Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes

dc.contributor.advisorMonsalve Mejía, Gaspar
dc.contributor.authorLeón Vasco, Santiago
dc.date.accessioned2022-07-07T15:20:19Z
dc.date.available2022-07-07T15:20:19Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractThe growth of accretionary orogens, such as the northern Andes, involves both subduction-related tectonics and the collision of exotic terranes, including oceanic plateaus and island arcs. These contrasting tectonic regimes control the spatiotemporal evolution of deformational patterns and topography, whose signal is preserved in the tectonostratigraphic record of marginal basins, which is particularly true for forearc systems. This work presents a detailed geochronological and compositional characterization of Cretaceous magmatic rocks and Neogene strata of the northern Colombian forearc basin (Atrato Basin), which record the long-term evolution of the northwesternmost Andean region, since the early interactions with the Caribbean plate to the most recent shallow subduction of the Nazca plate. New petrochronological data from the Cupica and Tribugá gulfs allowed the recognition of a previously undocumented Upper-Cretaceous arc-related magmatic unit, which likely represents the earliest activity of the intra-oceanic Central American arc and the coeval island arc nowadays exposed along the north-Andean Western Cordillera. The collision of the latter and its plateau-like basement caused a major topographic uplift of the Colombian Central Cordillera during the Late Cretaceous-Paleocene, as suggested by new paleoelevation estimations presented in this work. Such collisional episode marked the early constitution of the northwestern Colombian forearc, whose evolution was subsequently controlled by the Neogene transition from the collision of the Central American arc and the subduction of the Nazca plate. A comprehensive tectonostratigraphic analysis of the Neogene infill of the Atrato Basin allowed identifying three main tectonic phases, which drove changes in the configuration of source areas and the depositional settings. First, the collision of the Central American arc against northwestern South America was recorded by the accumulation in a tectonically active back-arc basin of Oligocene-middle Miocene deep-marine strata sourced by both colliding domains. The advance of the collision triggered basin inversion and shallowing of accumulation depths during the middle Miocene, as well as accelerated erosional exhumation of the continental paleomargin and increased siliciclastic input to suture-related and the colliding back-arc basin. Second, the transition from collision to the subduction of the Nazca plate during the middle-late Miocene caused the formation of a post-collisional arc in northwestern Colombia, as well as the initial topographic uplift of the newly established forearc basin (former allochthonous back-arc) nearby the suture zone. This was accompanied by a major shallowing of accumulation depths and a dramatic change in the detrital signal of forearc deposits, which were isolated from continental source areas (i.e. Western Cordillera) by newly uplifted ranges. Finally, the late Miocene flattening of the subducting Nazca slab beneath northern Colombia caused widespread deformation that drove the uplift of the outer forearc high, represented by the coastal Baudó Range, and the establishment of the modern physiographic configuration. This episode led to the fragmentation of the forearc basin into an outer (coastal) and inner (inland) segments and strong reworking of older strata, as suggested by the provenance of late Miocene to Pliocene rocks accumulated in high-energy fluvial environments. The pulsated nature of Miocene mountain building along the northwesternmost Andean forearc, as a consequence of interspersed collisional and subduction-related tectonics, seemingly played a major role in the biogeographic evolution of the region and the constitution of the modern extremely humid tropical rainforest that hosts a biodiversity hotspot. This work allowed proving how valuable the tectonostratigraphic record of forearc basins and the surrounding mountain ranges is to disentangle the effects of a changing subduction system on the upper-plate landscape evolution, which, as demonstrated in this work, could be successfully studied through a combination of petrochronological, stratigraphic and structural analyseseng
dc.description.abstractEl crecimiento de orógenos acrecionarios como los Andes del norte, involucra procesos tectónicos relacionados con subducción, así como la colisión de terrenos exóticos, incluyendo plateaux oceánicos y arcos de islas. Estos regímenes tectónicos contrastantes controlan la evolución espaciotemporal de los patrones de deformación y la topografía, cuya señal es preservada en el registro tectonoestratigráfico de las cuencas marginales, lo cual es particularmente cierto para sistemas de antearco. Este trabajo presenta una caracterización geocronológica y composicional detallada de las rocas magmáticas Cretácicas y sedimentos Neógenos del antearco norte de Colombia (Cuenca Atrato), las cuales registran la evolución de largo plazo de la región más noroccidental de los Andes, desde las interacciones tempranas con la placa Caribe hasta la más reciente subducción plana de la placa de Nazca. Nuevos datos petrocronológicos de sedimentos modernos de los golfos de Cupica y Tribugá permitieron reconocer una unidad magmática del Cretácico Tardío afín con un arco de islas que no había sido previamente documentada, la cual podría representar la actividad más temprana del arco Centro Americano y el arco de islas ahora expuesto a lo largo de la Cordillera Occidental de los Andes del norte. La colisión de este último, en conjunto con su basamento de tipo plateau, durante el Cretácico Tardío-Paleoceno, causó un importante levantamiento topográfico de la Cordillera Central Colombiana, como lo sugieren nuevas estimaciones de paleoelevación presentadas en este trabajo. Este episodio colisional marcó la conformación temprana del antearco noroccidental Colombiano, cuya evolución fue subsecuentemente controlada por la transición Neógena de colisión del arco Centro Americano y la subducción de la placa de Nazca. Un análisis tectonoestratigráfico integral del relleno Neógeno de la Cuenca Atrato permitió identificar tres fases tectónicas principales, las cuales detonaron cambios en la configuración de las áreas fuente y de los ambientes deposicionales. Primero, la colisión del arco Centro Americano con el noroccidente de Suramérica fue registrado por la acumulación, en una cuenca tras-arco tectónicamente activa, de rocas marinas profundas del Oligoceno-Mioceno medio con procedencia de ambos dominios en colisión. El avance del evento colisional detonó la inversión de la cuenca y la somerización de las profundidades de acumulación durante el Mioceno Medio, así como la exhumación por erosión acelerada de la paleomargen continental y el incremento del flujo siliciclástico hacia la cuenca de sutura y la cuenca de tras-arco en colisión. Segundo, la transición de colisión a subducción de la placa de Nazca durante el Mioceno medio-tardío causó la formación de un arco poscolisional en el noroccidente de Colombia, y también el levantamiento topográfico inicial de la recientemente establecida cuenca de antearco (antes tras-arco alóctono) en cercanías a la zona de sutura. Esto fue acompañado por una somerización importante de los ambientes de acumulación y un cambio dramático en la señal detrítica de los depósitos de antearco, los cuales fueron aislados de fuentes continentales (i.e. Cordillera Occidental) por montañas recientemente levantadas. Finalmente, el aplanamiento de la losa subducente de la placa de Nazca por debajo del norte de Colombia causó deformación ampliamente distribuida y condujo al levantamiento del alto externo del antearco, representado por la Serranía de Baudó, y al establecimiento de las condiciones fisiográficas modernas. Este episodio llevó a la fragmentación de la cuenca de antearco en un segmento externo (costero) y uno interno (continental), así como al fuerte retrabajamiento de rocas más antiguas, como lo sugiere la procedencia de rocas del Mioceno tardío al Plioceno acumuladas en ambientes fluviales de alta energía. La naturaleza episódica de la construcción de montañas durante el Mioceno a lo largo del antearco más noroccidental de los Andes, como consecuencia de tectónica colisional y de subducción, jugó, aparentemente, un papel importante en la evolución biogeográfica de la región y en la constitución del bosque tropical extremadamente húmedo de la actualidad, el cual hospeda un punto caliente de biodiversidad. Este trabajo permitió probar lo valioso que es el registro tectonoestratigráfico de las cuencas de antearco y las cadenas de montaña adyacentes para revelar los efectos de un sistema de subducción cambiante en la evolución del paisaje de la placa superior. Esto, como pudo demostrarse en este trabajo, puede ser exitosamente estudiado a través de la integración de análisis petrocronológicos, estratigráficos y estructurales. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaGeodinámicaspa
dc.format.extentxviii, 170 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81688
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesAizprua, C., Witt, C., Johansen, S.E., Barba, D., 2019. Cenozoic stages of forearc evolution following the accretion of a sliver from the Late Cretaceous-Caribbean Large Igneous Province: SW Ecuador-NW Peru. Tectonics 38, 1441–1465. https://doi.org/10.1029/2018TC005235spa
dc.relation.referencesAllen, P.A., Allen, J.R., 2013. Basin analysis: Principles and application to petroleum play assessment, 3rd ed. Wiley-Blackwellspa
dc.relation.referencesAlmeida, J.J., Villamizar, F., 2012. Petrografía y geoquímica del Batolito Antioqueño en un sector del municipio de Santa Rosa de Osos, Antioquia (Bachelor thesis). Universidad Industrial de Santander, Bucaramangaspa
dc.relation.referencesÁlvarez-Gómez, J.A., 2019. FMC -arthquake focal mechanis Ems data management, cluster and classification. Softw. X 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008spa
dc.relation.referencesArnott, R.W.C., 2010. Deep-marine sediments and sedimentary systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 295–322spa
dc.relation.referencesAvellaneda-Jiménez, D.S., Cardona, A., Valencia, V., Barbosa, J.S., Jaramillo, J.S., Monsalve, G., Ramírez-Hoyos, L.F., 2020. Erosion and regional exhumation of an Early Cretaceous subduction/accretion complex in the Northern Andes. Int. Geol. Rev. 62, 186–209. https://doi.org/10.1080/00206814.2019.1596042spa
dc.relation.referencesBaes, M., Sobolev, S., Gerya, T., Brune, S., 2020. Plume-induced subduction initiation: Single-slab or multi-slab subduction? Geochemistry, Geophys. Geosystems 21, e2019GC008663. https://doi.org/10.1029/2019GC008663spa
dc.relation.referencesBaes, M., Stern, R.J., Whattam, S., Gerya, T. V., Sobolev, S. V., 2021. Plume-induced subduction initiation: Revisiting models and observations. Front. Earth Sci. 9, 1032. https://doi.org/10.3389/feart.2021.766604spa
dc.relation.referencesBaillard, C., Crawford, W.C., Ballu, V., Regnier, M., Pelletier, B., Garaebiti, E., 2015. Seismicity and shallow slab geometry in the central Vanuatu subduction zone. J. Geophys. Res. Solid Earth 120, 5606–5623. https://doi.org/10.1002/2014JB011853spa
dc.relation.referencesBaker, P.A., Fritz, S.C., Dick, C.W., Eckert, A.J., Horton, B.K., Manzoni, S., Ribas, C.C., Garzione, C.N., Battisti, S., 2014. The emerging field of geogenomics: Constraining geological problems with genetic data. Earth-Science Rev. 135, 38–47. https://doi.org/10.1016/j.earscirev.2014.04.001spa
dc.relation.referencesBarbosa-Espitia, A.A., Kamenov, G.D., Foster, D.A., Restrepo-Moreno, S.A., Pardo-Trujillo, A., 2019. Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos 348–349, 105185. https://doi.org/10.1016/j.lithos.2019.105185spa
dc.relation.referencesBayona, G., 2018. El inicio de la emergencia de los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 1–15. https://doi.org/10.18257/raccefyn.632spa
dc.relation.referencesBayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A.M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez-Marulanda, S., Cárdenas-Rozo, A.L., 2020. Unraveling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra-basinal deformation in the northern Eastern Cordillera of Colombia. Basin Res. https://doi.org/10.1111/bre.12496spa
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., Ibañez-Mejia, M., 2012. Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth Planet. Sci. Lett. 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015spa
dc.relation.referencesBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull. 120, 1171–1197. https://doi.org/10.1130/B26187.1spa
dc.relation.referencesBecker, T.W., Faccenna, C., Humphreys, E.D., Lowry, A.R., Miller, M.S., 2014. Static and dynamic support of western United States topography. Earth Planet. Sci. Lett. 402, 234–246. https://doi.org/10.1016/j.epsl.2013.10.012spa
dc.relation.referencesBelousova, E., Griffin, W., O’Reilly, S.Y., Fisher, N., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. to Mineral. Petrol. 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7spa
dc.relation.referencesBlanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785spa
dc.relation.referencesBlisniuk, P.M., Stern, L.A., Chamberlain, P., Zeitler, P.K., Ramos, V.A., Sobel, E.R., Haschke, M., Strecker, M. R., Warkus, F., 2006. Links between mountain uplift, climate, and surface processes in the Southern Patagonian Andes, in: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-. J., Ramos, V.A., Strecker, Manfred R., Wigger, P. (Eds.), The Andes, Active Subduction Orogeny. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 429–440. https://doi.org/10.1007/978-3-540-48684-8_20spa
dc.relation.referencesBlow, W.A., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy, in: Bronnimann, P., Renz, H.H. (Eds.), First International Conference on Planktonic Microfossils. Geneva, pp. 199–421spa
dc.relation.referencesBorrero, C., Pardo, A., Jaramillo, C.M., Osorio, J.A., Cardona, A., Flores, A., Echeverri, S., Rosero, S., García, J., Castillo, H., 2012. Tectonostratigraphy of the Cenozoic Tumaco forearc basin (Colombian Pacific) and its relationship with the northern Andes orogenic build up. J. South Am. Earth Sci. 39, 75–92. https://doi.org/10.1016/j.jsames.2012.04.004spa
dc.relation.referencesBoschman, L.M., van der Wiel, E., Flores, K.E., Langereis, C.G., van Hinsbergen, D.J.J., 2019. The Caribbean and Farallon plates connected: Constraints from stratigraphy and paleomagnestism of the Nicoya Peninsula, Costa Rica. J. Geophys. Res. Solid Earth 124, 6243–6266. https://doi.org/10.1029/2018JB016369spa
dc.relation.referencesBostock, M.G., Hyndman, R.D., Rondenay, S., Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538. https://doi.org/10.1038/417536aspa
dc.relation.referencesBoutelier, D., Chemenda, A., Burg, J.P., 2003. Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth Planet. Sci. Lett. 212, 31–45. https://doi.org/10.1016/S0012-821X(03)00239-5spa
dc.relation.referencesBrown, D., Alvarez-Marrón, J., Pérez-Estaún, A., Puchkov, V., Gorozhanina, Y., Ayarza, P., 2001. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc-continent collision in the southern Urals. Tectonics 20, 364–375. https://doi.org/10.1029/2001TC900002spa
dc.relation.referencesBuchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner-Mora, C., Ulianov, A., 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophys. Geosystems 11, 1–35. https://doi.org/10.1029/2009GC002901spa
dc.relation.referencesBuchs, D.M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., Pitchford, S., 2019a. Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016spa
dc.relation.referencesBuchs, D.M., Irving, D., Coombs, H., Miranda, R., Wang, J., Coronado, M., Arrocha, R., Lacerda, M., Goff, C., Almengor, E., Portugal, E., Franceschi, P., Chichaco, E., Redwood, S.D., 2019b. Volcanic contribution to the emergence of Central Panama in the Early Miocene. Sci. Rep. 9, 1417. https://doi.org/10.1038/s41598-018-37790-2spa
dc.relation.referencesBuchs, D.M., Kerr, A.C., Brims, J.C., Zapata-Villada, J.P., Correa-Restrepo, T., Rodríguez, G., 2018. Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth Planet. Sci. Lett. 499, 62–73. https://doi.org/10.1016/j.epsl.2018.07.020spa
dc.relation.referencesBustamante, C., Cardona, A., Archanjo, C.J., Bayona, G., Lara, M., Valencia, V., 2017. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025spa
dc.relation.referencesCalvo, C., 2003. Provenance of plutonic detritus in cover sandstones of Nicoya Complex, Costa Rica: Cretaceous unroofing history of a Mesozoic ophiolite sequence. Geol. Soc. Am. Bull. 115, 832–844. https://doi.org/10.1130/0016-7606(2003)115<0832:POPDIC>2.0.CO;2spa
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032spa
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo-Trujillo, A., Schmitt, A.K., Mejía, D., Arenas, J.C., 2020. Cretaceous record from a Mariana to an Andean-type margin in the Central Cordillera of the Colombian Andes, in: Gómez, J., Pinilla-Pachón, A.O. (Eds.), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 36, Bogotá, p. 39. https://doi.org/10.32685/pub.esp.36.2019.10spa
dc.relation.referencesCardona, A., Valencia, V., Bayona, G., Duque, J., Ducea, M.N., Gehrels, G.E., Jaramillo, C., Montes, C., Ojeda, G., Ruiz, J., 2011. Early-subduction-related orogen in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nov. 23, 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.xspa
dc.relation.referencesCardona, A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani, U.G., Muñoz, C.M., 2014. Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean margin. J. South Am. Earth Sci. 50, 75–92. https://doi.org/10.1016/j.jsames.2013.12.006spa
dc.relation.referencesCase, J.E., Duran, L.G., López, A., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Geol. Soc. Am. Bull. 82, 2685–2712.spa
dc.relation.referencesCassel, E.J., Smith, M.E., Jicha, B.R., 2018. The impact of slab rollback on Earth’s surface: Uplift and extension in the hinterland of the North American Cordillera. Geophys. Res. Lett. 45, 10996–11004. https://doi.org/10.1029/2018GL079887spa
dc.relation.referencesCawood, P.A., Kröner, Alfred, Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history, in: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318, 1-36spa
dc.relation.referencesCediel, F., Restrepo, I., Marín-Cerón, M.I., Duque-Caro, H., Cuartas, C., Mora, C., Montenegro, G., García, E., Tovar, D., Muñoz, G., 2009. Geology and Hydrocarbon Potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia. Fondo Editorial EAFIT, Medellínspa
dc.relation.referencesCelestino, M.A.L., Miranda, T.S., Mariano, G., Lima, M.A., Carvalho, B.R.B.M., Falcão, T.C., Topan, J.G., Barbosa, J.A., Gomes, I.F., 2020. Fault damage zones width: Implications for the tectonic evolution of the northern border of the Araripe basin, Brazil, NE, Brazil. J. Struct. Geol. 104116. https://doi.org/10.1016/j.jsg.2020.104116spa
dc.relation.referencesChampagnac, J.-. D., Molnar, P., Sue, C., Herman, F., 2012. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 117, B02403. https://doi.org/10.1029/2011JB008348spa
dc.relation.referencesChang, Z., Vervoort, J.D., McClelland, W.C., Knaack, C., 2006. U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophys. Geosystems 7, 1–14. https://doi.org/10.1029 /2005GC001100spa
dc.relation.referencesChapman, J.B., Ducea, M.N., DeCelles, P.G., Profeta, L., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 43, 919–922. https://doi.org/10.1130/G36996.1spa
dc.relation.referencesChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048spa
dc.relation.referencesClift, P.D., Hartley, A.J., 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35, 503–506. https://doi.org/10.1130/G23584A.1spa
dc.relation.referencesClift, P.D., MacLeod, C.J., 1999. Slow rates of subbduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology 27, 411–414. https://doi.org/10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2spa
dc.relation.referencesClift, P.D., Pecher, I., Kukowski, N., Hampel, A., 2003. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22, 1023. https://doi.org/10.1029/2002TC001386spa
dc.relation.referencesClift, P.D., Vannucchi, P., 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001. https://doi.org/10.1029/2003RG000127spa
dc.relation.referencesCloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715spa
dc.relation.referencesCoates, A.G., Collins, L.S., Aubry, M.-P., Berggren, W.A., 2004. The Geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geol. Soc. Am. Bull. 116, 1327. https://doi.org/10.1130/B25275.1spa
dc.relation.referencesCollot, J.-Y., Ratzov, G., Silva, P., Proust, J.-N., Migeon, S., Hernández, M.J., Michaud, F., Pazmino, A., Barba Castillo, D., Alvarado, A., Khurama, S., 2019. The Esmeraldas Canyon: A helpful marker of the Pliocene-Pleistocene tectonic deformation of the North Ecuador-Southwest Colombia convergent margin. Tectonics 38, 3140–3166. https://doi.org/10.1029/2019TC005501spa
dc.relation.referencesCopete, J.C., Sánchez, M., Cámara-Leret, R., Balslev, H., 2019. Diversidad de comunidades de palmas en el Chocó biogeográfico y su relación con la precipitación. Caldasia 41, 358–369. https://doi.org/10.15446/caldasia.v41n2.66576spa
dc.relation.referencesCorrea, I., Morton, R., 2010. Pacific coast of Colombia, in: Bird, E.C.F. (Ed.), Encyclopedia of the World’s Coastal Landforms. Springer, Dordrecht, pp. 193–197. https://doi.org/10.1007/978-1-4020-8639-7spa
dc.relation.referencesCortés, M., Angelier, J., 2005. Current state of stress inthe northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020spa
dc.relation.referencesCrameri, F., Magni, V., Domeier, M., Shepard, G.E., Chotalia, K., Cooper, G., Eakin, C.M., Grima, A.G., Gürer, D., Király, A., Mulyukova, E., Peters, K., Robert, B., Thielmann, M., 2020. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750. https://doi.org/10.1038/s41467-020-17522-9spa
dc.relation.referencesDalrymple, R.W., 2010. Tidal depositional systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 201–232.spa
dc.relation.referencesDavies, J.H., von Blanckenburg, F., 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102. https://doi.org/10.1016/0012-821X(94)00237-Sspa
dc.relation.referencesDelph, J.R., Thomas, A.M., Levander, A., 2021. Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth Planet. Sci. Lett. 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724spa
dc.relation.referencesDePaolo, D.J., Harrison, T.M., Wielicki, M., Zhao, Z., Zhu, D.-C., Zhang, H., Mo, X., 2019. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 ans 32 Ma at the southern margin of Tibet. Gondwana Res. 73, 123–135. https://doi.org/10.1016/j.gr.2019.03.011spa
dc.relation.referencesDickinson, W.R., 1995. Forearc basins, in: Busby, C.J., Ingersoll, R. V. (Eds.), Tectonics of Sedimentary Basins. Blackwell Science, Oxford, UK, pp. 221–261.spa
dc.relation.referencesDickinson, W.R., 1985. Interpreting provenance relations from detrital modes of Sandstones, in: Zuffa, G.G. (Ed.), Provenance of Arenites. pp. 333–361.spa
dc.relation.referencesDickinson, W.R., 1973. Widths of modern arc-trench gaps proportional to past duration of igneous activity in associated magmatic arcs. J. Geophys. Res. 78, 3376–3389. https://doi.org/10.1029/JB078i017p03376spa
dc.relation.referencesDielforder, A., Hetzel, R., Oncken, O., 2020. Megathrust shear force controls mountain heigth at convergent plate margins. Nature 582, 225–229. https://doi.org/10.1038/s41586-020-2340-7spa
dc.relation.referencesDuarte, E., Cardona, A., Lopera, S., Valencia, V., Estupiñan, H., 2018. Provenance and diagenesis from two stratigraphic sections of the Lower Cretaceous Caballos Formation in the Upper Magdalena Valley: Geological and reservoir quality implications. Ciencia, Tecnol. y Futur. 8, 5–29. https://doi.org/10.29047/01225383.88spa
dc.relation.referencesDuque-Caro, H., 1990a. The Choco Block in the northwestern corner of South America : Structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci. 3, 71–84. https://doi.org/10.1016/0895-9811(90)90019-Wspa
dc.relation.referencesDuque-Caro, H., 1990b. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and evolution of the Panama Seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 203–234. https://doi.org/10.1016/0031-0182(90)90178-Aspa
dc.relation.referencesDuque-Caro, H., 1990c. Estratigrafía, paleoceanografía y paleobiogeografía de la Cuenca del Atrato y la evolución del Istmo de Panamá. Boletín Geológico 31, 4–45.spa
dc.relation.referencesDuque-Trujillo, J., Bustamante, C., Solari, L., Gómez-Mafla, A., Toro-Villegas, G., Hoyos, S., 2019. Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geol. 46, 82–101. https://doi.org/10.5027/andgeoV46n1-3120spa
dc.relation.referencesDürkefälden, A., Hoernle, K., Hauff, F., Wartho, J.-. A., van den Bogaard, P., Werner, R., 2019. Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province. Lithos 328–329, 69–87. https://doi.org/10.1016/j.lithos.2018.12.021spa
dc.relation.referencesDziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 86, 2825–2852. https://doi.org/10.1029/JB086iB04p02825spa
dc.relation.referencesEcheverri, S., Cardona, A., Pardo-Trujillo, A., Borrero, C., Rosero, S., López, S., 2015a. Correlación y geocronología Ar-Ar del basamento Cretácico y el relleno sedimentario Eoceno Superior - Mioceno (Aquitaniano inferior) de la cuenca de ante-arco de Tumaco, SW de Colombia. Rev. Mex. Ciencias Geológicas 32, 179–189.spa
dc.relation.referencesEcheverri, S., Cardona, A., Pardo-Trujillo, A., Monsalve, G., Valencia, V.A., Borrero, C., Rosero, S., López, S., 2015b. Regional provenance from southwestern Colombia fore-arc and intra-arc basins: implications for Middle to Late Miocene orogeny in the northern Andes. Terra Nov. 27, 356–363. https://doi.org/10.1111/ter.12167spa
dc.relation.referencesEcheverri, S., Pardo-Trujillo, A., Borrero, C., Cardona, A., Rosero, S., Celis, S.A., López, S.A., 2016. Estratigrafía del Neógeno Superior al sur de la Cuenca Tumaco (Pacífico Colombiano): La Formación Cascajal, propuesta de redefinición litoestratigráfica. Boletín Geol. 38, 43–60. https://doi.org/10.18273/revbol.v38n4-2016003spa
dc.relation.referencesEkström, G., Nettles, M., Dziewonski, A.M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002spa
dc.relation.referencesEncinas, A., Sagripanti, L., Rodríguez, M.P., Orts, D., Anavalón, A., Giroux, P., Otero, J., Echaurren, A., Zambrano, P., Valencia, V., 2021. Tectonosedimentary evolution of the Coastal Cordillera and Central Depression of south-Central Chila (36°30’-42°S). Earth-Science Rev. 213, 103465. https://doi.org/10.1016/j.earscirev.2020.103465spa
dc.relation.referencesEngland, P., Molnar, P., 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2spa
dc.relation.referencesEspurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics 27, TC3011. https://doi.org/10.1029/2007TC002175spa
dc.relation.referencesFaccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., Funiciello, F., Minelli, L., Piromallo, C.-, Billi, A., 2011. Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics 30, TC1003. https://doi.org/10.1029/2010TC002694spa
dc.relation.referencesFaccenna, C., Oncken, O., Holt, A.F., Becker, T.W., 2017. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett. 463, 189–201.spa
dc.relation.referencesFick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFinzel, E.S., Enkelmann, E., 2017. Miocene-Recent sediment flux in the south-central Alaskan forearc basin governed by flat-slab subduction. Geochemistry, Geophys. Geosystems 18, 1739–1760. https://doi.org/10.1002/2016GC006783spa
dc.relation.referencesFinzel, E.S., Enkelmann, E., Falkowski, S., Hedeen, T., 2016. Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska. Tectonics 35, 1735–1759. https://doi.org/10.1002/2016TC004171spa
dc.relation.referencesFinzel, E.S., Trop, J.M., Ridgway, K.D., Enkelmann, E., 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth Planet. Sci. Lett. 303, 348–360. https://doi.org/10.1016/j.epsl.2011.01.014spa
dc.relation.referencesFolk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas.spa
dc.relation.referencesFrohlich, C., 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 75, 193–198. https://doi.org/10.1016/0031-9201(92)90130-Nspa
dc.relation.referencesGalvis, J., 1980. Un arco de islas terciarion en el occidente Colombiano. Geol. Colomb. 11, 7–43.spa
dc.relation.referencesGao, X., Wang, K., 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science (80-. ). 345, 1038–1041. https://doi.org/10.1126/science.1255487spa
dc.relation.referencesGarzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science (80-. ). 320, 1304–1307. https://doi.org/10.1126/science.1148615spa
dc.relation.referencesGeldmacher, J., Hanan, B.B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., Kerr, A.C., 2003. Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophys. Geosystems 4, 1062. https://doi.org/10.1029/2002GC000477spa
dc.relation.referencesGenge, M.C., Witt, C., Chanier, F., Reynaud, J.-. Y., Calderon, Y., 2020. Outer forearc high control in an erosional subduction regime: The case of the central Peruvian forearc (6-10°S). Tectonophysics 228546. Gentry, A., 1986. Species richness and floristic composition of Chocó region plant communities. Caldasia 15, 71–91.spa
dc.relation.referencesGeorge, S.W.M., Horton, B.K., Vallejo, C., Jackson, L.J., Gutiérrez, E.G., 2021. Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology.spa
dc.relation.referencesGianni, G.M., Navarrete, C., Echaurren, A., Díaz, M., Butler, K.L., Horton, B.K., Encinas, A., Folguera, A., 2020. Northward propagation of Andean genesis: Insights from Early Cretaceous synorogenic deposits in the Aysén-Río Mayo basin. Gondwana Res. 77, 238–259. https://doi.org/10.1016/j.gr.2019.07.014spa
dc.relation.referencesGómez-Tapias, J., Montes-Ramírez, N.E., Almanza-Meléndez, M.F., Alcárcel-Gutiérrez, F.A., Madrid-Montoya, C.A., Diederix, H., 2017. Geological map of Colombia. Episodes 40, 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023spa
dc.relation.referencesGómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A., 2015. Notas explicativas: Mapa Geológico de Colombia, in: Gómez-Tapias, J., Almanza, M.F. (Eds.), Compilando La Geología de Colombia: Una Visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33, Bogotá, pp. 9–33spa
dc.relation.referencesGómez, E., Jordan, T.E., Allmendinger, R.W., Cardozo, N., 2005. Development of the Colombian foreland-basin system as consequence of diachronous exhumation of the northern Andes. Geol. Soc. Am. Bull. 117, 1272–1292. https://doi.org/10.1130/B25456.1spa
dc.relation.referencesGómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K., Kelley, S., Heizler, M., 2003. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geol. Soc. Am. Bull. 115, 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2spa
dc.relation.referencesGonzález, J.L., Shen, Z., Mauz, B., 2014. New constraints on Holocene uplift rates for the Baudo Mountain Range, northwestern Colombia. J. South Am. Earth Sci. 52, 194–202.spa
dc.relation.referencesGrimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hangøj, K., Schwarts, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35, 643–646. https://doi.org/10.1130/G23603A.1spa
dc.relation.referencesGrimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. to Mineral. Petrol. 170, 46. https://doi.org/10.1007/s00410-015-1199-3spa
dc.relation.referencesGroome, W.G., Thorkelson, D.J., 2009. The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics 464, 70–83. https://doi.org/10.1016/j.tecto.2008.07.003spa
dc.relation.referencesGutscher, M.-A., 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. J. South Am. Earth Sci. 15, 3–10. https://doi.org/10.1016/S0895-9811(02)00002-0spa
dc.relation.referencesGutscher, M.-A., Malavieille, J., Lallemand, S., Collot, J.-Y., 1999. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6spa
dc.relation.referencesGvirtzman, Z., Faccenna, C., Becker, T.W., 2016. Isostasy, flexure, and dynamic topography. Tectonophysics 683, 255–271. https://doi.org/10.1016/j.tecto.2016.05.041spa
dc.relation.referencesHaffer, J., 1967. On the geology of the Urabá and northern Chocó regions, northwestern Colombia.spa
dc.relation.referencesHastie, A.R., Kerr, A.C., 2010. Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth-Science Rev. 98, 283–293. https://doi.org/10.1016/j.earscirev.2009.11.001spa
dc.relation.referencesHawkins Jr., J.W., 1995. The geology of the Lau Basin, in: Taylor, B. (Ed.), Backarc Basins. Springer, Boston, pp. 63–138. https://doi.org/10.1007/978-1-4615-1843-3_3spa
dc.relation.referencesHayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362, 58–61. https://doi.org/10.1126/science.aat4723spa
dc.relation.referencesHayward, B.W., Carter, R., Grenfell, H.R., Hayward, J., 2001. Depth distribution of Recent deep-sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas. New Zeal. J. Geol. Geophys. 44, 555–587. https://doi.org/10.1080/00288306.2001.9514955spa
dc.relation.referencesHernández, M.J., Michaud, F., Collot, J.-Y., Proust, J.-N., d’Acremont, E., 2020. Evolution of the Ecuador offshore nonaccretionary-type forearc basin and margin segmentation. Tectonophysics 781, 228374. https://doi.org/10.1016/j.tecto.2020.228374spa
dc.relation.referencesHeuret, A., Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 149, 31–51. https://doi.org/10.1016/j.pepi.2004.08.022spa
dc.relation.referencesHeuret, A., Lallemand, S., Funiciello, F., Piromallo, C., Faccenna, C., 2011. Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophys. Geosystems 12, Q01004. https://doi.org/10.1029/2010GC003230spa
dc.relation.referencesHijmans, R., 2017. raster: Geographic data analysis and modeling. R package version 2.6-7 [WWW Document]. URL http://cran.r-project.org/package=rasterspa
dc.relation.referencesHincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Hoyos-Ramírez, L., Bayona, G., 2018. Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: Paleogeographic connections with the Caribbean Plate. Stud. Geophys. Geod. 62, 485–511. https://doi.org/10.1007/s11200-016-0678-yspa
dc.relation.referencesHolbourn, A., Henderson, A.S., MacLeod, N., 2013. Atlas of benthic foraminifera. John Wiley & Sons, Ltd.spa
dc.relation.referencesHorton, B.K., 2018a. Sedimentary record of Andean mountain building. Earth-Science Rev. 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025spa
dc.relation.referencesHorton, B.K., 2018b. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics 37, 402–429. https://doi.org/10.1002/2017TC004624spa
dc.relation.referencesHoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochemistry 53, 27–62. https://doi.org/10.2113/0530027spa
dc.relation.referencesHu, F., Wu, F., Chapman, J.B., Ducea, M.N., Ji, W., Liu, S., 2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202. https://doi.org/10.1029/2020GL089202spa
dc.relation.referencesHurtado, C., Roddaz, M., Santos, R. V., Baby, P., Antoine, P.-O., Dantas, E.L., 2018. Cretaceous early-Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Res. 63, 152–168. https://doi.org/10.1016/j.gr.2018.05.012spa
dc.relation.referencesJaramillo, C., 2018. Evolution of the Isthmus of Panama: Biological, paleoceanographic and paleoclimatological implications, in: Hoorn, C., Perrigo, A., Antonelli, A. (Eds.), Mountains, Climate and Biodiversity. John Wiley & Sons, Ltd, pp. 323–338spa
dc.relation.referencesJaramillo, J.S., Cardona, A., León, S., Valencia, V., Vinasco, C., 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35’N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc-growth and collision. J. South Am. Earth Sci. 76, 460–481. https://doi.org/10.1016/j.jsames.2017.04.012spa
dc.relation.referencesJaramillo, J.S., Cardona, A., Monsalve, G., Valencia, V., León, S., 2019. Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017spa
dc.relation.referencesJicha, B.R., Kay, S.M., 2018. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res. 360, 84–99. https://doi.org/10.1016/j.jvolgeores.2018.06.016spa
dc.relation.referencesJohnson, H.D., Baldwin, C.T., 1996. Shallow clastic seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 232–280spa
dc.relation.referencesJones, R.W., 1994. The challenger foraminifera. Oxford University Pressspa
dc.relation.referencesKasaras, I., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Papadimitriou, P., Voulgaris, N., Makropoulos, K. Popandopoulos, G., Moshou, A., 2014. The April-June 2007 Trichonis Lake earthquake swarm (W. Greece); New implications toward causative fault zone. J. Geodyn. 73, 60–80. https://doi.org/10.1016/j.jog.2013.09.004spa
dc.relation.referencesKerr, A.C., Marriner, G.F., Tarney, J., Nivia, A., Saunders, A.D., Thirlwall, M.F., Sinton, C.W., 1997. Cretaceous Basaltic Terranes in Western Colombia : Elemental, Chronological and Sr – Nd Isotopic Constraints on Petrogenesis. J. Petrol. 38, 677–702. https://doi.org/10.1093/petrology/38.6.677spa
dc.relation.referencesKerr, A.C., Pearson, D.G., Nowell, G.M., 2009. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328., pp. 809–827. https://doi.org/10.1144/SP328.31spa
dc.relation.referencesKerr, A.C., White, R. V., Thompson, P.M.E., Tarney, J., Saunders, A.D., 2003. No oceanic plateau - No Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution, in: Bartolini, C., Buffler, R.T., Blickwede, J.F. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: AAPG Memoir 79. pp. 126–168. https://doi.org/10.1306/M79877C6spa
dc.relation.referencesLamb, S., 2006. Shear stresses on megathrust: Implications for mountain building behind subduction zones. J. Geophys. Res. Solid Earth 111, B07401. https://doi.org/10.1029/2005JB003916spa
dc.relation.referencesLamb, S., Davis, P., 2003. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797. https://doi.org/10.1038/nature02049spa
dc.relation.referencesLara, M., Salazar-Franco, A.M., Silva-Tamayo, J.C., 2018. Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sediment. Geol. 373, 147–162. https://doi.org/10.1016/j.sedgeo.2018.06.003spa
dc.relation.referencesLaske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree global model of Earth’s crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658spa
dc.relation.referencesLeal-Mejía, H., Shaw, R.P., Melgarejo, J.C., 2019. Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 253–410. https://doi.org/10.1007/978-3-319-76132-9_5spa
dc.relation.referencesLee, C.-T.A., Thurner, S., Patterson, S., Cao, W., 2015. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 425, 105–119. https://doi.org/10.1016/j.epsl.2015.05.045spa
dc.relation.referencesLefeldt, M., Grevemeyer, I., 2008. Centroid depth and mechanism of trench-outer rise earthquakes. Geophys. J. Int. 172, 240–251. https://doi.org/10.1111/j.1365-246X.2007.03616.xspa
dc.relation.referencesLeón, S., Avellaneda-Jiménez, D.S., Monsalve, G., Bustamante, C., Valencia, V., In review. Evidence for magmatic activity of the Central American arc at ~100-84 Ma supports its spontaneous origin by plume-lithosphere interaction. Geol. Soc. Am. Bullspa
dc.relation.referencesLeón, S., Cardona, A., Mejía, D., Botello, G.E., Villa, V., Collo, G., Valencia, V., Zapata, S., Avellaneda-Jiménez, D.S., 2019. Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. J. South Am. Earth Sci. 94, 102229. https://doi.org/10.1016/j.jsames.2019.102229spa
dc.relation.referencesLeón, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition from collisional to subduction-related regimes: an example from Neogene Panama-Nazca-South-America interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785spa
dc.relation.referencesLeón, S., Monsalve, G., Bustamante, C., 2021a. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, e2021GL093362. https://doi.org/10.1029/2021GL093362spa
dc.relation.referencesLeón, S., Monsalve, G., Jaramillo, C., Posada, G., Miranda, T.S., Echeverri, S., Valencia, V., 2021b. Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics 820, 229132. https://doi.org/10.1016/j.tecto.2021.229132spa
dc.relation.referencesLeterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinites of paleo-volcanic series. Earth Planet. Sci. Lett. 59, 139–154. https://doi.org/10.1016/0012-821X(82)90122-4spa
dc.relation.referencesLoader, M.A., Wilkinson, J.J., Armstrong, R.N., 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 472, 107–119. https://doi.org/10.1016/j.epsl.2017.05.010spa
dc.relation.referencesLonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011spa
dc.relation.referencesMacía, C., 1985. Características petrográficas y geoquímicas de rocas basálticas de la península de Cabo Corrientes (Serranía de Baudó), Colombia. Geol. Colomb. 14, 25–37spa
dc.relation.referencesMalkowski, M.A., Sharman, G.R., Johnstone, S.A., Grove, M.J., Kimbrough, D.L., Graham, S.A., 2019. Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.). Am. J. Sci. 319, 846–902. https://doi.org/10.2475/10.2019.02spa
dc.relation.referencesMamani, M., Wörner, G., Sempere, T., 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol. Soc. Am. Bull. 122, 162–182. https://doi.org/10.1130/B26538.1spa
dc.relation.referencesMann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60.spa
dc.relation.referencesMarcaillou, B., Collot, J.-Y., 2008. Chronostratigraphy and tectonic deformation of the North Ecuadorian-South Colombian offshore Manglares forearc basin. Mar. Geol. 255, 30–44. https://doi.org/10.1016/j.margeo.2008.07.003spa
dc.relation.referencesMartinez, F., Parra, M., Gonzalez, R., López, C., Patiño, A., Muñoz, B., Robledo, F., Sobel, E.R., Glodny, J., 2022. Deciphering the Late Paleozoic-Cenozoic tectonic history of the inner Central Andes forearc: An update from the Salar de Punta Negra Basin of northern Chile. Front. Earth Sci. 9, 790526. https://doi.org/10.3389/feart.2021.790526spa
dc.relation.referencesMartinez, F., Peña, M., Parra, M., López, C., 2021. Contraction and exhumation of the western Central Andes induced by basin inversion: New evidence from “Pampean” subduction segment. Basin Res. 33, 2706–2724. https://doi.org/10.1111/bre.12580spa
dc.relation.referencesMartinod, J., Regard, V., Letourmy, Y., Henry, H., Hassani, R., Baratchart, S., Carretier, S., 2016. How do subduction processes contribute to forearc Andean uplift? J. Geodyn. 96, 6–18. https://doi.org/10.1016/j.jog.2015.04.001spa
dc.relation.referencesMason, C.C., Romans, B.W., Stockli, D.F., Mapes, R.W., Fildani, A., 2019. Detrital zircon reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment transfer. Geology 47, 563–567. https://doi.org/10.1130/G45852.1spa
dc.relation.referencesMcClay, K.R., 1987. The mapping of geological structures. Geological Society of London handbook. Open University Press.spa
dc.relation.referencesMcDonough, W.F., Sun, S. -s., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4spa
dc.relation.referencesMcGirr, R., Seton, M., Williams, S., 2020. Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geol. Soc. Am. Bull. 133, 867–884. https://doi.org/10.1130/B35595.1spa
dc.relation.referencesMcKay, M.P., Jackson Jr., W.T., Hessler, A.M., 2018. Tectonic stress regime recorded by zircon Th/U. Gondwana Res. 57, 1–9. https://doi.org/10.1016/j.gr.2018.01.004spa
dc.relation.referencesMibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y., Ono, S., 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Natl. Acad. Sci. U. S. A. 108, 8177–8182. https://doi.org/10.1073/pnas.1010968108spa
dc.relation.referencesMolnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396. https://doi.org/10.1029/93RG02030spa
dc.relation.referencesMonsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep crustal faults, shear zones, and magmatism in the Eastern Cordillera of Colombia: Growth of a plateau from teleseismic receiver function and geochemical Mio-Pliocene volcanism constraints. J. Geophys. Res. Solid Earth 124. https://doi.org/10.1029/2019JB017835spa
dc.relation.referencesMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodríguez-Parra, L.A., Ramírez, V., Niño, H., 2015. Middle Miocene closure of the Central American Seaway. Science (80-. ). 348, 226–229. https://doi.org/10.1126/science.aaa2815spa
dc.relation.referencesMontes, C., Cardona, A., McFadden, R., Moron, S.E., Silva, C.A., Restrepo-Moreno, S.A., Ramirez, D.A., Hoyos, N., Wilson, J., Farris, D.W., Bayona, G., Jaramillo, C., Valencia, V., Bryan, J., Flores, J.A., 2012. Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geol. Soc. Am. Bull. 124, 780–799. https://doi.org/10.1130/B30528.1spa
dc.relation.referencesMontes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V.A., Jaramillo, C., 2010. Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Rancheria basins. J. South Am. Earth Sci. 29, 832–848. https://doi.org/10.1016/j.jsames.2009.07.010spa
dc.relation.referencesMontes, C., Rodríguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to the multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903spa
dc.relation.referencesMora-Bohórquez, J.A., Ibañez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., Serna, L., 2017. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. J. South Am. Earth Sci. 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001spa
dc.relation.referencesMora-Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orosco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795spa
dc.relation.referencesMora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic uplift of the Northern Andes: Paleogeographic implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 89–121. https://doi.org/10.32685/pub.esp.37.2019.04spa
dc.relation.referencesMora, J.A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., de Freitas, M., 2018. Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Mar. Pet. Geol. 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032spa
dc.relation.referencesMountney, N.P., Westbrook, G.K., 1997. Quantitative analysis of Miocene to recent forearc basin evolution along the Colombian convergent margin. Basin Res. 9, 177–196. https://doi.org/10.1046/j.1365-2117.1997.00040.xspa
dc.relation.referencesMoxon, I.W., Graham, S.A., 1987. History and controls of subsidence in the Late Cretaceous-Tertiary Great Vally forearc basin, California. Geology 15, 626–629. https://doi.org/10.1130/0091-7613(1987)15<626:HACOSI>2.0.CO;2spa
dc.relation.referencesMukasa, S.B., 1986. Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes. Geol. Soc. Am. Bull. 97, 241–254. https://doi.org/10.1130/0016-7606(1986)97<241:ZUAOSI>2.0.CO;2spa
dc.relation.referencesMüller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophys. Geosystems 9, Q04006. https://doi.org/0.1029/2007GC001743spa
dc.relation.referencesMyers, N., Mitteimer, R.A., Mitteimer, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858spa
dc.relation.referencesNakakuki, T., Mura, E., 2013. Dynamics of slab rollback and induced back-arc basin formation. Earth Planet. Sci. Lett. 361, 287–297. https://doi.org/10.1016/j.epsl.2012.10.031spa
dc.relation.referencesNational Hydrocarbons Agency of Colombia, 2010. Total Bouguer Anomalies Map of Colombia. 1:2.500.000.spa
dc.relation.referencesNoda, A., 2016. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895. https://doi.org/10.1130/B31345.1spa
dc.relation.referencesO’ Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M.-P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J., Jackson, J.B.C., 2016. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883. https://doi.org/10.1126/sciadv.1600883spa
dc.relation.referencesOdin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology 28, 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.xspa
dc.relation.referencesOguchi, T., Aoki, T., Matsuta, N., 2003. Identificacion of an active fault on the Japanese Alps from DEM-based hill shading. Comput. Geosci. 29, 885–891. https://doi.org/10.1016/S0098-3004(03)00083-9spa
dc.relation.referencesOjeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408spa
dc.relation.referencesOncken, O., Chong, G., Franz, G., Giese, P., Gotze, H.-J., Ramos, V.A., Strecker, M.R., Wigger, P., 2006. The Andes: Active Subduction Orogeny, Frontiers in Earth Sciences. Springer-Verlag Berlin Heidelbergspa
dc.relation.referencesOrdoñez, O., Pimentel, M.M., Armstrong, R.A., Goia, S.M.C.L., Junges, S., 2001. U-Pb SHRIMP and Rb-Sr ages of the Sonsón Batholith, in: III South American Symposium on Isotope Geology. Pucon, Chilespa
dc.relation.referencesOsorio-Granada, E., Restrepo-Moreno, S.A., Muñoz-Valencia, J.A., Trejos-Tamayo, R.A., Pardo-Trujillo, A., Barbosa-Espitia, A.A., 2017. Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juanchaco sedimentary sequence, Equatorial Pacific (Colombia): New constraints on provenance and paleogeography in northwestern South America. Geol. Acta 15, 201–215. https://doi.org/10.1344/GeologicaActa2017.15.3.4spa
dc.relation.referencesPacheco, J.F., Sykes, L.R., Scholz, C.H., 1993. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. Solid Earth 98, 14133–14159. https://doi.org/10.1029/93JB00349spa
dc.relation.referencesPardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J.A., Echeverri, J.S., Barbosa-Espitia, A.A., Slattery, J., Salazar, A.F., Botello, G.E., Celis, S., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020a. Sedimentary record of the Cretaceous-Paleogene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627spa
dc.relation.referencesPardo-Trujillo, A., Echeverri, S., Borrero, C., Arenas, A., Vallejo, F., Trejos, R., Plata, A., Flores, J.A., Cardona, A., Restrepo, S., Barbosa, A., Murcia, H., Giraldo, C., Celis, S., Osorio, J.A., López, S.A., 2020b. Cenozoic geologic evolution of the southern Tumaco forearc basin (SW Colombian Pacific), in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 215–247. https://doi.org/10.32685/pub.esp.37.2019.08spa
dc.relation.referencesPardo-Trujillo, A., Moreno-Sánchez, M., Gomez-Cruz, A.D.J., 2002. Estratigrafía de algunos depósitos del Cretáceo Superior en las Cordilleras Central y Occidental de Colombia: Implicaciones Regionales. Geo. Eco. Trop. 26, 113spa
dc.relation.referencesParis, G., Machette, M.N., Dart, R.L., Haller, K.M., 2000. Map and databse of Quaternary faults and folds in Colombia and its offshore regions. U. S. Geological Survey Open-File Report 00-0284spa
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., Strecker, M.R., 2010. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Res. 22, 874–903spa
dc.relation.referencesParra, M., Mora, A., López, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust-belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1spa
dc.relation.referencesParra, M., Mora, A., Sobel, E.R., Strecker, M.R., González, R., 2009. Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28, TC4004. https://doi.org/10.1029/2008TC002423spa
dc.relation.referencesPearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983. https://doi.org/10.1093/petrology/25.4.956spa
dc.relation.referencesPearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343spa
dc.relation.referencesPennington, W.D., 1981. Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. Solid Earth 86, 10753–10770. https://doi.org/10.1029/JB086iB11p10753spa
dc.relation.referencesPérez-Escobar, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez-Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328. https://doi.org/10.3389/fpls.2019.01328spa
dc.relation.referencesPerez, N.D., Levine, K.G., 2020. Diagnosing an ancient shallow-angle subduction event from Cenozoic depositional and deformational records in the central Andes of southern Peru. Earth Planet. Sci. Lett. 541, 116263. https://doi.org/10.1016/j.epsl.2020.116263spa
dc.relation.referencesPhillips, J.D., 2005. Weathering instability and landscape evolution. Geomorphology 67, 255–272. https://doi.org/10.1016/j.geomorph.2004.06.012spa
dc.relation.referencesPindell, J., Maresch, W. V., Martens, U., Stanek, K., 2012. The Greater Antillan Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. Int. Geol. Rev. 54, 131–143. https://doi.org/10.1080/00206814.2010.510008spa
dc.relation.referencesPindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. Geol. Soc. London, Spec. Publ. 328, 1–55. https://doi.org/10.1144/SP328.1spa
dc.relation.referencesPlint, A.G., 2010. Wave- and storm-dominated shoreline and shallow-marine systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 167–200.spa
dc.relation.referencesPoveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688spa
dc.relation.referencesPoveda, E., Monsalve, G., Vargas, C.A., 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. J. Geophys. Res. Solid Earth 120, 2408–2425. https://doi.org/10.1002/2014JB011304spa
dc.relation.referencesPoveda, G., Mesa, O.J., 2000. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. https://doi.org/10.1029/1999GL006091spa
dc.relation.referencesProfeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Henriquez-Gonzales, S.M., Kirsch, M., Petrescu, L., DeCelles, P.G., 2015. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5, 17786. https://doi.org/10.1038/srep17786spa
dc.relation.referencesR Development Core Team, 2017. R: A language and environment for statistical computing.spa
dc.relation.referencesRahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.O., Richardson, K., Rosing, M.T., Whittaker, R.J., Fjeldså, J., 2019. Building mountain biodiversity: Geological and evolutionary processes. Science (80-. ). 365, 1114–1119. https://doi.org/10.1126/science.aax0151spa
dc.relation.referencesRamírez, D.A., Foster, D.A., Min, K., Montes, C., Cardona, A., Sadove, G., 2016. Exhumation of the Panama basement complex and basins: Implications for the closure of the Central American seaway. Geochemistry, Geophys. Geosystems 17, 1758–1777. https://doi.org/10.1002/2016GC006289spa
dc.relation.referencesRamos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle, in: Backbone of the Americas: Shallow Subduction, Plateau Uplift and Ridge and Terrane Collision. Geological Society of America Memoir 204. pp. 31–65. https://doi.org/10.1130/2009.1204(02)spa
dc.relation.referencesRanero, C.R., von Huene, R., 2000. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752. https://doi.org/10.1038/35008046spa
dc.relation.referencesReiners, P.W., Brandon, M.T., 2006. Using Thermochronology To Understand Orogenic Erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202spa
dc.relation.referencesReyes-Harker, A., Ruiz-Valdivieso, C.F., Mora, A., Ramirez-Arias, J.C., Rodriguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D., Blanco, V., 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. Am. Assoc. Pet. Geol. Bull. 99, 1407–1453. https://doi.org/10.1306/06181411110spa
dc.relation.referencesRidgway, K.D., Trop, J.M., Finzel, E.S., 2011. Modification of continental forearc basins by flat-slab subduction processes: a case study from southern Alaska, in: Busby, C., Azor, A. (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd, pp. 327–346. https://doi.org/10.1002/9781444347166.ch16spa
dc.relation.referencesRiley, S.J., DeGloria, S.D., Elliot, R., 1999. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27.spa
dc.relation.referencesRodríguez-Olarte, D., Mojica-Corzo, J.I., Taphonr-Baechle, D.C., 2011. Northern South America - Magdalena and Maracaibo Basins, in: Albert, J.S., Reis, R.E. (Eds.), Historical Biogeography of Neotropical Freshwaters Fishes. University of California Press, pp. 243–257. https://doi.org/10.1525/california/9780520268685.003.0015spa
dc.relation.referencesRodríguez, G., Arango, M.I., Zapata, G., Bermúdez-Cordero, J.G., 2016. Estratigrafía, petrografía y análisis multi-método de procedencia de la Formación Guineales, norte de la Cordillera Occidental de Colombia. Boletín Geol. 38, 101–124spa
dc.relation.referencesRodríguez, G., Sierra, M.I., 2010. Las Sedimentitas de Tripogadí y las Brechas de Triganá : Un registro de Eoceno en el noroccidente de Sur América. Geol. Colomb. 35, 74–86spa
dc.relation.referencesRodríguez, G., Zapata, G., 2012. Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente Colombiano. Bol. Ciencias la Tierra 31, 5–22.spa
dc.relation.referencesRodríguez, G., Zapata, G., Gómez, J.F., 2013. Geología de la plancha 114 - Dabeiba. Escala 1:100.000.spa
dc.relation.referencesRooney, T.O., Franceschi, P., Hall, C.M., 2011. Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib. to Mineral. Petrol. 161, 373–388. https://doi.org/10.1007/s00410-010-0537-8spa
dc.relation.referencesRosenbaum, G., Mo, W., 2011. Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Res. 19, 571–582. https://doi.org/10.1016/j.gr.2010.10.007spa
dc.relation.referencesRutledge, S., Mahatsente, R., 2017. Fore-arc structure, plate coupling and isostasy in the Central Andes: Insight from gravity data modelling. J. Geodyn. 104, 27–35. https://doi.org/10.1016/j.jog.2016.12.003spa
dc.relation.referencesSalvini, F., Billi, A., Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy. J. Struct. Geol. 21, 1731–1749. https://doi.org/10.1016/S0191-8141(99)00120-0spa
dc.relation.referencesSarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 673–747. https://doi.org/10.1007/978-3-319-76132-9_10spa
dc.relation.referencesSaylor, J.E., Horton, B.K., 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. https://doi.org/10.1016/j.epsl.2013.11.015spa
dc.relation.referencesScheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., Łapińska-Viola, R., 2015. Manual extraction of bedrock lineaments from high-resolution LiDAR data: methodological bias and human perception. GFF 137, 362–372. https://doi.org/10.1080/11035897.2015.1085434spa
dc.relation.referencesSdrolias, M., Müller, R.D., 2006. Controls on back-arc basin formation. Geochemistry, Geophys. Geosystems 7, Q04016. https://doi.org/10.1029/2005GC001090spa
dc.relation.referencesSerrano, L., Ferrari, L., López-Martínez, M., Petrone, C.M., Jaramillo, C., 2011. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province. Earth Planet. Sci. Lett. 309, 324–336. https://doi.org/10.1016/j.epsl.2011.07.011spa
dc.relation.referencesSiravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002spa
dc.relation.referencesSoesoo, A., Bons, P.D., Gray, D.R., Foster, D.A., 1997. Divergent double subduction : Tectonic and petrologic consequences. Geology 25, 755–758. https://doi.org/10.1130/0091-7613(1997)025<0755spa
dc.relation.referencesSpikings, R.A., Simpson, G., 2014. Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics 33, 1–21. https://doi.org/10.1002/2013TC003425spa
dc.relation.referencesStern, C.R., 2011. Subduction erosion: Rates, mechanisms and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308. https://doi.org/10.1016/j.gr.2011.03.006spa
dc.relation.referencesStern, R.J., 2002. Subduction zones. Rev. Geophys. 40, 3-1-3–38. https://doi.org/10.1029/2001RG000108spa
dc.relation.referencesStern, R.J., Gerya, T., 2018. Subduction initiation in nature and models: A review. Tectonophysics 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014spa
dc.relation.referencesStow, D., Smillie, Z., 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 10, 68. https://doi.org/10.3390/geosciences10020068spa
dc.relation.referencesStow, D.A. V., Reading, H.G., Collinson, J.D., 1996. Deep seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 395–453.spa
dc.relation.referencesSyracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050spa
dc.relation.referencesTassara, A., 2010. Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495, 34–47. https://doi.org/10.1016/j.tecto.2010.06.004spa
dc.relation.referencesTetreault, J.L., Buiter, S.J.H., 2012. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res. Solid Earth 117, B08403. https://doi.org/10.1029/2012JB009316spa
dc.relation.referencesThompson, P.M.E., Kempton, P.D., White, R. V., Saunders, A.D., Kerr, A.C., Tarney, J., Pringle, M.S., 2004. Elemental, Hf-Nd isotopic and geochronological constraints on an island arc sequence associated with the Cretaceous Caribbean plateau: Bonaire, Dutch Antilles. Lithos 74, 91–116. https://doi.org/10.1016/j.lithos.2004.01.004spa
dc.relation.referencesTimm, C., Davy, B., Haase, K., Hoernle, K., Graham, I.J., de Ronde, C.E.J., Woodhead, J., Basset, D., Hauff, F., Mortimer, N., Seebeck, H.C., Wysoczanski, R.J., Caratori-Tontini, F., Gamble, J.A., 2014. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat. Commun. 5, 4923. https://doi.org/10.1038/ncomms5923spa
dc.relation.referencesTistl, M., Burgath, K.P., Höhndorf, A., Kreuzer, H., Muñoz, R., Salinas, R., 1994. Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth Planet. Sci. Lett. 126, 41–59. https://doi.org/10.1016/0012-821X(94)90241-0spa
dc.relation.referencesTozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R., Wessel, P., 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Sp. Sci. 6, 1847–1864. https://doi.org/10.1029/2019EA000658spa
dc.relation.referencesTrail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97, 70–87. https://doi.org/10.1016/j.gca.2012.08.032spa
dc.relation.referencesTrenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Am. Earth Sci. 15, 157–171spa
dc.relation.referencesTschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H., Cebula, G.T., 1974. Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284. https://doi.org/10.1130/0016-7606(1974)85<273spa
dc.relation.referencesTukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley Publishing Companyspa
dc.relation.referencesUyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophys. Res. 84, 1049–1060spa
dc.relation.referencesVallejo, C., Spikings, R.A., Horton, B.K., Luzieux, L., Romero, C., Winkler, W., Thomsen, T.B., 2019. Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment, in: Horton, B.K., Folguera, A. (Eds.), Andean Tectonics. Elsevier, pp. 209–236. https://doi.org/10.1016/B978-0-12-816009-1.00010-1spa
dc.relation.referencesVallejo, C., Spikings, R.A., Luzieux, L., Winkler, W., Chew, D.M., Page, L., 2006. The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nov. 18, 264–269. https://doi.org/10.1111/j.1365-3121.2006.00688.xspa
dc.relation.referencesVargas, C.A., Gutiérrez, G.A., Sarmiento, G.A., 2020. Subduction of an extinct rift and its role in the formation of submarine landslides in NW South America, in: Georgiopoulou, A., Amy, L.A., Benetti, S., Chaytor, J.D., Clare, M.A., Gamboa, D., Haughton, P.D.W., Moernaut, J., Mountjoy, J.J. (Eds.), Subaqueous Mass Movements in the Context of Observations of Contemporary Failure, Geological Society, London, Special Publications, 500. pp. 311–322. https://doi.org/10.1144/SP500-2019-189spa
dc.relation.referencesVargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVermeesch, P., 2021. Maximum depositional age estimation revisited. Geosci. Front. 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008spa
dc.relation.referencesVermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001spa
dc.relation.referencesVillagómez, D., Spikings, R.A., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008spa
dc.relation.referencesVillagómez, D., Spikings, R.A., Magna, T., Kammer, A., Winkler, W., Beltrán, A., 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125, 875–896. https://doi.org/10.1016/j.lithos.2011.05.003spa
dc.relation.referencesViveen, W., Schlunegger, F., 2018. Prolonged extension and subsidence of the Peruvian forearc during the Cenozoic. Tectonophysics 730, 48–62. https://doi.org/10.1016/j.tecto.2018.02.018spa
dc.relation.referencesVogt, K., Gerya, T. V., 2014. From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondwana Res. 25, 494–508. https://doi.org/10.1016/j.gr.2012.11.002spa
dc.relation.referencesvon Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Rev. 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001spa
dc.relation.referencesvon Huene, R., Ranero, C.R., Vannucchi, P., 2004. Generic model of subduction erosion. Geology 32, 913–916. https://doi.org/10.1130/G20563.1spa
dc.relation.referencesvon Huene, R., Scholl, D.W., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316. https://doi.org/10.1029/91RG00969spa
dc.relation.referencesWagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44. https://doi.org/10.1002/2017GL073981spa
dc.relation.referencesWagreich, M., 1995. Subduction erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics 242, 63–78. https://doi.org/10.1016/0040-1951(94)00151-Xspa
dc.relation.referencesWang, J.-G., Hu, X., Garzanti, E., BouDagher-Fadel, M.K., Liu, Z.-C., Li, J., Wu, F.-Y., 2020. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Geol. Soc. Am. Bull. 132, 2432–2454. https://doi.org/10.1130/B35314.1spa
dc.relation.referencesWang, K., He, J., 1999. Mechanics of low-stress forearcs: Nankai and Cascadia. J. Geophys. Res. Solid Earth 104, 15191–15205. https://doi.org/10.1029/1999JB900103spa
dc.relation.referencesWeber, M., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., Wilson, R., 2009. The Cabo de la Vela Mafic-Ultramafic Complex, Northwestern Colombian Caribbean region: a record of multistage evolution of a Late Cretaceous intra-oceanic arc, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications, 328. pp. 549–568. https://doi.org/10.1144/SP328.22spa
dc.relation.referencesWeber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., Valencia, V., 2015. Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia - Evidence of subduction initiation beneath the Colombian Caribbean Plateau. J. South Am. Earth Sci. 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002spa
dc.relation.referencesWegner, W., Wörner, G., Harmon, R.S., Jicha, B.R., 2011. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geol. Soc. Am. Bull. 123, 703–724. https://doi.org/10.1130/B30109.1spa
dc.relation.referencesWhattam, S.A., Montes, C., Mcfadden, R.R., Cardona, A., Ramirez, D., Valencia, V., 2012. Age and origin of earliest adakitic-like magmatism in Panama: Implications for the tectonic evolution of the Panamanian magmatic arc system. Lithos 142–143, 226–244. https://doi.org/10.1016/j.lithos.2012.02.017spa
dc.relation.referencesWhattam, S.A., Montes, C., Stern, R.J., 2020. Early central American forearc follows the subduction initiation rule. Gondwana Res. 79, 283–300. https://doi.org/10.1016/j.gr.2019.10.002spa
dc.relation.referencesWhattam, S.A., Stern, R.J., 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Res. 27, 38–63. https://doi.org/10.1016/j.gr.2014.07.011spa
dc.relation.referencesWise, D.U., Funicello, R., Parotto, M., Salvini, F., 1985. Topographic lineament swarms: Clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 96, 952–967. https://doi.org/10.1130/0016-7606(1985)96<952:TLSCTT>2.0.CO;2spa
dc.relation.referencesWright, J.E., Wyld, S.J., 2011. Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean (?). Geosphere 7, 468–493. https://doi.org/10.1130/GES00577.1spa
dc.relation.referencesXie, X., Heller, P.L., 2009. Plate tectonics and basin subsidence history. Bull. Geol. Soc. Am. 121, 55–64. https://doi.org/10.1130/B26398.1spa
dc.relation.referencesYarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006spa
dc.relation.referencesZagorevski, A., Lissenberg, C.J., van Staal, C.R., 2009. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians. Tectonophysics 479, 150–164. https://doi.org/10.1016/j.tecto.2008.12.002spa
dc.relation.referencesZagorevski, A., van Staal, C.R., 2011. The record of Ordovician arc-arc and arc-continent collisions in the Canadian Appalachians during the closure of Iapetus, in: Brown, D., Ryan, P.D. (Eds.), Arc-Continent Collision. Springer-Verlag Berlin Heidelberg, pp. 341–371. https://doi.org/10.1007/978-3-540-88558-0_12spa
dc.relation.referencesZapata-Villada, J.P., Cardona, A., Serna, S., Rodríguez, G., 2021. Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. J. South Am. Earth Sci. 112, 103557. https://doi.org/10.1016/j.jsames.2021.103557spa
dc.relation.referencesZapata, G., 2000. Geología de las planchas 163 Nuquí, 164 Quibdó, 183 Coquí y 184 Lloró, Departamento del Chocó. Escala 1:100.000. Memoria Explicativa.spa
dc.relation.referencesZapata, S., Cardona, A., Jaramillo, J.S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., Castañeda, J.P., 2019. Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Res. 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008spa
dc.relation.referencesZapata, S., Patiño, A., Cardona, A., Parra, M., Valencia, V., Reiners, P., Oboh-Ikuenobe, F., Genezini, F., 2020. Bedrock and detrital zircon thermochronology to unravel exhumation histories of accreted tectonic blocks: An example from the Western Colombian Andes. J. South Am. Earth Sci. 103, 102715. https://doi.org/10.1016/j.jsames.2020.102715spa
dc.relation.referencesZhu, D.-C., Wang, Q., Cawood, P.A., Zhao, Z.-D., Mo, X.-X., 2017. Raising the Gangdese Mountains in southern Tibet. J. Geophys. Res. Solid Earth 122, 214–223. https://doi.org/10.1002/2016JB013508spa
dc.relation.referencesZindler, A., Hart, S., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembCuencas hidrográficas
dc.subject.lembWatersheds
dc.subject.lembRocas - Análisis
dc.subject.proposalForearc basinseng
dc.subject.proposalNorthern Andeseng
dc.subject.proposalArc-continent collisioneng
dc.subject.proposalAtrato Basineng
dc.subject.proposalSedimentary provenanceeng
dc.subject.proposalTectonostratigraphyeng
dc.subject.proposalCuencas antearcospa
dc.subject.proposalAndes del Nortespa
dc.subject.proposalColisión arco-continentespa
dc.subject.proposalCuenca Atratospa
dc.subject.proposalProcedencia sedimentariaspa
dc.subject.proposalTectonoestratigrafíaspa
dc.titleForearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andeseng
dc.title.translatedEvolución de cuencas de antearco en respuesta a un régimen de subducción cambiante: Registro geológico Neógeno al Reciente del noroccidente de los Andes Colombianosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameSmithsonian Tropical Research Institutespa
oaire.fundernameFundación para la Promoción de la Investigación y la Tecnología - Banco de la República de Colombiaspa
oaire.fundernameAsociación de Geólogos y Geofísicos del Petróleo y Corporación Geológica Aresspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152439167.2022.pdf
Tamaño:
7.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: