Estudio de la producción de biohidrógeno por fermentación oscura usando pulpa de plátano (Musa paradisiaca) y cáscara pretratada en medio alcalino, asistido por ultrasonido
dc.contributor.advisor | Moreno Cárdenas, Edilson León | |
dc.contributor.author | Díaz Landínez, Jenny Paola | |
dc.contributor.orcid | Díaz Landínez, Jenny Paola [0009-0005-0661-5609] | |
dc.contributor.orcid | Moreno Cárdenas, Edilson León [0000-0001-5693-4273] | |
dc.date.accessioned | 2025-09-11T15:43:58Z | |
dc.date.available | 2025-09-11T15:43:58Z | |
dc.date.issued | 2025-09-25 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | La producción de hidrógeno por fermentación oscura (FO) a partir de residuos agroindustriales constituye una fuente de energía alternativa y sostenible. En el Laboratorio de Mecanización Agrícola de la Universidad Nacional de Colombia, se desarrolló un proceso para la producción de hidrógeno por FO a partir de biomasa. Se evaluaron los efectos de la carga orgánica, pH y pretratamiento con NaOH y ultrasonido sobre la producción de H2 a partir de residuos de plátano de Arauca. Para ello, se utilizó un biorreactor de 20 litros modo batch, según un diseño experimental de composición central, en condiciones mesófilas, sin inóculo y sin esterilizar el sustrato. Las variables de respuesta producción máxima diaria de hidrógeno (MDP), el contenido máximo de hidrógeno en el gas (MHC) y la producción acumulada (CHP) mostraron un ajuste aceptable a los modelos polinomiales de segundo orden. De acuerdo a un análisis de varianza (ANOVA) los modelos fueron significativos y fue posible optimizar las variables de respuesta. Se obtuvo un rendimiento de 1.16 mol H2/mol hexosa y una productividad máxima de 5 LH2 d-1, a partir de residuos de plátano sin tratamiento a pH 5,5 y 6, con demanda química de oxígeno (DQO) sobre 60.000 mgO2 L-1. En dos ensayos no hubo generación de H2, uno de ellos con la menor DQO; 31.716 mgO2 L-1 sin tratamiento a pH 6 y el otro con 80.000 mgO2 L-1 con tratamiento base a pH 6,5. Se concluyó que es posible producir H2 en un proceso fermentativo controlado, usando residuos de plátano de Arauca, sin efecto del pretratamiento a la cáscara. (Tomado de la fuente) | spa |
dc.description.abstract | The production of hydrogen by dark fermentation (DF) from agroindustrial waste is an alternative and sustainable energy source. At the Agricultural Mechanization Laboratory of the National University of Colombia, a process for the production of hydrogen by DF from biomass was developed. The effects of organic load, pH, and pretreatment with NaOH and ultrasound on H2 production from plantain residues from Arauca were evaluated. For this purpose, a 20-liter batch bioreactor was used, according to a central composition experimental design, under mesophilic conditions, without inoculum and without sterilizing the substrate. The response variables maximum daily hydrogen production (MDP), maximum hydrogen content in gas (MHC), and cumulative production (CHP) showed an acceptable fit to the second-order polynomial models. According to an analysis of variance (ANOVA), the models were significant, and it was possible to optimize the response variables. A yield of 1.16 mol H2/mol hexose and a maximum productivity of 5 LH2 d-1 were obtained from untreated plantain waste at pH 5.5 and 6, with chemical oxygen demand (COD) over 60,000 mgO2 L-1. In two trials, there was no H2 generation, one of which had the lowest COD: 31,716 mg O2 L-1 without treatment at pH 6, and the other with 80,000 mg O2 L-1 with base treatment at pH 6.5. It was concluded that it is possible to produce H2 in a controlled fermentation process, using plantain residues from Arauca, without the effect of pre-treatment of the peel. | eng |
dc.description.curriculararea | Agro Ingeniería Y Alimentos.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | |
dc.format.extent | 88 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88717 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., ... & Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource technology, 301, 122725. https://doi.org/10.1016/j.biortech.2019.122725 | |
dc.relation.references | Agronet. (2023). Comparativo de Área, Producción, Rendimiento y Participación Departamental por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=3 | |
dc.relation.references | Ahmad, S. A., Singh, M., & Tiwari, A. (2022). Production of Bio-Hydrogen from Banana Waste by Using Anaerobic Fermentation. International Journal for Research in Applied Science and Engineering Technology, 10(3), 1202-1205. https://doi.org/10.22214/ijraset.2022.40831 | |
dc.relation.references | Akram, F., Fatima, T., Ibrar, R., & ul Haq, I. (2024). Biohydrogen: Production, promising progressions and challenges of a green carbon-free energy. Sustainable Energy Technologies and Assessments, 69, 103893. https://doi.org/10.1016/j.seta.2024.103893 | |
dc.relation.references | Albano, C., Bagarello, S., Giordano, S., Sanfilippo, M. F., Comparato, C., Scardino, G., ... & Colomba, C. (2022). Granulicatella spp., a causative agent of infective endocarditis in children. Pathogens, 11(12), 1431. https://doi.org/10.3390/pathogens11121431 | |
dc.relation.references | Alzurfi, S. K. L., & latif Katia, I. (2021). Structure of bacterial communities associated with some aquatic plants. In IOP Conference Series: Earth and Environmental Science (Vol. 790, No. 1, p. 012030). IOP Publishing. 10.1088/1755-1315/790/1/012030 | |
dc.relation.references | American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American public health association | |
dc.relation.references | Ananthi, V., Ramesh, U., Balaji, P., Kumar, P., Govarthanan, M., & Arun, A. (2022). A review on the impact of various factors on biohydrogen production. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.046 | |
dc.relation.references | Areepak, C., Jiradechakorn, T., Chuetor, S., Phalakornkule, C., Sriariyanun, M., Raita, M., ... & Laosiripojana, N. (2022). Improvement of lignocellulosic pretreatment efficiency by combined chemo-Mechanical pretreatment for energy consumption reduction and biofuel production. Renewable Energy, 182, 1094-1102. https://doi.org/10.1016/j.renene.2021.11.002 | |
dc.relation.references | Baruah, J., Bardhan, P., Mukherjee, A. K., Deka, R. C., Mandal, M., & Kalita, E. (2022). Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. International Journal of Biological Macromolecules, 201, 298-307. https://doi.org/10.1016/j.ijbiomac.2021.12.179 | |
dc.relation.references | Baruah, J., Bardhan, P., Mukherjee, A. K., Deka, R. C., Mandal, M., & Kalita, E. (2022). Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. International Journal of Biological Macromolecules, 201, 298-307. https://doi.org/10.1016/j.ijbiomac.2021.12.179 | |
dc.relation.references | Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity | |
dc.relation.references | Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Rajendran, K., Pugazhendhi, A., ... & Yang, Y. H. (2021). Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Science of the Total Environment, 765, 144429. https://doi.org/10.1016/j.scitotenv.2020.144429 | |
dc.relation.references | Breed, R. S., Murray, E. G. D., & Smith, N. R. (1957). Bergey's Manual of Determinative Bacteriology., (7th Edition). | |
dc.relation.references | Cano Quintero, D.J. y Moreno Cárdenas, E.L. (2019). Incidence of operative parameters in the production of biohydrogen generated from urban organic waste. Revista Facultad Nacional de Agronomía, 72(2), 8841-8853. https://doi.org/10.15446/rfnam.v72n2.73138 | |
dc.relation.references | Cao, Y., Liu, H., Liu, W., Guo, J., & Xian, M. (2022). Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microbial Cell Factories, 21(1), 166. DOI: 10.1186/s12934-022-01893-3 | |
dc.relation.references | Chen, N., Jiang, K., Zhao, M., Zhang, C., Jin, Y., & Wu, W. (2024). Pretreatment process of lignocellulosic biomass: A review of pseudo-lignin formation. Biomass and Bioenergy, 188, 107339. https://doi.org/10.1016/j.biombioe.2024.107339 | |
dc.relation.references | Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Deng, L., ... & Hoang, N. B. (2022). Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. Bioresource Technology, 127045. https://doi.org/10.1016/j.biortech.2022.127045 | |
dc.relation.references | Collazos Buitrago, S. y Pinzón Silva, L. A. (2022) Propuesta de aprovechamiento del pseudotallo o vástago de plátano para fabricar fibras textiles en Colombia. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8800 | |
dc.relation.references | Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15–18. https://doi.org/10.1080/00401706.1977.10489493 | |
dc.relation.references | Dari, D. N., Freitas, I. S., Aires, F. I. D. S., Melo, R. L. F., dos Santos, K. M., da Silva Sousa, P., ... & Santos, J. C. D. (2024). An updated review of recent applications and perspectives of hydrogen production from biomass by fermentation: A comprehensive analysis. Biomass, 4(1), 132-163. https://doi.org/10.3390/biomass4010007 | |
dc.relation.references | Das, S. R., & Basak, N. (2024). Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Conversion and Biorefinery, 14(4), 4791-4811.https://doi.org/10.1007/s13399-022-02588-w | |
dc.relation.references | Dev, M. J., Warke, R. G., Warke, G. M., Mahajan, G. B., Patil, T. A., & Singhal, R. S. (2022). Advances in fermentative production, purification, characterization and applications of gellan gum. Bioresource Technology, 359, 127498. https://doi.org/10.1016/j.biortech.2022.127498 | |
dc.relation.references | Dutta, A., Kininge, M. M., & Gogate, P. R. (2023). Intensification of delignification and subsequent hydrolysis of sustainable waste as banana peels for the HMF production using ultrasonic irradiation. Chemical Engineering and Processing-Process Intensification, 183, 109247. https://doi.org/10.1016/j.cep.2022.109x247 | |
dc.relation.references | Dzulkarnain, E. L. N., Audu, J. O., Wan Dagang, W. R. Z., & Abdul-Wahab, M. F. (2022). Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook. Bioresources and Bioprocessing, 9(1), 16. https://doi.org/10.1186/s40643-022-00504-8 | |
dc.relation.references | Espinosa-Negrín, A. M., López-González, L. M., & Casdelo-Gutiérrez, N. L. (2022). Pretratamientos aplicados a biomasas lignocelulósicas: una revisión de los principales métodos analíticos utilizados para su evaluación. Revista Cubana de Química, 34(1), 87-110. d.cu/scielo.php?pid=S2224-54212022000100087&script=sci_arttext&tlng=en | |
dc.relation.references | García & León-Becerril, E. (2018). Fermentative biohydrogen production from tequila vinasse via the lactate-acetate pathway: Operational performance, kinetic analysis and microbial ecology. Fuel, 234, 151-160. https:// doi. org/ 10. 1016/j. fuel. 2018. 06. 126 | |
dc.relation.references | García-Negrón, V., Stoklosa, R. J., & Toht, M. J. (2024). Effects of NaOH and Na2CO3 pretreatment on the saccharification of sweet sorghum bagasse. Frontiers in Chemical Engineering, 6, 1449114. https://doi.org/10.3389/fceng.2024.1449114 | |
dc.relation.references | Gbiete, D., Narra, S., Mani Kongnine, D., Narra, M.-M., & Nelles, M. (2024). Insights into Biohydrogen Production Through Dark Fermentation of Food Waste: Substrate Properties, Inocula, and Pretreatment Strategies. Energies, 17(24), 6350. https://doi.org/10.3390/en17246350 | |
dc.relation.references | Góngora, C. E., Holguín-Sterling, L., Pedraza-Claros, B., Pérez-Salinas, R., Ortiz, A., & Navarro-Escalante, L. (2024). Metataxonomic identification of microorganisms during the coffee fermentation process in Colombian farms (Cesar department). Foods, 13(6), 839. https://doi.org/10.3390/foods13060839 | |
dc.relation.references | Gupte, A. P., Basaglia, M., Casella, S., & Favaro, L. (2022). Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives. Renewable and Sustainable Energy Reviews, 167, 112673. https://doi.org/10.1016/j.rser.2022.112673 | |
dc.relation.references | Jacqueline, P. J., & Velvizhi, G. (2024). Substantial physicochemical pretreatment and rapid delignification of lignocellulosic banana, pineapple and papaya fruit peels: a study on physical-chemical characterization. Sustainable Chemistry and Pharmacy, 37, 101347. https://doi.org/10.1016/j.scp.2023.101347 | |
dc.relation.references | Jain, R., Panwar, N. L., Jain, S. K., Gupta, T., Agarwal, C., & Meena, S. S. (2024). Bio-hydrogen production through dark fermentation: an overview. Biomass Conversion and Biorefinery, 14(12), 12699-12724. https://doi.org/10.1007/s13399-022-03282-7 | |
dc.relation.references | Jung, J. H., Sim, Y. B., Baik, J. H., Park, J. H., & Kim, S. H. (2021). High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Bioresource technology, 320, 124279. https://doi.org/10.1016/j.biortech.2020.124279 | |
dc.relation.references | Kareem, A., Al-Sahlany, S. T. G., Verma, D. K., Thakur, M., Mohapatra, B., Singh, S., ... & Banwo, K. (2022). Trends, Analytical Approaches, and Applications of the VITEK System for Identification and Classification of Bacteria and Yeasts. In Quantitative Methods and Analytical Techniques in Food Microbiology (pp. 255-272). Apple Academic Press. | |
dc.relation.references | Kininge, M. M., & Gogate, P. R. (2022). Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. Ultrasonics Sonochemistry, 82, 105870. https://doi.org/10.1016/j.ultsonch.2021.105870 | |
dc.relation.references | Klein, G. H., Longo, V. D., Romani, L. C., Saldanha, L. F., Fornari, A. C., Bazoti, S. F., & Treichel, H. (2024). Utilization of banana peel waste for the production of bioethanol and other high-value-added compounds. Food and Humanity, 3, 100376.https://doi.org/10.1016/j.foohum.2024.100376 | |
dc.relation.references | Kumar, G., Mathimani, T., Rene, E. R., & Pugazhendhi, A. (2019). Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy, 44(26), 13106-13113. https://doi.org/10.1016/j.ijhydene.2019.03.131 | |
dc.relation.references | Lan, P., Jiang, Y., Zhou, J., & Yu, Y. (2021). A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. Journal of global antimicrobial resistance, 25, 26-34. https://doi.org/10.1016/j.jgar.2021.02.020 | |
dc.relation.references | Lara, M. A., Méndez, E. F., Malagón, D. H., Bernal, J. M., & Montoya, D. (2020). Evaluation of production of hydrogen in a batch bioreactor using Clostridium butyricum DSM 2478 from banana peel. Chem Eng Trans, 79(10.3303). https://doi.org/10.3303/CET2079045 | |
dc.relation.references | Li, S., Li, F., Zhu, X., Liao, Q., Chang, J. S., & Ho, S. H. (2022). Biohydrogen production from microalgae for environmental sustainability. Chemosphere, 291, 132717. https://doi.org/10.1016/j.chemosphere.2021.132717 | |
dc.relation.references | Liu, W., Pang, J., Wu, D., Zhang, L., Xing, D., Hu, J., ... & Liu, Z. (2023). Hydrogen production by a novel Klebsiella pneumoniae strain from sheep rumen uses corn straw as substrate. Energy, 282, 128210. https://doi.org/10.1016/j.energy.2023.128210 | |
dc.relation.references | Lu, F., Wang, C., Chen, M., Yue, F., & Ralph, J. (2021). A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chemistry, 23(14), 5106-5112. https://doi.org/10.1039/D1GC01507A | |
dc.relation.references | Magrini, F. E., de Almeida, G. M., da Maia Soares, D., dos Anjos Borges, L. G., Marconatto, L., Giongo, A., & Paesi, S. (2021). Variation of the Prokaryotic and Eukaryotic Communities After Distinct Methods of Thermal Pretreatment of the Inoculum in Hydrogen-Production Reactors from Sugarcane Vinasse. Current Microbiology, 78(7), 2682–2694. https://doi.org/10.1007/s00284-021-02527-4 | |
dc.relation.references | Manyi-Loh, C. E., & Lues, R. (2023). Anaerobic digestion of lignocellulosic biomass: substrate characteristics (challenge) and innovation. Fermentation, 9(8), 755. https://doi.org/10.3390/fermentation9080755 | |
dc.relation.references | Martinez-Burgos, W. J., Sydney, E. B., de Paula, D. R., Medeiros, A. B. P., de Carvalho, J. C., Soccol, V. T & Soccol, C. R. (2020). Biohydrogen production in cassava processing wastewater using microbial consortia: process optimization and kinetic analysis of the microbial community. Bioresource technology, 309, 123331. https://doi.org/10.1016/j.biortech.2020.123331 | |
dc.relation.references | Martínez-Trujillo, M. A., Bautista-Rangel, K., García-Rivero, M., Martínez-Estrada, A., & Cruz-Díaz, M. R. (2020). Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and biosystems engineering, 43, 413-427. https://doi.org/10.1007/s00449-019-02237-z | |
dc.relation.references | Mazareli, R. C., Montoya, A. C. V., Delforno, T. P., Centurion, V. B., de Oliveira, V. M., Silva, E. L., & Varesche, M. B. A. (2021). Enzymatic routes to hydrogen and organic acids production from banana waste fermentation by autochthonous bacteria: optimization of pH and temperature. International Journal of Hydrogen Energy, 46(12), 8454-8468. https://doi.org/10.1016/j.ijhydene.2020.12.063 | |
dc.relation.references | Mazareli, R. C., Sakamoto, I. K., Silva, E. L., & Varesche, M. B. A. (2019). Bacillus sp. isolated from banana waste and analysis of metabolic pathways in acidogenic systems in hydrogen production. Journal of environmental management, 247, 178-186. https://doi.org/10.1016/j.jenvman.2019.06.040. | |
dc.relation.references | Ministerio de Minas y Energía de Colombia. (2021). Hoja de ruta para el desarrollo del hidrógeno en Colombia. https://www.minenergia.gov.co/documents/5861/Hoja_Ruta_Hidrogeno_Colombia_2810.pdf | |
dc.relation.references | Mohan, S. V., Chiranjeevi, P., Chandrasekhar, K., Babu, P. S., & Sarkar, O. (2019). Acidogenic biohydrogen production from wastewater. In Biohydrogen (pp. 279-320). Elsevier. https://doi.org/10.1016/B978-0-444-64203-5.00011-3 | |
dc.relation.references | Montgomery, D. C., & Cook, C. M. (2009). Response surface methodology: process and product optimization using designed experiments. Wiley | |
dc.relation.references | Montoya, A. C. V., da Silva Mazareli, R. C., Delforno, T. P., Centurion, V. B., de Oliveira, V. M., Silva, E. L., & Varesche, M. B. A. (2020). Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community. International Journal of Hydrogen Energy, 45(7), 4205-4222. https:// doi. org/ 10. 1016/j. ijhyd ene. 2019. 12. 062 | |
dc.relation.references | Moreno Cárdenas, Edilson León, y Arley David Zapata Zapata. (2019). Biohydrogen production by co-digestion of fruits and vegetable waste and coffee mucilage. Revista Facultad Nacional de Agronomía Medellín, vol. 72, n.o 3, septiembre de 2019, pp. 9007-18. https://doi.org/10.15446/rfnam.v72n3.73140 | |
dc.relation.references | Moreno, C.E.L. (2016). Estudio del proceso de generación de biohidrógeno mediante fermentación anaerobia de residuos orgánicos agrícolas. Tesis de doctorado en biotecnología. Universidad Nacional de Colombia, Facultad de Ciencias, Medellín | |
dc.relation.references | Motato-Rocha, K., Román-Morales, M. O., & Gonzalez-Montero, V. (2024). Identification of microorganisms in wet coffee fermentation Coffea arabica Var Catimor and Castillo in Jardín, Antioquia-Colombia, using culture-dependent methods. Vitae, 31(1). https://doi.org/10.17533/udea.vitae.v31n1a351373 | |
dc.relation.references | Moussa, R. N., Moussa, N., & Dionisi, D. (2022). Hydrogen production from biomass and organic waste using dark fermentation: an analysis of literature data on the effect of operating parameters on process performance. Processes, 10(1), 156. https://doi.org/10.3390/pr10010156 | |
dc.relation.references | Moustakas, K., Loizidou, M., Rehan, M., & Nizami, A. S. (2020). A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renewable and Sustainable Energy Reviews, 119, 109418. https://doi.org/10.1016/j.rser.2019.109418 | |
dc.relation.references | Muharja, M., Darmayanti, R. F., Palupi, B., Rahmawati, I., Fachri, B. A., Setiawan, F. A & Putri, D. K. Y. (2021). Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 31-43. https://doi.org/10.9767/bcrec.16.1.8872.31-43 | |
dc.relation.references | Paillet, F., Marone, A., Moscoviz, R., Steyer, J. P., Tapia-Venegas, E., Bernet, N., & Trably, E. (2019). Improvement of biohydrogen production from glycerol in micro-oxidative environment. international journal of hydrogen energy, 44(33), 17802-17812. https:// doi. org/ 10. 1016/j. ijhyd ene. 2019. 05. 082 | |
dc.relation.references | Patel, S. K., Gupta, R. K., Das, D., Lee, J. K., & Kalia, V. C. (2021). Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. Journal of Cleaner Production, 287, 125037. https://doi.org/10.1016/j.jclepro.2020.125037 | |
dc.relation.references | Pereira, M. A. F., Monteiro, C. R. M., Pereira, G. N., Júnior, S. E. B., Zanella, E., Ávila, P. F & Poletto, P. (2021). Deconstruction of banana peel for carbohydrate fractionation. Bioprocess and biosystems engineering, 44, 297-306. https://doi.org/10.1007/s00449-020-02442-1 | |
dc.relation.references | Pérez Rangel, M., Villanueva-Galindo, E., & Moreno-Andrade, I. (2025). Hydrogen production from lactic acid-rich effluent of food waste fermentation: influence of pH, type and inoculum concentration, and physical pretreatment of the substrate. Journal of Environmental Chemical Engineering, 116033. https://doi.org/10.1016/j.jece.2025.116033 | |
dc.relation.references | Pleissner, D., Neu, A. K., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167-173. https://doi.org/10.1016/j.biortech.2016.06.078 | |
dc.relation.references | Rai, P., Pandey, A., & Pandey, A. (2019). Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. International Journal of Hydrogen Energy, 44(47), 25505-25513.https://doi.org/10.1016/j.ijhydene.2019.07.168 | |
dc.relation.references | Ribeiro, A. R., & Silva, E. L. (2022). Potato waste as feedstock to produce biohydrogen and organic acids: A comparison of acid and alkaline pretreatments using response surface methodology. Journal of Environmental Management, 323, 116308.https://doi.org/10.1016/j.jenvman.2022.116308 | |
dc.relation.references | Ribeiro, A. R., & Silva, E. L. (2022). Potato waste as feedstock to produce biohydrogen and organic acids: A comparison of acid and alkaline pretreatments using response surface methodology. Journal of Environmental Management, 323, 116308.https://doi.org/10.1016/j.jenvman.2022.116308 | |
dc.relation.references | Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601-612.doi: 10.1002/ceat.201900452 | |
dc.relation.references | Saravanan, A., Kumar, P. S., Khoo, K. S., Show, P. L., Carolin, C. F., Jackulin, C. F., ... & Chang, J. S. (2021). Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresource technology, 342, 126021. https://doi.org/10.1016/j.biortech.2021.126021 | |
dc.relation.references | Schmatz, A. A., Salazar-Bryam, A. M., Contiero, J., Sant’Anna, C., & Brienzo, M. (2021). Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. BioEnergy Research, 14(1), 106-121. https://doi.org/10.1007/S12155-020-10187-8 | |
dc.relation.references | Singhania, R. R., Patel, A. K., Raj, T., Chen, C. W., Ponnusamy, V. K., Tahir, N & Dong, C. D. (2022). Lignin valorisation via enzymes: A sustainable approach. Fuel, 311, 122608. https://doi.org/10.1016/j.fuel.2021.122608 | |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass (Laboratory Analytical Procedure – LAP). National Renewable Energy Laboratory (NREL). https://www.nrel.gov/docs/gen/fy13/42618.pdf | |
dc.relation.references | Sriyod, K., Reungsang, A., & Plangklang, P. (2021). One-step multi enzyme pretreatment and biohydrogen production from Chlorella sp. biomass. International Journal of Hydrogen Energy, 46(80), 39675-39687. https://doi.org/10.1016/j.ijhydene.2021.09.232 | |
dc.relation.references | Suárez, B. O. (2021). Construcción de un modelo de internacionalización para la exportación del plátano desde el departamento de Arauca a la Unión Europea. repository.unipiloto.edu.co,http://repository.unipiloto.edu.co/handle/20.500.12277/11092. | |
dc.relation.references | Subhedar, P. B., Ray, P., & Gogate, P. R. (2018). Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics sonochemistry, 40, 140-150. https://doi.org/10.1016/j.ultsonch.2017.01.030 | |
dc.relation.references | Sun, C., Sheng, T., Li, L., & Yang, L. (2021). Biohydrogen production from traditional Chinese medicine wastewater in anaerobic packed bed reactor system. RSC advances, 11(10), 5601-5608. https://doi.org/10.1039/D0RA09290H | |
dc.relation.references | Tagne, R. F. T., Costa, P., Casella, S., & Favaro, L. (2024). Optimization of biohydrogen production by dark fermentation of African food-processing waste streams. International Journal of Hydrogen Energy, 49, 266-276. https://doi.org/10.1016/j.ijhydene.2023.07.348 | |
dc.relation.references | Utekar, P. G., Kininge, M. M., & Gogate, P. R. (2021). Intensification of delignification and enzymatic hydrolysis of orange peel waste using ultrasound for enhanced fermentable sugar production. Chemical Engineering and Processing-Process Intensification, 168, 108556. https://doi.org/10.1016/j.cep.2021.108556 | |
dc.relation.references | Verma, N., Taggar, M. S., Kalia, A., Kaur, J., & Javed, M. (2022). Comparison of various delignification/desilication pre-treatments and indigenous fungal cellulase for improved hydrolysis of paddy straw. 3 Biotech, 12(7), 150. https://doi.org/10.1007/s13205-022-03211-5 | |
dc.relation.references | Villanueva-Galindo, E., & Moreno-Andrade, I. (2021). Bioaugmentation on hydrogen production from food waste. International Journal of Hydrogen Energy, 46(51), 25985-25994. https://doi.org/10.1016/j.ijhydene.2020.11.092 | |
dc.relation.references | Wang, Y., Yang, G., Sage, V., Xu, J., Sun, G., He, J., & Sun, Y. (2021). Optimization of dark fermentation for biohydrogen production using a hybrid artificial neural network (ANN) and response surface methodology (RSM) approach. Environmental Progress & Sustainable Energy, 40(1), e13485. https://doi.org/10.1002/ep.13485 | |
dc.relation.references | Woon, J. M., Khoo, K. S., Akermi, M., Alanazi, M. M., Lim, J. W., Chan, Y. J., ... & Ardo, F. M. (2023). Reviewing biohydrogen production from microalgal cells through fundamental mechanisms, enzymes and factors that engendering new challenges and prospects. Fuel, 346, 128312. https://doi.org/10.1016/j.fuel.2023.128312 | |
dc.relation.references | Xue, S., Chen, H., Wang, F., Lv, G., Tan, L., & Liu, G. (2024). The effect of substrate acidification on the biohydrogen production by dark fermentation. International Journal of Hydrogen Energy, 49, 177-188. https://doi.org/10.1016/j.ijhydene.2023.07.183 | |
dc.relation.references | Yang, Y., Bu, J., Tiong, Y. W., Xu, S., Zhang, J., He, Y., ... & Tong, Y. W. (2024). Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar. Environmental Research, 244, 117946. https://doi.org/10.1016/j.envres.2023.117946 | |
dc.relation.references | Zaini, H. M., Saallah, S., Roslan, J., Sulaiman, N. S., Munsu, E., Wahab, N. A., & Pindi, W. (2023). Banana biomass waste: A prospective nanocellulose source and its potential application in food industry–A review. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18734 | |
dc.relation.references | Zhang, L., Zhang, Z., Huang, J., Zhou, R., & Wu, C. (2024). Co-culture of Tetragenococcus halophilus and Zygosaccharomyces rouxii to improve microbiota and metabolites in secondary fortified fermented soy sauce. Food Bioscience, 61, 104850. https://doi.org/10.1016/j.fbio.2024.104850 | |
dc.relation.references | Zhang, X., Zhang, Q., Li, Y., & Zhang, H. (2023). Modeling and optimization of photo-fermentation biohydrogen production from co-substrates basing on response surface methodology and artificial neural network integrated genetic algorithm. Bioresource Technology, 374, 128789. https://doi.org/10.1016/j.biortech.2023.128789 | |
dc.relation.references | Zhang, Y., Zhang, H., Lee, D. J., Zhang, T., Jiang, D., Zhang, Z., & Zhang, Q. (2020). Effect of enzymolysis time on biohydrogen production from photo-fermentation by using various energy grasses as substrates. Bioresource Technology, 305, 123062, https://doi.org/10.1016/j.biortech.2020.123062 | |
dc.relation.references | Ashokkumar, V., Chandramughi, V. P., Kumar, G., Ngamcharussrivichai, C., Piechota, G., Igliński, B., ... & Chen, W. H. (2024). Advancements in lignocellulosic biomass: A critical appraisal of fourth-generation biofuels and value-added bioproduct. Fuel, 365, 130751. https://doi.org/10.1016/j.fuel.2023.130751 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | |
dc.subject.lemb | Platano - Fermentación | |
dc.subject.lemb | Aprovechamiento de residuos | |
dc.subject.lemb | Residuos orgánicos | |
dc.subject.lemb | Biomasa | |
dc.subject.lemb | Recursos energéticos | |
dc.subject.proposal | Hidrógeno | spa |
dc.subject.proposal | Hydrogen | eng |
dc.subject.proposal | Residuos orgánicos | spa |
dc.subject.proposal | Organic wastes | eng |
dc.subject.proposal | Fermentación | spa |
dc.subject.proposal | Fermentation | eng |
dc.subject.proposal | Biomasa lignocelulósica | spa |
dc.subject.proposal | Lignocellulosic Biomass | eng |
dc.subject.proposal | Pretratamiento | spa |
dc.subject.proposal | Pretreatment | eng |
dc.subject.proposal | Plátano | spa |
dc.subject.proposal | Plantain | eng |
dc.title | Estudio de la producción de biohidrógeno por fermentación oscura usando pulpa de plátano (Musa paradisiaca) y cáscara pretratada en medio alcalino, asistido por ultrasonido | spa |
dc.title.translated | Study of biohydrogen production by dark fermentation using plantain (Musa paradisiaca) pulp and pretreated peel in alkaline medium, assisted by ultrasound | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
- Tamaño:
- 1.63 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: