Optimization of control forces of a hybrid system based on TMDI and magnetorheological dampers for the reduction of response in structures subject to seismic excitations
dc.contributor.advisor | Lara Valencia, Luis Augusto | |
dc.contributor.author | Valencia Valencia, Verónica | |
dc.contributor.orcid | Valencia Valencia, Verónica [0009-0004-9667-564X] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Veronica-Valencia-Valencia?ev=hdr_xprf | spa |
dc.contributor.researchgroup | Centro de Proyectos e Investigaciones Sísmicas | spa |
dc.date.accessioned | 2025-07-28T13:35:35Z | |
dc.date.available | 2025-07-28T13:35:35Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficas | spa |
dc.description.abstract | Mitigating structural vibrations induced by dynamic loads is a critical area of research in structural engineering. Control strategies like passive, semi-active, active, and hybrid offer varying levels of effectiveness, but each has inherent limitations. This investigation proposes a hybrid control system that integrates a Tuned Mass Damper Inerter (TMDI) with a Magnetorheological (MR) damper, managed by a Whale Optimization Algorithm (WOA) combined with fuzzy logic control (FLC). The TMDI enhances energy dissipation through an optimized inertial mechanism, while the MR damper provides adaptable real-time damping with minimal energy consumption. The WOA optimizes the TMDI design parameters and determines the optimal control forces for the MR damper. At the same time, fuzzy logic dynamically adjusts the activation of the MR damper based on structural response variations. The results demonstrate that the proposed hybrid system achieves an important reduction in the structural response. By selectively activating MR dampers only when necessary, the system prevents unnecessary stiffness increases and reduces energy consumption, operational costs, and maintenance requirements. These findings highlight the potential of hybrid control strategies in achieving efficient and effective structural vibration mitigation, making them a promising solution for improving seismic resilience while optimizing energy efficiency. | eng |
dc.description.abstract | La mitigación de las vibraciones estructurales inducidas por cargas dinámicas es un área de investigación crucial en la ingeniería estructural. Las estrategias de control, como las pasivas, semiactivas, activas e híbridas, ofrecen distintos niveles de efectividad, pero cada una presenta limitaciones inherentes. Esta investigación propone un sistema de control híbrido que integra un Tuned Mass Damper Inerter (TMDI) con un amortiguador magnetoreológico (MR), gestionado mediante un Algoritmo de Optimización de la Ballena (WOA) combinado con control difuso (FLC). El TMDI mejora la disipación de energía a través de un mecanismo inercial optimizado, mientras que el amortiguador MR proporciona amortiguamiento adaptable en tiempo real con un consumo mínimo de energía. El WOA optimiza los parámetros de diseño del TMDI y determina las fuerzas de control óptimas para el amortiguador MR, mientras que el control difuso ajusta dinámicamente su activación en función de las variaciones en la respuesta estructural. Los resultados demuestran que el sistema híbrido propuesto logra una reducción significativa en la respuesta estructural. Al activar selectivamente los amortiguadores MR solo cuando es necesario, el sistema evita incrementos innecesarios de rigidez y reduce el consumo energético, los costos operativos y los requerimientos de mantenimiento. Estos hallazgos destacan el potencial de las estrategias de control híbrido para lograr una mitigación eficiente y efectiva de las vibraciones estructurales, lo que las convierte en una solución prometedora para mejorar la resiliencia sísmica y optimizar la eficiencia energética. | spa |
dc.description.curriculararea | Ingeniería Civil.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Estructuras | spa |
dc.description.researcharea | Dinámica de estructuras | spa |
dc.description.researcharea | Control estructural | spa |
dc.format.extent | 142 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88384 | |
dc.language.iso | eng | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Estructuras | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | R. Kandasamy et al., “A review of vibration control methods for marine offshore structures,” Nov. 15, 2016, Elsevier Ltd. doi: 10.1016/j.oceaneng.2016.10.001. | spa |
dc.relation.references | S. H. Hosseini Lavassani, S. Shangapour, P. Homami, V. Gharehbaghi, E. Noroozinejad Farsangi, and T. Y. Yang, “An innovative methodology for hybrid vibration control (MR+TMD) of buildings under seismic excitations,” Soil Dynamics and Earthquake Engineering, vol. 155, Apr. 2022, doi: 10.1016/j.soildyn.2022.107175. | spa |
dc.relation.references | M. Reza Bagerzadeh Karimi and M. Mahdi Bagerzadeh Karimi, “Vibration Control of MDOF Structure under Earthquake Excitation using Passive Control and Active Control,” 2011. | spa |
dc.relation.references | M. S. Miah, E. N. Chatzi, V. K. Dertimanis, and F. Weber, “Real-time experimental validation of a novel semi-active control scheme for vibration mitigation,” Struct Control Health Monit, vol. 24, no. 3, Mar. 2017, doi: 10.1002/stc.1878. | spa |
dc.relation.references | B. Kasemi, A. G. A. Muthalif, M. M. Rashid, and S. Fathima, “Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper,” in Procedia Engineering, Elsevier Ltd, 2012, pp. 1221–1227. doi: 10.1016/j.proeng.2012.07.304. | spa |
dc.relation.references | S. Hossein, H. Lavasani, and R. Doroudi, “Meta heuristic active and semi-active control systems of high-rise building,” 2020. | spa |
dc.relation.references | L. Marian and A. Giaralis, “Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems,” Probabilistic Engineering Mechanics, vol. 38, pp. 156–164, Oct. 2014, doi: 10.1016/j.probengmech.2014.03.007. | spa |
dc.relation.references | M. C. Smith, “Synthesis of mechanical networks: The inerter,” IEEE Trans Automat Contr, vol. 47, no. 10, pp. 1648–1662, Oct. 2002, doi: 10.1109/TAC.2002.803532. | spa |
dc.relation.references | C. Papageorgiou and M. C. Smith, “Laboratory experimental testing of inerters.” | spa |
dc.relation.references | S. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, “Seismic Response Reduction Using Magnetorheological Dampers,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 5530–5535, Jun. 1996, doi: 10.1016/s1474-6670(17)58562-6. | spa |
dc.relation.references | B. B. F Spencer Jr, S. J. Dyke, A. Member, M. K. Sain, and J. D. Carlson, “Phenomenological model for Magnetorheological dampers,” 1997. [Online]. Available: http://www.rheonetic.com/mrfluid/ | spa |
dc.relation.references | N. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali, “Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA,” ISA Trans, vol. 46, no. 2, pp. 167–179, 2007, doi: 10.1016/j.isatra.2006.08.005. | spa |
dc.relation.references | S. Elias and V. Matsagar, “Research developments in vibration control of structures using passive tuned mass dampers,” 2017, Elsevier Ltd. doi: 10.1016/j.arcontrol.2017.09.015. | spa |
dc.relation.references | T. E. Saaed, G. Nikolakopoulos, J. E. Jonasson, and H. Hedlund, “A state-of-the art review of structural control systems,” Apr. 15, 2015, SAGE Publications Inc. doi: 10.1177/1077546313478294. | spa |
dc.relation.references | A. Khansefid and M. Ahmadizadeh, “An investigation of the effects of structural nonlinearity on the seismic performance degradation of active and passive control systems used for supplemental energy dissipation,” JVC/Journal of Vibration and Control, vol. 22, no. 16, pp. 3544–3554, Sep. 2016, doi: 10.1177/1077546314563969. | spa |
dc.relation.references | Z. Lu, Z. Wang, Y. Zhou, and X. Lu, “Nonlinear dissipative devices in structural vibration control: A review,” Jun. 09, 2018, Academic Press. doi: 10.1016/j.jsv.2018.02.052. | spa |
dc.relation.references | F. Oliveira, P. G. De Morais, and A. Suleman, “Semi-active Control of Base isolated Structures,” in Procedia Engineering, Elsevier Ltd, 2015, pp. 401–409. doi: 10.1016/j.proeng.2015.08.085. | spa |
dc.relation.references | K. Ghaedi, Z. Ibrahim, H. Adeli, and A. Javanmardi, “Invited review: Recent developments in vibration control of building and bridge structures,” 2017, Vibromechanika. doi: 10.21595/jve.2017.18900. | spa |
dc.relation.references | R. Ma, K. Bi, and H. Hao, “Inerter-based structural vibration control: A state-of-the art review,” Sep. 15, 2021, Elsevier Ltd. doi: 10.1016/j.engstruct.2021.112655. | spa |
dc.relation.references | I. Kourakis, “Structural Systems and Tuned Mass Dampers of Super-Tall Buildings: Case Study of Taipei 101,” 2007. | spa |
dc.relation.references | A. Bigdeli, M. Rahman, and D. Kim, “Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper,” Structural Engineering and Mechanics, vol. 88, no. 3, pp. 209–220, Nov. 2023, doi: 10.12989/sem.2023.88.3.209. | spa |
dc.relation.references | M. Jackson and D. M. Scott, “Increasing Efficiency in Tall Buildings by Damping,” 2010. | spa |
dc.relation.references | Y. Bigdeli and D. Kim, “Damping effects of the passive control devices on structural vibration control: TMD, TLC and TLCD for varying total masses,” KSCE Journal of Civil Engineering, vol. 20, no. 1, pp. 301–308, Jan. 2016, doi: 10.1007/s12205-015 0365-5. | spa |
dc.relation.references | S. S. Khodashahri and M. Jamshidi, “A Review of the Performance of Buildings Improved with Passive Structural Control Systems (Metal Dampers and Shear Walls with Self-Centered Steel Sheets),” 2020. | spa |
dc.relation.references | J. Katebi, M. Shoaei-parchin, M. Shariati, N. T. Trung, and M. Khorami, “Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures,” Eng Comput, vol. 36, no. 4, pp. 1539–1558, Oct. 2020, doi: 10.1007/s00366-019-00780-7. | spa |
dc.relation.references | A. Younespour and H. Ghaffarzadeh, “Structural active vibration control using active mass damper by block pulse functions,” JVC/Journal of Vibration and Control, vol. 21, no. 14, pp. 2787–2795, Oct. 2015, doi: 10.1177/1077546313519285. | spa |
dc.relation.references | S. Ulusoy, S. M. Nigdeli, and G. Bekdaş, “Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness,” Journal of Building Engineering, vol. 33, Jan. 2021, doi: 10.1016/j.jobe.2020.101647. | spa |
dc.relation.references | H. Garrido, O. Curadelli, and D. Ambrosini, “On the assumed inherent stability of semi-active control systems,” Eng Struct, vol. 159, pp. 286–298, Mar. 2018, doi: 10.1016/j.engstruct.2018.01.009. | spa |
dc.relation.references | M. Ostrowski, B. Blachowski, B. Poplawski, D. Pisarski, G. Mikulowski, and L. Jankowski, “Semi-active modal control of structures with lockable joints: general methodology and applications,” Struct Control Health Monit, vol. 28, no. 5, May 2021, doi: 10.1002/stc.2710. | spa |
dc.relation.references | H. S. Kim, “Development of seismic response simulation model for building structures with semi-active control devices using recurrent neural network,” Applied Sciences (Switzerland), vol. 10, no. 11, Jun. 2020, doi: 10.3390/app10113915. | spa |
dc.relation.references | F. Oliveira, P. Morais, and A. Suleman, “A comparative study of semi-active control strategies for base isolated buildings,” Earthquake Engineering and Engineering Vibration, vol. 14, no. 3, pp. 487–502, Sep. 2015, doi: 10.1007/s11803-015-0039-9. | spa |
dc.relation.references | S. Zareie and A. Zabihollah, “A semi-active SMA-MRF structural stability element for seismic control in marine structures,” Applied Ocean Research, vol. 100, Jul. 2020, doi: 10.1016/j.apor.2020.102161. | spa |
dc.relation.references | N. R. Fisco and H. Adeli, “Smart structures: Part II - Hybrid control systems and control strategies,” 2011, Sharif University of Technology. doi: 10.1016/j.scient.2011.05.035. | spa |
dc.relation.references | K. Miyamoto, D. Sato, and J. She, “A new performance index of LQR for combination of passive base isolation and active structural control,” Eng Struct, vol. 157, pp. 280–299, Feb. 2018, doi: 10.1016/j.engstruct.2017.11.070. | spa |
dc.relation.references | N. Mamat, F. Yakub, S. A. Z. S. Salim, M. Z. A. Rashid, S. Munawarah, and S. A. Roslan, “Seismic control of a building structure equip with hybrid mass damper using sliding mode control,” in Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2020, pp. 146–156. doi: 10.1007/978-981-13-9539-0_15. | spa |
dc.relation.references | F. D. S. Brandão and L. F. F. Miguel, “A New Methodology for Optimal Design of Hybrid Vibration Control Systems (MR + TMD) for Buildings under Seismic Excitation,” Shock and Vibration, vol. 2023, pp. 1–14, Sep. 2023, doi: 10.1155/2023/8159716. | spa |
dc.relation.references | S. Mahjoubi and S. Maleki, “Pipe dampers as passive devices for seismic control of isolated bridges,” Struct Control Health Monit, vol. 24, no. 2, Feb. 2017, doi: 10.1002/stc.1869. | spa |
dc.relation.references | F. Yang, R. Sedaghati, and E. Esmailzadeh, “Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review,” JVC/Journal of Vibration and Control, vol. 28, no. 7–8, pp. 812–836, Apr. 2022, doi: 10.1177/1077546320984305. | spa |
dc.relation.references | L. Tophøj, N. Grathwol, and S. Hansen, “Effective Mass of Tuned Mass Dampers,” Vibration, vol. 1, no. 1, pp. 192–206, Sep. 2018, doi: 10.3390/vibration1010014. | spa |
dc.relation.references | S. Elias and V. Matsagar, “Wind response control of tall buildings with a tuned mass damper,” Journal of Building Engineering, vol. 15, pp. 51–60, Jan. 2018, doi: 10.1016/j.jobe.2017.11.005. | spa |
dc.relation.references | A. K. Rathi and A. Chakraborty, “Reliability-based performance optimization of TMD for vibration control of structures with uncertainty in parameters and excitation,” Struct Control Health Monit, vol. 24, no. 1, Jan. 2017, doi: 10.1002/stc.1857. | spa |
dc.relation.references | S. Y. Zhang, J. Z. Jiang, and S. A. Neild, “Passive vibration control: A structure immittance approach,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2201, May 2017, doi: 10.1098/rspa.2017.0011. | spa |
dc.relation.references | F. Petrini, A. Giaralis, and Z. Wang, “Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting,” Eng Struct, vol. 204, Feb. 2020, doi: 10.1016/j.engstruct.2019.109904. | spa |
dc.relation.references | D. Pietrosanti, M. De Angelis, and A. Giaralis, “Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation,” Int J Mech Sci, vol. 184, Oct. 2020, doi: 10.1016/j.ijmecsci.2020.105762. | spa |
dc.relation.references | F. Casciati, J. Rodellar, and U. Yildirim, “Active and semi-active control of structures-theory and applications: A review of recent advances,” Jul. 2012. doi: 10.1177/1045389X12445029. | spa |
dc.relation.references | A. H. Mohd Yamin, I. Z. Mat Darus, N. Mohd Nor, M. H. Ab Talib, and J. Bahru, “Intelligent Cuckoo Search Algorithm of PID and Skyhook Controller for Semi Active Suspension System using Magneto-Rheological Damper,” 2021. | spa |
dc.relation.references | D. Cruze, H. G, S. V. S. Jebadurai, S. L, T. D, and S. S. J. E. Christy, “A Review on the Magnetorheological Fluid, Damper and Its Applications for Seismic Mitigation,” Civil Engineering Journal, vol. 4, no. 12, p. 3058, Dec. 2018, doi: 10.28991/cej03091220. | spa |
dc.relation.references | R. Jiang, X. Rui, M. Wei, F. Yang, H. Zhu, and L. Gu, “A phenomenological model of magnetorheological damper considering fluid deficiency,” J Sound Vib, vol. 562, Oct. 2023, doi: 10.1016/j.jsv.2023.117851. | spa |
dc.relation.references | Ö. Şahin et al., “A comparative evaluation of semi-active control algorithms for real time seismic protection of buildings via magnetorheological fluid dampers,” Journal of Building Engineering, vol. 42, Oct. 2021, doi: 10.1016/j.jobe.2021.102795. | spa |
dc.relation.references | H. Hojat Jalali, M. Fahimi Farzam, S. A. Mousavi Gavgani, and G. Bekdaş, “Semi active control of buildings using different control algorithms considering SSI,” Journal of Building Engineering, vol. 67, May 2023, doi: 10.1016/j.jobe.2023.105956. | spa |
dc.relation.references | M. S. Miah, E. N. Chatzi, V. K. Dertimanis, and F. Weber, “Nonlinear modeling of a rotational MR damper via an enhanced Bouc-Wen model,” Smart Mater Struct, vol. 24, no. 10, Sep. 2015, doi: 10.1088/0964-1726/24/10/105020. | spa |
dc.relation.references | X. X. Bai, P. Chen, and L. J. Qian, “Principle and validation of modified hysteretic models for magnetorheological dampers,” Smart Mater Struct, vol. 24, no. 8, Aug. 2015, doi: 10.1088/0964-1726/24/8/085014. | spa |
dc.relation.references | L. Wang, “Building Structure Control System Application Research Based on Fuzzy Logic Algorithm,” IEEE Access, vol. 11, pp. 144799–144811, 2023, doi: 10.1109/ACCESS.2023.3342632. | spa |
dc.relation.references | M. Z. Samani and M. Ghanooni-Bagha, “A fuzzy logic controller for optimal structural control using MR dampers and particle swarm optimization,” Journal of Vibroengineering, vol. 19, no. 3, pp. 1901–1914, 2017, doi: 10.21595/jve.2017.17802. | spa |
dc.relation.references | B. Mehrkian, A. Bahar, and A. Chaibakhsh, “Semiactive conceptual fuzzy control of magnetorheological dampers in an irregular base-isolated benchmark building optimized by multi-objective genetic algorithm,” Struct Control Health Monit, vol. 26, no. 3, Mar. 2019, doi: 10.1002/stc.2302. | spa |
dc.relation.references | M. Braz-César and R. Barros, “Optimization of a Fuzzy Logic Controller for MR Dampers Using an Adaptive Neuro-Fuzzy Procedure,” International Journal of Structural Stability and Dynamics, vol. 17, no. 5, Jun. 2017, doi: 10.1142/S0219455417400077. | spa |
dc.relation.references | P. Pei, S. T. Quek, and Y. Peng, “Multiobjective Reliability-Based Design Optimization of the Fuzzy Logic Controller for MR Damper-Based Structures,” Struct Control Health Monit, vol. 2023, 2023, doi: 10.1155/2023/4009397. | spa |
dc.relation.references | M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic algorithms: A comprehensive review,” in Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, Elsevier, 2018, pp. 185–231. doi: 10.1016/B978-0-12-813314-9.00010-4. | spa |
dc.relation.references | S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-Heuristic Algorithms and Their Relevance to the Real World: A Survey,” INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS, vol. 2, pp. 296–304, 2015, [Online]. Available: http://www.ijcert.org | spa |
dc.relation.references | M. Z. Samani and M. Ghanooni-Bagha, “A fuzzy logic controller for optimal structural control using MR dampers and particle swarm optimization,” Journal of Vibroengineering, vol. 19, no. 3, pp. 1901–1914, 2017, doi: 10.21595/jve.2017.17802. | spa |
dc.relation.references | H. Gao, Y. Shi, C. M. Pun, and S. Kwong, “An Improved Artificial Bee Colony Algorithm with its Application,” IEEE Trans Industr Inform, vol. 15, no. 4, pp. 1853-1865, Apr. 2019, doi: 10.1109/TII.2018.2857198. | spa |
dc.relation.references | Q. Xu, J. Chen, X. Liu, J. Li, and C. Yuan, “An ABC-BP-ANN algorithm for semiactive control for Magnetorheological damper,” KSCE Journal of Civil Engineering, vol. 21, no. 6, pp. 2310–2321, Sep. 2017, doi: 10.1007/s12205-016-0680-5. | spa |
dc.relation.references | S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008. | spa |
dc.relation.references | M. Castro-Osorio, D. Vallejo-Paniagua, V. Valencia-Valencia, L. A. Lara-Valencia, and J. J. Blandón-Valencia, “OPTIMAL DESIGN OF A TUNED MASS DAMPER INERTER USING A WHALE OPTIMIZATION ALGORITHM FOR THE CONTROL OF BUILDINGS SUBJECTED TO GROUND ACCELERATIONS,” in COMPDYN Proceedings, National Technical University of Athens, 2023. doi: 10.7712/120123.10743.20231. | spa |
dc.relation.references | X. Lü et al., “Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm,” Feb. 01, 2020, Elsevier Ltd. doi: 10.1016/j.enconman.2020.112474. | spa |
dc.relation.references | H. Tran-Ngoc, S. Khatir, H. Ho-Khac, G. De Roeck, T. Bui-Tien, and M. Abdel Wahab, “Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures,” Compos Struct, vol. 262, Apr. 2021, doi: 10.1016/j.compstruct.2020.113339. | spa |
dc.relation.references | B. Keshtegar, M. Motezaker, R. Kolahchi, and N. T. Trung, “Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping,” Thin-Walled Structures, vol. 154, Sep. 2020, doi: 10.1016/j.tws.2020.106820. | spa |
dc.relation.references | S. Djerouni, A. Ounis, B. Athamnia, M. Charrouf, M. Abdeddaim, and N. Djedoui, “View of Optimal seismic response using a Passive Tuned Mass Damper Inerter (TMDI),” Journal of Building Materials and Structures, 2020. | spa |
dc.relation.references | M. C. Smith, “Synthesis of mechanical networks: The inerter,” IEEE Trans Automat Contr, vol. 47, no. 10, pp. 1648–1662, Oct. 2002, doi: 10.1109/TAC.2002.803532. | spa |
dc.relation.references | J. Dai, Z. D. Xu, and P. P. Gai, “Tuned mass-damper-inerter control of wind induced vibration of flexible structures based on inerter location,” Eng Struct, vol. 199, Nov. 2019, doi: 10.1016/j.engstruct.2019.109585. | spa |
dc.relation.references | L. Marian and A. Giaralis, “The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting,” Smart Struct Syst, vol. 19, no. 6, pp. 665–678, Jun. 2017, doi: 10.12989/sss.2017.19.6.665. | spa |
dc.relation.references | X. Kang, Q. Huang, Z. Wu, J. Tang, X. Jiang, and S. Lei, “A Review of the Tuned Mass Damper Inerter (TMDI) in Energy Harvesting and Vibration Control: Designs, Analysis and Applications,” Mar. 11, 2024, Tech Science Press. doi: 10.32604/cmes.2023.043936. | spa |
dc.relation.references | C. Liu, L. Chen, H. P. Lee, Y. Yang, and X. Zhang, “A review of the inerter and inerter-based vibration isolation: Theory, devices, and applications,” Sep. 01, 2022, Elsevier Ltd. doi: 10.1016/j.jfranklin.2022.07.030. | spa |
dc.relation.references | D. Pietrosanti, M. De Angelis, and A. Giaralis, “Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation,” Int J Mech Sci, vol. 184, Oct. 2020, doi: 10.1016/j.ijmecsci.2020.105762. | spa |
dc.relation.references | S. J. Dyke, F. Spencer, M. K. Sain, and J. D. Carlson, “An experimental study of MR dampers for seismic protection,” 1998. [Online]. Available: http://iopscience.iop.org/0964-1726/7/5/012 | spa |
dc.relation.references | Y. Rabbani, M. Ashtiani, and S. H. Hashemabadi, “An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect,” Soft Matter, vol. 11, no. 22, pp. 4453–4460, Jun. 2015, doi: 10.1039/c5sm00625b. | spa |
dc.relation.references | W. Song, S. Hayati, and S. Zhou, “Real-time model updating for magnetorheological damper identification: An experimental study,” Smart Struct Syst, vol. 20, no. 5, pp. 619–636, Nov. 2017, doi: 10.12989/sss.2017.20.5.619. | spa |
dc.relation.references | Z. Xu, Y. Yu, H. Yachi, J. Ji, Y. Todo, and S. Gao, “A novel memetic whale optimization algorithm for optimization,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2018, pp. 384–396. doi: 10.1007/978-3-31993815-8_37. | spa |
dc.relation.references | M. A. El Aziz, A. A. Ewees, and A. E. Hassanien, “Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation,” Expert Syst Appl, vol. 83, pp. 242–256, Oct. 2017, doi: 10.1016/j.eswa.2017.04.023. | spa |
dc.relation.references | M. M. Gupta, “Forty-five years of fuzzy sets and fuzzy logic-A tribute to professor Lotfi A. Zadeh (the father of fuzzy logic),” 2011, Sharif University of Technology. doi: 10.1016/j.scient.2011.04.023. | spa |
dc.relation.references | T. Zhang, Y. Liu, Y. Rao, X. Li, and Q. Zhao, “Optimal design of building environment with hybrid genetic algorithm, artificial neural network, multivariate regression analysis and fuzzy logic controller,” Build Environ, vol. 175, May 2020, doi: 10.1016/j.buildenv.2020.106810. | spa |
dc.relation.references | Y. Liu, F. Gordaninejad, C. A. Evrensel, and G. Hitchcock, “An Experimental Study on Fuzzy Logic Vibration Control of a Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers,” 2001. [Online]. Available: http://Web.me.unr.edu/ciml | spa |
dc.relation.references | K. Takin, R. Doroudi, and S. Doroudi, “Vibration control of structure by optimising the placement of semi-active dampers and fuzzy logic controllers,” Australian Journal of Structural Engineering, vol. 22, no. 3, pp. 222–235, 2021, doi: 10.1080/13287982.2021.1957198. | spa |
dc.relation.references | L. H. Zong, X. L. Gong, C. Y. Guo, and S. H. Xuan, “Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system,” Vehicle System Dynamics, vol. 50, no. 7, pp. 1025–1041, Jul. 2012, doi: 10.1080/00423114.2011.645489. | spa |
dc.relation.references | G. Mester, “Design of the Fuzzy Control Systems Based on Genetic Algorithm for Intelligent Robots,” Interdisciplinary Description of Complex Systems, vol. 12, no. 3, pp. 245–254, 2014, doi: 10.7906/indecs.12.3.4. | spa |
dc.relation.references | P. Ochoa, C. Peraza, P. Melin, O. Castillo, S. Park, and Z. W. Geem, “Enhancing Control Systems through Type-3 Fuzzy Logic Optimization,” Mathematics, vol. 12, no. 12, Jun. 2024, doi: 10.3390/math12121792. | spa |
dc.relation.references | V. Valencia Valencia and L. A. Lara-Valencia, “Hybrid Optimization Algorithm Based on Whale Optimization and Fuzzy Logic for Magnetorheological Dampers,” Ingeniería y Competitividad, vol. 26, no. 3, Sep. 2024, doi: 10.25100/iyc.v26i3.14128. | spa |
dc.relation.references | H.-J. Jung, B. F. Spencer, M. Asce, and I.-W. Lee, “Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers”, doi: 10.1061/ASCE0733-94452003129:7873. | spa |
dc.relation.references | “Center for engineering strong-motion data (CESMD).” Accessed: Dec. 25, 2022. [Online]. Available: www.strongmotioncenter.org. | spa |
dc.relation.references | A. Ghobarah, “On drift limits associated with different damage levels,” 2004. [Online]. Available: https://www.researchgate.net/publication/272353679 | spa |
dc.relation.references | D. M. Bedoya Zambrano, “Control semi-activo de estructuras empleando un algoritmo genético tipo NSGA-II combinado con lógica difusa para administrar fuerzas de control en amortiguadores magnetoreológicos MR,” Universidad Nacional de Colombia, Medellin, 2021. | spa |
dc.relation.references | L. A. Lara Valencia, “ESTUDO DE ALGORITMOS DE CONTROLE SEMI-ATIVO APLICADOS A AMORTECEDORES MAGNETORREOLÓGICOS,” UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL, Brasilia, 2011. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | spa |
dc.subject.lemb | Ingeniería de estructuras | |
dc.subject.lemb | Dinámica de estructuras | |
dc.subject.lemb | Diseño sismo resistente | |
dc.subject.lemb | Lógica difusa | |
dc.subject.lemb | Cargas dinámicas | |
dc.subject.lemb | Riesgo sísmico | |
dc.subject.proposal | Dynamic of structures | eng |
dc.subject.proposal | Structural control | eng |
dc.subject.proposal | Fuzzy Logic | eng |
dc.subject.proposal | Whale Optimization Algorithm | eng |
dc.subject.proposal | Magnetorheological dampers | eng |
dc.subject.proposal | TMDI | eng |
dc.subject.proposal | Dinámica de estructuras | spa |
dc.subject.proposal | Control estructural | spa |
dc.subject.proposal | Lógica difusa | spa |
dc.subject.proposal | Algoritmo de optimización de la ballena | spa |
dc.subject.proposal | Amortiguador Magnetoreológico | spa |
dc.title | Optimization of control forces of a hybrid system based on TMDI and magnetorheological dampers for the reduction of response in structures subject to seismic excitations | eng |
dc.title.translated | Optimización de fuerzas de control de un sistema híbrido basado en TMDI y amortiguadores magnetoreológicos para la reducción de respuesta en estructuras sujetas a la acción de cargas sísmicas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152471519.2025.pdf
- Tamaño:
- 26.93 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Estructuras
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: