almidón de papa y plátano.spa
dc.relation.referencesMwaurah, P. W., Kumar, S., Kumar, N., Panghal, A., Attkan, A. K., Singh, V. K., & Garg, M. K. (2020). Physicochemical characteristics, bioactive compounds and industrial applications of mango kernel and its products: A review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2421–2446. https://doi.org/10.1111/1541-4337.12598spa
dc.relation.referencesNadeem, M., Imran, M., & Khalique, A. (2016). Promising features of mango (Mangifera indica L.) kernel oil: a review. Journal of Food Science and Technology, 53(5), 2185–2195. https://doi.org/10.1007/s13197-015-2166-8spa
dc.relation.referencesNain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2022). Development of Starch Nanoparticle from Mango Kernel in Comparison with Cereal, Tuber, and Legume Starch Nanoparticles: Characterization and Cytotoxicity. Starch - Stärke, 74(3–4), 1–9. https://doi.org/10.1002/star.202100252spa
dc.relation.referencesOgunsona, E., Ojogbo, E., & Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. European Polymer Journal, 108(August), 570–581. https://doi.org/10.1016/j.eurpolymj.2018.09.039spa
dc.relation.referencesOrtega, I. S. (2014). Maíz I (Zea mays). Reduca (Biología). Serie Botánica, 7(2), 151–171.spa
dc.relation.referencesPacheco de Delahaye, E., & Techeira, N. (2009). Propiedades químicas y funcionales del almidón nativo y modificado de ñame (dioscorea alata). Interciencia, 34(4), 280–285. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442009000400012&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesPelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. do A., & Menegalli, F. C. (2012). Isolation and characterization of the flour and starch of plantain bananas ( Musa paradisiaca ). Starch - Stärke, 64(5), 382–391. https://doi.org/10.1002/star.201100133spa
dc.relation.referencesPerez Herrera, M., Vasanthan, T., & Chen, L. (2017). Rheology of starch nanoparticles as influenced by particle size, concentration and temperature. Food Hydrocolloids, 66, 237–245. https://doi.org/10.1016/j.foodhyd.2016.11.026spa
dc.relation.referencesPineda Gómez, P. (2012). Efecto de la difusión de calcio en las transformaciones fisicoquímicas en biopolímeros derivados del maíz, sometidos a tratamientos térmicos alcalinos / Effect of the calcium diffusion over the physicochemical transformations in biopolymer of corn submitt. 125. http://www.bdigital.unal.edu.co/8043/spa
dc.relation.referencesPineda–Gómez, P., Coral, D. F., Arciniegas, M. L., Rorales Rivera, A., & Rodríguez García, M. E. (2010). Papel del agua en la gelatinización delalmidón de maíz: estudio por calorimetríadiferencial de barrido. Ingeniería y Ciencia - Ing.Cienc., 6(11), 129–141. http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/252spa
dc.relation.referencesPosada-Velez, M., Pineda-Gomez, P., & Martinez-Hernandez, H. D. (2023). Acetylated corn and potato starches as an alternative to the toxic inorganic coagulants/flocculants for wastewater treatment. Enviromental Nanotechnology, Monitoring & Managment, 20(100786). https://www.sciencedirect.com/science/article/pii/S2215153223000107spa
dc.relation.referencesPozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., & Restrepo, I. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 25(12). https://doi.org/10.1007/s10965-018-1651-yspa
dc.relation.referencesPrieto-Méndez, J., Trejo-Cárdenas, C. L., Prieto-García, F., Méndez-Marzo, M. A., Bello-Pérez, L. A., & Román-Gutiérrez, A. D. (2010). Acetilación y caracterización del almidón de cebada. Revista Latinoamericana de Recursos Naturales, 6(1), 32–43.spa
dc.relation.referencesPunia Bangar, S., Kumar, M., & Whiteside, W. S. (2021). Mango seed starch: A sustainable and eco-friendly alternative to increasing industrial requirements. International Journal of Biological Macromolecules, 183, 1807–1817. https://doi.org/10.1016/j.ijbiomac.2021.05.157spa
dc.relation.referencesQin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 87, 182–190. https://doi.org/10.1016/j.indcrop.2016.04.038spa
dc.relation.referencesQiu, C., Hu, Y., Jin, Z., McClements, D. J., Qin, Y., Xu, X., & Wang, J. (2019). A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science & Technology, 92(October 2018), 138–151. https://doi.org/10.1016/j.tifs.2019.08.007spa
dc.relation.referencesQudsieh, I. Y., Fakhru’l-Razi, A., Kabbashi, N. A., Mirghani, M. E. S., Fandi, K. G., Alam, M. Z., Muyibi, S. A., & Nasef, M. M. (2008). Preparation and characterization of a new coagulant based on the sago starch biopolymer and its application in water turbidity removal. Journal of Applied Polymer Science, 109(5), 3140–3147. https://doi.org/10.1002/app.28399spa
dc.relation.referencesQuiroga Almaguer, A. U., Rodríguez Badillo, H. H., Rangel Rivera, ‪Pedro, & Rangel-Porras, G. (2015). Polímeros inorgánicos como coagulantes en el tratamiento de aguas residuales. Participación de La Mujer En La Ciencia, 1–5.‬‬spa
dc.relation.referencesRestrepo, H. (2009). Evaluación del proceso de coagualción-floculación de una planta de tratamiento de agua potable.spa
dc.relation.referencesRivas-González, M., Zamudio-Flores, P. B., & Bello-Pérez, L. A. (2009). Efecto de la acetilación en las características morfológicas y fisicoquímicas del almidón de plátano/Effect of the acetylation degree on the morphological and physicochemical characteristics of banana starch. Revista Mexicana de Ingeniería Química, 8(3), 291–297. www.amidiq.orgspa
dc.relation.referencesSalcedo Mendoza, J., Hernández RuyDíaz, J., & Fernández Quintero, A. (2016). Effect of the acetylation process on native starches of yam (Dioscorea spp.). Revista Facultad Nacional de Agronomia Medellin, 69(2), 7997–8006. https://doi.org/10.15446/rfna.v69n2.59144spa
dc.relation.referencesSalcedo-Mendoza, J. G., Rodrıguez-Lora, M. C., & Figueroa-Florez, J. A. (2016). Effect of Acetylation on Structural and Functional Properties. 15(3), 787–796.spa
dc.relation.referencesSanchez de la Concha, B. B., Agama-Acevedo, E., Nuñez-Santiago, M. C., Bello-Perez, L. A., Garcia, H. S., & Alvarez-Ramirez, J. (2018). Acid hydrolysis of waxy starches with different granule size for nanocrystal production. Journal of Cereal Science, 79, 193–200. https://doi.org/10.1016/j.jcs.2017.10.018spa
dc.relation.referencesSandhu, K. S., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060spa
dc.relation.referencesShahrim, N. A., Sarifuddin, N., & Ismail, H. (2018). Extraction and Characterization of Starch from Mango Seeds. Journal of Physics: Conference Series, 1082(1). https://doi.org/10.1088/1742-6596/1082/1/012019spa
dc.relation.referencesShi, A. M., Li, D., Wang, L. J., Li, B. Z., & Adhikari, B. (2011). Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers, 83(4), 1604–1610. https://doi.org/10.1016/j.carbpol.2010.10.011spa
dc.relation.referencesSingh, N., Kaur, A., & Shevkani, K. (2013). Maize: Grain structure, composition, milling, and starch characteristics. In Maize: Nutrition Dynamics and Novel Uses (pp. 65–76). Springer India. https://doi.org/10.1007/978-81-322-1623-0_5spa
dc.relation.referencesSingh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231. https://doi.org/10.1016/S0308-8146(02)00416-8spa
dc.relation.referencesSolís-Fuentes, J. A., & Durán-de-Bazúa, M. del C. (2011). Mango (Mangifera indica L.) Seed and Its Fats. Nuts and Seeds in Health and Disease Prevention, 741–748. https://doi.org/10.1016/B978-0-12-375688-6.10088-Xspa
dc.relation.referencesSong, D., Thio, Y. S., & Deng, Y. (2011). Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydrate Polymers, 85(1), 208–214. https://doi.org/10.1016/j.carbpol.2011.02.016spa
dc.relation.referencesSugawara, E., & Nikaido, H. (2014). Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrobial Agents and Chemotherapy, 58(12), 7250–7257. https://doi.org/10.1128/AAC.03728-14spa
dc.relation.referencesSujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids, 31(2), 413–419. https://doi.org/10.1016/J.FOODHYD.2012.11.027spa
dc.relation.referencesSulbarán, A., Matiz, G. E., & Baena, Y. (2018). Acetilación del almidón de millo (Pennisetum glaucum) y evaluación de su aplicación como posible excipiente. Revista Colombiana de Ciencias Químico-Farmacéuticas, 47(2), 255–276. https://doi.org/10.15446/rcciquifa.v47n2.73969spa
dc.relation.referencesSun, Q., Li, G., Dai, L., Ji, N., & Xiong, L. (2014). Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chemistry, 162, 223–228. https://doi.org/10.1016/j.foodchem.2014.04.068spa
dc.relation.referencesTan, I., Wee, C. C., Sopade, P. A., & Halley, P. J. (2004). Investigation of the starch gelatinisation phenomena in water–glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 58(2), 191–204. https://doi.org/10.1016/j.carbpol.2004.06.038spa
dc.relation.referencesTeh, C. Y., Wu, T. Y., & Juan, J. C. (2014). Potential use of rice starch in coagulation-flocculation process of agro-industrial wastewater: Treatment performance and flocs characterization. Ecological Engineering, 71, 509–519. https://doi.org/10.1016/j.ecoleng.2014.07.005spa
dc.relation.referencesTester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001spa
dc.relation.referencesThory, R., & Sandhu, K. S. (2017). A Comparison of mango kernel starch with a novel starch from litchi (Litchi chinensis) kernel: Physicochemical, morphological, pasting, and rheological properties. International Journal of Food Properties, 20(4), 911–921. https://doi.org/10.1080/10942912.2016.1188403spa
dc.relation.referencesTorres-León, C., Rojas, R., Contreras-Esquivel, J. C., Serna-Cock, L., Belmares-Cerda, R. E., & Aguilar, C. N. (2016). Mango seed: Functional and nutritional properties. Trends in Food Science & Technology, 55, 109–117. https://doi.org/10.1016/j.tifs.2016.06.009spa
dc.relation.referencesTovar Benitez, T. (2008). Caracterización morfológica y térmica del almidón de maíz ( zea mays l ) obtenido por diferentes métodos de aislamiento. 1–78. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/bitstream/handle/231104/508/?sequence=1spa
dc.relation.referencesTrujillo, D., Duque, L. F., Arcila, J. S., Rincón, A., Pacheco, S., & Herrera, O. F. (2014). Remoción de turbiedad en agua de una fuente natural mediante coagulación/floculación usando almidón de plátano. Revista Ion, 27(1), 17–34.spa
dc.relation.referencesTupa-Valencia, M. V., Foresti, M. L., & Herrrera, M. L. (2019). Modificación organocatalítica de almidón para la obtención sostenible de derivados de alto valor agregado. https://ri.conicet.gov.ar/bitstream/handle/11336/81107/CONICET_Digital_Nro.c9f6a8d7-e72b-43a7-8fe9-aa27a87b20c7_A.pdf?sequence=2&isAllowed=yspa
dc.relation.referencesUrango, L. A. (2018). C. del maíz en la nutrición humana. F. E. B. 185-209. (2018). Componentes del maíz en la nutrición humana. Fondo Editorial de Biogenesis, 185–209.spa
dc.relation.referencesUrrejola, M. C., Soto, L. V, Zumarán, C. C., Peñaloza, J. P., Álvarez, B., Fuentevilla, I., & Haidar, Z. S. (2018). Sistemas de Nanopartículas Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly). International Journal of Morphology, 36(4), 1463–1471. https://doi.org/10.4067/S0717-95022018000401463spa
dc.relation.referencesValencia, G. A., Henao, A. C. A., & Zapata, R. A. V. (2012). Comparative study and characterization of starches isolated from unconventional tuber sources. Journal of Polymer Engineering, 32(8–9), 531–537. https://doi.org/10.1515/polyeng-2012-0092spa
dc.relation.referencesVillabona-Ortíz, A., Tejada-Tovar, C. N., & Ortega-Toro, R. (2020). Comparative study of the use of starch from agroindustrial materials in the coagulation-floculation process. Revista Mexicana de Ingeniera Quimica, 19(2), 593–601. https://doi.org/10.24275/rmiq/IA740spa
dc.relation.referencesWaigh, T. A., Jenkins, P. J., & Donald, A. M. (1996). Quantification of water in carbohydrate lamellae using SANS. Faraday Discussions, 103, 325. https://doi.org/10.1039/fd9960300325spa
dc.relation.referencesWaigh, T. A., Perry, P., Riekel, C., Gidley, M. J., & Donald, A. M. (1998). Chiral Side-Chain Liquid-Crystalline Polymeric Properties of Starch. Macromolecules, 31(22), 7980–7984. https://doi.org/10.1021/ma971859cspa
dc.relation.referencesWatson, S. A. (1987). Structure and composition. Corn: Chemistry and Technology., 53–82.spa
dc.relation.referencesXie, X., Liu, Q., & Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Research International, 39(3), 332–341. https://doi.org/10.1016/J.FOODRES.2005.08.004spa
dc.relation.referencesXu, Y., Miladinov, V., & Hanna, M. A. (2004). Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chemistry Journal, 81(6), 735–740. https://doi.org/10.1094/CCHEM.2004.81.6.735spa
dc.relation.referencesYahuaca Juárez, B. (2013). Optimización del proceso térmico-alcalino en función de las transformaciones inducidas en los lípidos de maíz evaluadas con técnicas ópticas y fisicoquímicas.spa
dc.relation.referencesYan, X., Chang, Y., Wang, Q., Fu, Y., & Zhou, J. (2017). Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation. International Journal of Biological Macromolecules, 97, 481–488. https://doi.org/10.1016/j.ijbiomac.2017.01.075spa
dc.relation.referencesZhang, G., Ao, Z., & Hamaker, B. R. (2006). Slow Digestion Property of Native Cereal Starches. Biomacromolecules, 7(11), 3252–3258. https://doi.org/10.1021/bm060342ispa
dc.relation.referencesZobel, H. F. (1988). Starch Crystal Transformations and Their Industrial Importance. Starch - Stärke, 40(1), 1–7. https://doi.org/10.1002/star.19880400102spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalAlmidónspa
dc.subject.proposalNanoprecipitaciónspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalMangospa
dc.subject.proposalMaízspa
dc.subject.proposalStarcheng
dc.subject.proposalNanoprecipitationeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalMangoeng
dc.subject.proposalCorneng
dc.subject.unescoAnálisis químico
dc.subject.unescoChemical analysis
dc.titleSíntesis y caracterización de nanopartículas de almidón (de mango y maíz) obtenidos por medio de nanoprecipitación para su uso como floculantespa
dc.title.translatedSynthesis and characterization of starch nanoparticles (from mango and corn) obtained by nanoprecipitation for use as flocculantseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053838991.2023.pdf
Tamaño:
2.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: