Optimization of control forces of a hybrid system based on TMDI and magnetorheological dampers for the reduction of response in structures subject to seismic excitations

dc.contributor.advisorLara Valencia, Luis Augusto
dc.contributor.authorValencia Valencia, Verónica
dc.contributor.orcidValencia Valencia, Verónica [0009-0004-9667-564X]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Veronica-Valencia-Valencia?ev=hdr_xprfspa
dc.contributor.researchgroupCentro de Proyectos e Investigaciones Sísmicasspa
dc.date.accessioned2025-07-28T13:35:35Z
dc.date.available2025-07-28T13:35:35Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractMitigating structural vibrations induced by dynamic loads is a critical area of research in structural engineering. Control strategies like passive, semi-active, active, and hybrid offer varying levels of effectiveness, but each has inherent limitations. This investigation proposes a hybrid control system that integrates a Tuned Mass Damper Inerter (TMDI) with a Magnetorheological (MR) damper, managed by a Whale Optimization Algorithm (WOA) combined with fuzzy logic control (FLC). The TMDI enhances energy dissipation through an optimized inertial mechanism, while the MR damper provides adaptable real-time damping with minimal energy consumption. The WOA optimizes the TMDI design parameters and determines the optimal control forces for the MR damper. At the same time, fuzzy logic dynamically adjusts the activation of the MR damper based on structural response variations. The results demonstrate that the proposed hybrid system achieves an important reduction in the structural response. By selectively activating MR dampers only when necessary, the system prevents unnecessary stiffness increases and reduces energy consumption, operational costs, and maintenance requirements. These findings highlight the potential of hybrid control strategies in achieving efficient and effective structural vibration mitigation, making them a promising solution for improving seismic resilience while optimizing energy efficiency.eng
dc.description.abstractLa mitigación de las vibraciones estructurales inducidas por cargas dinámicas es un área de investigación crucial en la ingeniería estructural. Las estrategias de control, como las pasivas, semiactivas, activas e híbridas, ofrecen distintos niveles de efectividad, pero cada una presenta limitaciones inherentes. Esta investigación propone un sistema de control híbrido que integra un Tuned Mass Damper Inerter (TMDI) con un amortiguador magnetoreológico (MR), gestionado mediante un Algoritmo de Optimización de la Ballena (WOA) combinado con control difuso (FLC). El TMDI mejora la disipación de energía a través de un mecanismo inercial optimizado, mientras que el amortiguador MR proporciona amortiguamiento adaptable en tiempo real con un consumo mínimo de energía. El WOA optimiza los parámetros de diseño del TMDI y determina las fuerzas de control óptimas para el amortiguador MR, mientras que el control difuso ajusta dinámicamente su activación en función de las variaciones en la respuesta estructural. Los resultados demuestran que el sistema híbrido propuesto logra una reducción significativa en la respuesta estructural. Al activar selectivamente los amortiguadores MR solo cuando es necesario, el sistema evita incrementos innecesarios de rigidez y reduce el consumo energético, los costos operativos y los requerimientos de mantenimiento. Estos hallazgos destacan el potencial de las estrategias de control híbrido para lograr una mitigación eficiente y efectiva de las vibraciones estructurales, lo que las convierte en una solución prometedora para mejorar la resiliencia sísmica y optimizar la eficiencia energética.spa
dc.description.curricularareaIngeniería Civil.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaDinámica de estructurasspa
dc.description.researchareaControl estructuralspa
dc.format.extent142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88384
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructurasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesR. Kandasamy et al., “A review of vibration control methods for marine offshore structures,” Nov. 15, 2016, Elsevier Ltd. doi: 10.1016/j.oceaneng.2016.10.001.spa
dc.relation.referencesS. H. Hosseini Lavassani, S. Shangapour, P. Homami, V. Gharehbaghi, E. Noroozinejad Farsangi, and T. Y. Yang, “An innovative methodology for hybrid vibration control (MR+TMD) of buildings under seismic excitations,” Soil Dynamics and Earthquake Engineering, vol. 155, Apr. 2022, doi: 10.1016/j.soildyn.2022.107175.spa
dc.relation.referencesM. Reza Bagerzadeh Karimi and M. Mahdi Bagerzadeh Karimi, “Vibration Control of MDOF Structure under Earthquake Excitation using Passive Control and Active Control,” 2011.spa
dc.relation.referencesM. S. Miah, E. N. Chatzi, V. K. Dertimanis, and F. Weber, “Real-time experimental validation of a novel semi-active control scheme for vibration mitigation,” Struct Control Health Monit, vol. 24, no. 3, Mar. 2017, doi: 10.1002/stc.1878.spa
dc.relation.referencesB. Kasemi, A. G. A. Muthalif, M. M. Rashid, and S. Fathima, “Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper,” in Procedia Engineering, Elsevier Ltd, 2012, pp. 1221–1227. doi: 10.1016/j.proeng.2012.07.304.spa
dc.relation.referencesS. Hossein, H. Lavasani, and R. Doroudi, “Meta heuristic active and semi-active control systems of high-rise building,” 2020.spa
dc.relation.referencesL. Marian and A. Giaralis, “Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems,” Probabilistic Engineering Mechanics, vol. 38, pp. 156–164, Oct. 2014, doi: 10.1016/j.probengmech.2014.03.007.spa
dc.relation.referencesM. C. Smith, “Synthesis of mechanical networks: The inerter,” IEEE Trans Automat Contr, vol. 47, no. 10, pp. 1648–1662, Oct. 2002, doi: 10.1109/TAC.2002.803532.spa
dc.relation.referencesC. Papageorgiou and M. C. Smith, “Laboratory experimental testing of inerters.”spa
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, “Seismic Response Reduction Using Magnetorheological Dampers,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 5530–5535, Jun. 1996, doi: 10.1016/s1474-6670(17)58562-6.spa
dc.relation.referencesB. B. F Spencer Jr, S. J. Dyke, A. Member, M. K. Sain, and J. D. Carlson, “Phenomenological model for Magnetorheological dampers,” 1997. [Online]. Available: http://www.rheonetic.com/mrfluid/spa
dc.relation.referencesN. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali, “Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA,” ISA Trans, vol. 46, no. 2, pp. 167–179, 2007, doi: 10.1016/j.isatra.2006.08.005.spa
dc.relation.referencesS. Elias and V. Matsagar, “Research developments in vibration control of structures using passive tuned mass dampers,” 2017, Elsevier Ltd. doi: 10.1016/j.arcontrol.2017.09.015.spa
dc.relation.referencesT. E. Saaed, G. Nikolakopoulos, J. E. Jonasson, and H. Hedlund, “A state-of-the art review of structural control systems,” Apr. 15, 2015, SAGE Publications Inc. doi: 10.1177/1077546313478294.spa
dc.relation.referencesA. Khansefid and M. Ahmadizadeh, “An investigation of the effects of structural nonlinearity on the seismic performance degradation of active and passive control systems used for supplemental energy dissipation,” JVC/Journal of Vibration and Control, vol. 22, no. 16, pp. 3544–3554, Sep. 2016, doi: 10.1177/1077546314563969.spa
dc.relation.referencesZ. Lu, Z. Wang, Y. Zhou, and X. Lu, “Nonlinear dissipative devices in structural vibration control: A review,” Jun. 09, 2018, Academic Press. doi: 10.1016/j.jsv.2018.02.052.spa
dc.relation.referencesF. Oliveira, P. G. De Morais, and A. Suleman, “Semi-active Control of Base isolated Structures,” in Procedia Engineering, Elsevier Ltd, 2015, pp. 401–409. doi: 10.1016/j.proeng.2015.08.085.spa
dc.relation.referencesK. Ghaedi, Z. Ibrahim, H. Adeli, and A. Javanmardi, “Invited review: Recent developments in vibration control of building and bridge structures,” 2017, Vibromechanika. doi: 10.21595/jve.2017.18900.spa
dc.relation.referencesR. Ma, K. Bi, and H. Hao, “Inerter-based structural vibration control: A state-of-the art review,” Sep. 15, 2021, Elsevier Ltd. doi: 10.1016/j.engstruct.2021.112655.spa
dc.relation.referencesI. Kourakis, “Structural Systems and Tuned Mass Dampers of Super-Tall Buildings: Case Study of Taipei 101,” 2007.spa
dc.relation.referencesA. Bigdeli, M. Rahman, and D. Kim, “Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper,” Structural Engineering and Mechanics, vol. 88, no. 3, pp. 209–220, Nov. 2023, doi: 10.12989/sem.2023.88.3.209.spa
dc.relation.referencesM. Jackson and D. M. Scott, “Increasing Efficiency in Tall Buildings by Damping,” 2010.spa
dc.relation.referencesY. Bigdeli and D. Kim, “Damping effects of the passive control devices on structural vibration control: TMD, TLC and TLCD for varying total masses,” KSCE Journal of Civil Engineering, vol. 20, no. 1, pp. 301–308, Jan. 2016, doi: 10.1007/s12205-015 0365-5.spa
dc.relation.referencesS. S. Khodashahri and M. Jamshidi, “A Review of the Performance of Buildings Improved with Passive Structural Control Systems (Metal Dampers and Shear Walls with Self-Centered Steel Sheets),” 2020.spa
dc.relation.referencesJ. Katebi, M. Shoaei-parchin, M. Shariati, N. T. Trung, and M. Khorami, “Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures,” Eng Comput, vol. 36, no. 4, pp. 1539–1558, Oct. 2020, doi: 10.1007/s00366-019-00780-7.spa
dc.relation.referencesA. Younespour and H. Ghaffarzadeh, “Structural active vibration control using active mass damper by block pulse functions,” JVC/Journal of Vibration and Control, vol. 21, no. 14, pp. 2787–2795, Oct. 2015, doi: 10.1177/1077546313519285.spa
dc.relation.referencesS. Ulusoy, S. M. Nigdeli, and G. Bekdaş, “Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness,” Journal of Building Engineering, vol. 33, Jan. 2021, doi: 10.1016/j.jobe.2020.101647.spa
dc.relation.referencesH. Garrido, O. Curadelli, and D. Ambrosini, “On the assumed inherent stability of semi-active control systems,” Eng Struct, vol. 159, pp. 286–298, Mar. 2018, doi: 10.1016/j.engstruct.2018.01.009.spa
dc.relation.referencesM. Ostrowski, B. Blachowski, B. Poplawski, D. Pisarski, G. Mikulowski, and L. Jankowski, “Semi-active modal control of structures with lockable joints: general methodology and applications,” Struct Control Health Monit, vol. 28, no. 5, May 2021, doi: 10.1002/stc.2710.spa
dc.relation.referencesH. S. Kim, “Development of seismic response simulation model for building structures with semi-active control devices using recurrent neural network,” Applied Sciences (Switzerland), vol. 10, no. 11, Jun. 2020, doi: 10.3390/app10113915.spa
dc.relation.referencesF. Oliveira, P. Morais, and A. Suleman, “A comparative study of semi-active control strategies for base isolated buildings,” Earthquake Engineering and Engineering Vibration, vol. 14, no. 3, pp. 487–502, Sep. 2015, doi: 10.1007/s11803-015-0039-9.spa
dc.relation.referencesS. Zareie and A. Zabihollah, “A semi-active SMA-MRF structural stability element for seismic control in marine structures,” Applied Ocean Research, vol. 100, Jul. 2020, doi: 10.1016/j.apor.2020.102161.spa
dc.relation.referencesN. R. Fisco and H. Adeli, “Smart structures: Part II - Hybrid control systems and control strategies,” 2011, Sharif University of Technology. doi: 10.1016/j.scient.2011.05.035.spa
dc.relation.referencesK. Miyamoto, D. Sato, and J. She, “A new performance index of LQR for combination of passive base isolation and active structural control,” Eng Struct, vol. 157, pp. 280–299, Feb. 2018, doi: 10.1016/j.engstruct.2017.11.070.spa
dc.relation.referencesN. Mamat, F. Yakub, S. A. Z. S. Salim, M. Z. A. Rashid, S. Munawarah, and S. A. Roslan, “Seismic control of a building structure equip with hybrid mass damper using sliding mode control,” in Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2020, pp. 146–156. doi: 10.1007/978-981-13-9539-0_15.spa
dc.relation.referencesF. D. S. Brandão and L. F. F. Miguel, “A New Methodology for Optimal Design of Hybrid Vibration Control Systems (MR + TMD) for Buildings under Seismic Excitation,” Shock and Vibration, vol. 2023, pp. 1–14, Sep. 2023, doi: 10.1155/2023/8159716.spa
dc.relation.referencesS. Mahjoubi and S. Maleki, “Pipe dampers as passive devices for seismic control of isolated bridges,” Struct Control Health Monit, vol. 24, no. 2, Feb. 2017, doi: 10.1002/stc.1869.spa
dc.relation.referencesF. Yang, R. Sedaghati, and E. Esmailzadeh, “Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review,” JVC/Journal of Vibration and Control, vol. 28, no. 7–8, pp. 812–836, Apr. 2022, doi: 10.1177/1077546320984305.spa
dc.relation.referencesL. Tophøj, N. Grathwol, and S. Hansen, “Effective Mass of Tuned Mass Dampers,” Vibration, vol. 1, no. 1, pp. 192–206, Sep. 2018, doi: 10.3390/vibration1010014.spa
dc.relation.referencesS. Elias and V. Matsagar, “Wind response control of tall buildings with a tuned mass damper,” Journal of Building Engineering, vol. 15, pp. 51–60, Jan. 2018, doi: 10.1016/j.jobe.2017.11.005.spa
dc.relation.referencesA. K. Rathi and A. Chakraborty, “Reliability-based performance optimization of TMD for vibration control of structures with uncertainty in parameters and excitation,” Struct Control Health Monit, vol. 24, no. 1, Jan. 2017, doi: 10.1002/stc.1857.spa
dc.relation.referencesS. Y. Zhang, J. Z. Jiang, and S. A. Neild, “Passive vibration control: A structure immittance approach,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2201, May 2017, doi: 10.1098/rspa.2017.0011.spa
dc.relation.referencesF. Petrini, A. Giaralis, and Z. Wang, “Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting,” Eng Struct, vol. 204, Feb. 2020, doi: 10.1016/j.engstruct.2019.109904.spa
dc.relation.referencesD. Pietrosanti, M. De Angelis, and A. Giaralis, “Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation,” Int J Mech Sci, vol. 184, Oct. 2020, doi: 10.1016/j.ijmecsci.2020.105762.spa
dc.relation.referencesF. Casciati, J. Rodellar, and U. Yildirim, “Active and semi-active control of structures-theory and applications: A review of recent advances,” Jul. 2012. doi: 10.1177/1045389X12445029.spa
dc.relation.referencesA. H. Mohd Yamin, I. Z. Mat Darus, N. Mohd Nor, M. H. Ab Talib, and J. Bahru, “Intelligent Cuckoo Search Algorithm of PID and Skyhook Controller for Semi Active Suspension System using Magneto-Rheological Damper,” 2021.spa
dc.relation.referencesD. Cruze, H. G, S. V. S. Jebadurai, S. L, T. D, and S. S. J. E. Christy, “A Review on the Magnetorheological Fluid, Damper and Its Applications for Seismic Mitigation,” Civil Engineering Journal, vol. 4, no. 12, p. 3058, Dec. 2018, doi: 10.28991/cej03091220.spa
dc.relation.referencesR. Jiang, X. Rui, M. Wei, F. Yang, H. Zhu, and L. Gu, “A phenomenological model of magnetorheological damper considering fluid deficiency,” J Sound Vib, vol. 562, Oct. 2023, doi: 10.1016/j.jsv.2023.117851.spa
dc.relation.referencesÖ. Şahin et al., “A comparative evaluation of semi-active control algorithms for real time seismic protection of buildings via magnetorheological fluid dampers,” Journal of Building Engineering, vol. 42, Oct. 2021, doi: 10.1016/j.jobe.2021.102795.spa
dc.relation.referencesH. Hojat Jalali, M. Fahimi Farzam, S. A. Mousavi Gavgani, and G. Bekdaş, “Semi active control of buildings using different control algorithms considering SSI,” Journal of Building Engineering, vol. 67, May 2023, doi: 10.1016/j.jobe.2023.105956.spa
dc.relation.referencesM. S. Miah, E. N. Chatzi, V. K. Dertimanis, and F. Weber, “Nonlinear modeling of a rotational MR damper via an enhanced Bouc-Wen model,” Smart Mater Struct, vol. 24, no. 10, Sep. 2015, doi: 10.1088/0964-1726/24/10/105020.spa
dc.relation.referencesX. X. Bai, P. Chen, and L. J. Qian, “Principle and validation of modified hysteretic models for magnetorheological dampers,” Smart Mater Struct, vol. 24, no. 8, Aug. 2015, doi: 10.1088/0964-1726/24/8/085014.spa
dc.relation.referencesL. Wang, “Building Structure Control System Application Research Based on Fuzzy Logic Algorithm,” IEEE Access, vol. 11, pp. 144799–144811, 2023, doi: 10.1109/ACCESS.2023.3342632.spa
dc.relation.referencesM. Z. Samani and M. Ghanooni-Bagha, “A fuzzy logic controller for optimal structural control using MR dampers and particle swarm optimization,” Journal of Vibroengineering, vol. 19, no. 3, pp. 1901–1914, 2017, doi: 10.21595/jve.2017.17802.spa
dc.relation.referencesB. Mehrkian, A. Bahar, and A. Chaibakhsh, “Semiactive conceptual fuzzy control of magnetorheological dampers in an irregular base-isolated benchmark building optimized by multi-objective genetic algorithm,” Struct Control Health Monit, vol. 26, no. 3, Mar. 2019, doi: 10.1002/stc.2302.spa
dc.relation.referencesM. Braz-César and R. Barros, “Optimization of a Fuzzy Logic Controller for MR Dampers Using an Adaptive Neuro-Fuzzy Procedure,” International Journal of Structural Stability and Dynamics, vol. 17, no. 5, Jun. 2017, doi: 10.1142/S0219455417400077.spa
dc.relation.referencesP. Pei, S. T. Quek, and Y. Peng, “Multiobjective Reliability-Based Design Optimization of the Fuzzy Logic Controller for MR Damper-Based Structures,” Struct Control Health Monit, vol. 2023, 2023, doi: 10.1155/2023/4009397.spa
dc.relation.referencesM. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic algorithms: A comprehensive review,” in Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, Elsevier, 2018, pp. 185–231. doi: 10.1016/B978-0-12-813314-9.00010-4.spa
dc.relation.referencesS. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-Heuristic Algorithms and Their Relevance to the Real World: A Survey,” INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS, vol. 2, pp. 296–304, 2015, [Online]. Available: http://www.ijcert.orgspa
dc.relation.referencesM. Z. Samani and M. Ghanooni-Bagha, “A fuzzy logic controller for optimal structural control using MR dampers and particle swarm optimization,” Journal of Vibroengineering, vol. 19, no. 3, pp. 1901–1914, 2017, doi: 10.21595/jve.2017.17802.spa
dc.relation.referencesH. Gao, Y. Shi, C. M. Pun, and S. Kwong, “An Improved Artificial Bee Colony Algorithm with its Application,” IEEE Trans Industr Inform, vol. 15, no. 4, pp. 1853-1865, Apr. 2019, doi: 10.1109/TII.2018.2857198.spa
dc.relation.referencesQ. Xu, J. Chen, X. Liu, J. Li, and C. Yuan, “An ABC-BP-ANN algorithm for semiactive control for Magnetorheological damper,” KSCE Journal of Civil Engineering, vol. 21, no. 6, pp. 2310–2321, Sep. 2017, doi: 10.1007/s12205-016-0680-5.spa
dc.relation.referencesS. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008.spa
dc.relation.referencesM. Castro-Osorio, D. Vallejo-Paniagua, V. Valencia-Valencia, L. A. Lara-Valencia, and J. J. Blandón-Valencia, “OPTIMAL DESIGN OF A TUNED MASS DAMPER INERTER USING A WHALE OPTIMIZATION ALGORITHM FOR THE CONTROL OF BUILDINGS SUBJECTED TO GROUND ACCELERATIONS,” in COMPDYN Proceedings, National Technical University of Athens, 2023. doi: 10.7712/120123.10743.20231.spa
dc.relation.referencesX. Lü et al., “Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm,” Feb. 01, 2020, Elsevier Ltd. doi: 10.1016/j.enconman.2020.112474.spa
dc.relation.referencesH. Tran-Ngoc, S. Khatir, H. Ho-Khac, G. De Roeck, T. Bui-Tien, and M. Abdel Wahab, “Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures,” Compos Struct, vol. 262, Apr. 2021, doi: 10.1016/j.compstruct.2020.113339.spa
dc.relation.referencesB. Keshtegar, M. Motezaker, R. Kolahchi, and N. T. Trung, “Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping,” Thin-Walled Structures, vol. 154, Sep. 2020, doi: 10.1016/j.tws.2020.106820.spa
dc.relation.referencesS. Djerouni, A. Ounis, B. Athamnia, M. Charrouf, M. Abdeddaim, and N. Djedoui, “View of Optimal seismic response using a Passive Tuned Mass Damper Inerter (TMDI),” Journal of Building Materials and Structures, 2020.spa
dc.relation.referencesM. C. Smith, “Synthesis of mechanical networks: The inerter,” IEEE Trans Automat Contr, vol. 47, no. 10, pp. 1648–1662, Oct. 2002, doi: 10.1109/TAC.2002.803532.spa
dc.relation.referencesJ. Dai, Z. D. Xu, and P. P. Gai, “Tuned mass-damper-inerter control of wind induced vibration of flexible structures based on inerter location,” Eng Struct, vol. 199, Nov. 2019, doi: 10.1016/j.engstruct.2019.109585.spa
dc.relation.referencesL. Marian and A. Giaralis, “The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting,” Smart Struct Syst, vol. 19, no. 6, pp. 665–678, Jun. 2017, doi: 10.12989/sss.2017.19.6.665.spa
dc.relation.referencesX. Kang, Q. Huang, Z. Wu, J. Tang, X. Jiang, and S. Lei, “A Review of the Tuned Mass Damper Inerter (TMDI) in Energy Harvesting and Vibration Control: Designs, Analysis and Applications,” Mar. 11, 2024, Tech Science Press. doi: 10.32604/cmes.2023.043936.spa
dc.relation.referencesC. Liu, L. Chen, H. P. Lee, Y. Yang, and X. Zhang, “A review of the inerter and inerter-based vibration isolation: Theory, devices, and applications,” Sep. 01, 2022, Elsevier Ltd. doi: 10.1016/j.jfranklin.2022.07.030.spa
dc.relation.referencesD. Pietrosanti, M. De Angelis, and A. Giaralis, “Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation,” Int J Mech Sci, vol. 184, Oct. 2020, doi: 10.1016/j.ijmecsci.2020.105762.spa
dc.relation.referencesS. J. Dyke, F. Spencer, M. K. Sain, and J. D. Carlson, “An experimental study of MR dampers for seismic protection,” 1998. [Online]. Available: http://iopscience.iop.org/0964-1726/7/5/012spa
dc.relation.referencesY. Rabbani, M. Ashtiani, and S. H. Hashemabadi, “An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect,” Soft Matter, vol. 11, no. 22, pp. 4453–4460, Jun. 2015, doi: 10.1039/c5sm00625b.spa
dc.relation.referencesW. Song, S. Hayati, and S. Zhou, “Real-time model updating for magnetorheological damper identification: An experimental study,” Smart Struct Syst, vol. 20, no. 5, pp. 619–636, Nov. 2017, doi: 10.12989/sss.2017.20.5.619.spa
dc.relation.referencesZ. Xu, Y. Yu, H. Yachi, J. Ji, Y. Todo, and S. Gao, “A novel memetic whale optimization algorithm for optimization,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2018, pp. 384–396. doi: 10.1007/978-3-31993815-8_37.spa
dc.relation.referencesM. A. El Aziz, A. A. Ewees, and A. E. Hassanien, “Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation,” Expert Syst Appl, vol. 83, pp. 242–256, Oct. 2017, doi: 10.1016/j.eswa.2017.04.023.spa
dc.relation.referencesM. M. Gupta, “Forty-five years of fuzzy sets and fuzzy logic-A tribute to professor Lotfi A. Zadeh (the father of fuzzy logic),” 2011, Sharif University of Technology. doi: 10.1016/j.scient.2011.04.023.spa
dc.relation.referencesT. Zhang, Y. Liu, Y. Rao, X. Li, and Q. Zhao, “Optimal design of building environment with hybrid genetic algorithm, artificial neural network, multivariate regression analysis and fuzzy logic controller,” Build Environ, vol. 175, May 2020, doi: 10.1016/j.buildenv.2020.106810.spa
dc.relation.referencesY. Liu, F. Gordaninejad, C. A. Evrensel, and G. Hitchcock, “An Experimental Study on Fuzzy Logic Vibration Control of a Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers,” 2001. [Online]. Available: http://Web.me.unr.edu/cimlspa
dc.relation.referencesK. Takin, R. Doroudi, and S. Doroudi, “Vibration control of structure by optimising the placement of semi-active dampers and fuzzy logic controllers,” Australian Journal of Structural Engineering, vol. 22, no. 3, pp. 222–235, 2021, doi: 10.1080/13287982.2021.1957198.spa
dc.relation.referencesL. H. Zong, X. L. Gong, C. Y. Guo, and S. H. Xuan, “Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system,” Vehicle System Dynamics, vol. 50, no. 7, pp. 1025–1041, Jul. 2012, doi: 10.1080/00423114.2011.645489.spa
dc.relation.referencesG. Mester, “Design of the Fuzzy Control Systems Based on Genetic Algorithm for Intelligent Robots,” Interdisciplinary Description of Complex Systems, vol. 12, no. 3, pp. 245–254, 2014, doi: 10.7906/indecs.12.3.4.spa
dc.relation.referencesP. Ochoa, C. Peraza, P. Melin, O. Castillo, S. Park, and Z. W. Geem, “Enhancing Control Systems through Type-3 Fuzzy Logic Optimization,” Mathematics, vol. 12, no. 12, Jun. 2024, doi: 10.3390/math12121792.spa
dc.relation.referencesV. Valencia Valencia and L. A. Lara-Valencia, “Hybrid Optimization Algorithm Based on Whale Optimization and Fuzzy Logic for Magnetorheological Dampers,” Ingeniería y Competitividad, vol. 26, no. 3, Sep. 2024, doi: 10.25100/iyc.v26i3.14128.spa
dc.relation.referencesH.-J. Jung, B. F. Spencer, M. Asce, and I.-W. Lee, “Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers”, doi: 10.1061/ASCE0733-94452003129:7873.spa
dc.relation.references“Center for engineering strong-motion data (CESMD).” Accessed: Dec. 25, 2022. [Online]. Available: www.strongmotioncenter.org.spa
dc.relation.referencesA. Ghobarah, “On drift limits associated with different damage levels,” 2004. [Online]. Available: https://www.researchgate.net/publication/272353679spa
dc.relation.referencesD. M. Bedoya Zambrano, “Control semi-activo de estructuras empleando un algoritmo genético tipo NSGA-II combinado con lógica difusa para administrar fuerzas de control en amortiguadores magnetoreológicos MR,” Universidad Nacional de Colombia, Medellin, 2021.spa
dc.relation.referencesL. A. Lara Valencia, “ESTUDO DE ALGORITMOS DE CONTROLE SEMI-ATIVO APLICADOS A AMORTECEDORES MAGNETORREOLÓGICOS,” UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL, Brasilia, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembIngeniería de estructuras
dc.subject.lembDinámica de estructuras
dc.subject.lembDiseño sismo resistente
dc.subject.lembLógica difusa
dc.subject.lembCargas dinámicas
dc.subject.lembRiesgo sísmico
dc.subject.proposalDynamic of structureseng
dc.subject.proposalStructural controleng
dc.subject.proposalFuzzy Logiceng
dc.subject.proposalWhale Optimization Algorithmeng
dc.subject.proposalMagnetorheological damperseng
dc.subject.proposalTMDIeng
dc.subject.proposalDinámica de estructurasspa
dc.subject.proposalControl estructuralspa
dc.subject.proposalLógica difusaspa
dc.subject.proposalAlgoritmo de optimización de la ballenaspa
dc.subject.proposalAmortiguador Magnetoreológicospa
dc.titleOptimization of control forces of a hybrid system based on TMDI and magnetorheological dampers for the reduction of response in structures subject to seismic excitationseng
dc.title.translatedOptimización de fuerzas de control de un sistema híbrido basado en TMDI y amortiguadores magnetoreológicos para la reducción de respuesta en estructuras sujetas a la acción de cargas sísmicasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152471519.2025.pdf
Tamaño:
26.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: