Calcio, magnesio y azufre, consumo y distribución en papa (Solanum tuberosum L. Grupo Andigenum)

dc.contributor.advisorRodriguez Molano, Luis Ernestospa
dc.contributor.advisorGómez, Manuel Ivánspa
dc.contributor.authorCastellanos Ruiz, Kristalspa
dc.date.accessioned2021-11-02T13:34:40Z
dc.date.available2021-11-02T13:34:40Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLos nutrientes minerales calcio (Ca), magnesio (Mg) y azufre (S) tienen un impacto directo en el rendimiento y calidad del tubérculo en papa. Con frecuencia se encuentran problemas de sobre o sub-dosificación en los cultivos afectando negativamente el rendimiento y calidad de los tubérculos. Es necesario desarrollar herramientas de diagnóstico que permitan optimizar el manejo nutricional de Ca-Mg-S en papa. La investigación tuvo como objetivos para los nutrientes Ca, Mg y S en dos cultivares del Grupo Andigenum: i) establecer las curvas críticas de dilución, índices de cosecha y relación entre nutrientes, ii) caracterizar los patrones de acumulación, eficiencia de traslocación, uso eficiente y eficiencia de recuperación del fertilizante durante el ciclo productivo. Se establecieron cuatro experimentos en campo en dos ciclos de producción, en las localidades de Facatativá (suelos de alta fertilidad) y Chocontá (suelos de baja fertilidad). Se evaluaron dos cultivares (Diacol Capiro y Pastusa Suprema) y dos niveles de fertilización (0 y 100% de la dosis recomendada de macro y micronutrientes esenciales). Se midió la biomasa seca y contenido de Ca-Mg-S en tubérculos y parte aérea desde la formación de tallos principales hasta maduración del tubérculo. Las curvas criticas establecidas para Capiro fueron: Cac =1.7326W-0.2956, Mgc=0.7191W-0.2803, Sc= 0.6461W-0.3904 y para Suprema: Cac =1.523W-0.2559, Mgc=0.6507W-0.236, Sc= 0.7669W-0.3932. Se establecieron niveles críticos para cinco etapas fenológicas críticas del cultivo. La acumulación total de nutrientes en kg ha-1 siguió el orden de Ca (147) > Mg (66) > S (52), mientras en la eficiencia de traslocación el orden fue S (44%)> Mg (32%) > Ca (6%). Capiro mostro una mayor fuerza vertedero, uso eficiente de los nutrientes y mayor capacidad de adaptación frente a Suprema. La mayor acumulación de Ca-Mg-S se obtuvo en la localidad de Facatativá, sin embargo, la mayor eficiencia de traslocación y de recuperación se observó en Chocontá. La eficiencia de recuperación del fertilizante fue baja en ambas localidades (<14%). Se concluye que Diacol Capiro presenta una mayor adaptación a suelos de alta fertilidad (Facatativá), y Suprema a suelos de baja fertilidad (Chocontá). Las curvas de Cac, Mgc y Sc proporcionan una herramienta para realizar el diagnóstico nutricional en etapas críticas del desarrollo, siendo las primeras reportadas para estos nutrientes y para cultivares de papa del Grupo Andigenum. (Texto tomado de la fuente).spa
dc.description.abstractMineral nutrients calcium (Ca), magnesium (Mg) and sulfur (S) have a have direct impact on yield and quality of the potato tuber. Problems of over or under-dosage are common in crops and this affects negatively tubers yield and quality. It is necessary to develop diagnostic tools to optimize the management of Ca-Mg-S in potato crops. The objectives of this research, for the elements Ca, Mg and S in two cultivars of the Andigenum Group were: i) establish the critical dilution curves, harvest index and relationship between nutrients, ii) characterize accumulation patterns, translocation efficiency , use efficiency and fertilizer recovery efficiency during crop cycle. Four field experiments were established in two production cycles in the localities of Facatativá (high fertility soils) and Chocontá (low fertility soils). Two cultivars (Diacol Capiro and Pastusa Suprema) and two levels of fertilization (0 and 100% of the recommended dose of essential macro and micronutrients) were evaluated. The dry biomass and Ca-Mg-S content in tubers and aerial part were measured from the formation of main stems until the maturation of the tuber. The critical curves established for Capiro were: Cac = 1.7326W-0.2956, Mgc = 0.7191W-0.2803, Sc = 0.6461W-0.3904 and for Suprema: Cac = 1.523W-0.2559, Mgc = 0.6507W-0.236, Sc = 0.7669W -0.3932. Critical levels were established for five critical phenological stages of the crop. Total nutrients accumulation in kg ha-1 followed the order of Ca (147)> Mg (66)> S (52), while in translocation efficiency the order was S (44%)> Mg (32%)> Ca (6%). Capiro showed greater sink strength, efficient use of nutrients and greater adaptability compared to Suprema. The highest accumulation of Ca-Mg-S was obtained in Facatativá, however, the highest translocation and recovery efficiency was observed in Chocontá. Fertilizer recovery efficiency was low in both locations (<14%). It is concluded that Diacol Capiro has a better adaptation to high fertility soils (Facatativá), while Suprema has better performance in low fertility soils (Chocontá). The Cac, Mgc and Sc curves constitute a tool for the nutritional diagnosis in critical stages of development, being the first ones reported for these nutrients and for potato cultivars of the Andigenum Group.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFisiología vegetalspa
dc.format.extentxvi, 64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80640
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbdallah, F. Ben, Olivier, M., Goffart, J.P., Minet, O., 2016. Establishing the Nitrogen Dilution Curve for Potato Cultivar Bintje in Belgium. Potato Res. 59, 241–258. https://doi.org/10.1007/s11540-016-9331-yspa
dc.relation.referencesAddiscott, T.M., 1974. Potassium and the distribution of calcium and magnesium in potato plants. J. Sci. Food Agric. 25, 1173–1183. https://doi.org/10.1002/jsfa.2740250915spa
dc.relation.referencesAlmeida, L. da S., Pereira, H.S., Cardoso, A.F., Lana, R.M.Q., Mageste, J.G., de LIMA, L.C., Luz, J.M.Q., 2018. Accumulation and export of micronutrients in potato fertilized with organic-mineral fertilizer. Biosci. J. 34, 71–80. https://doi.org/10.14393/BJ-v34n6a2018-39917spa
dc.relation.referencesAltarugio, L.M., Loman, M.H., Nirschl, M.G., Silvano, R.G., Zavaschi, E., Carneiro, L. de M. e. S., Vitti, G.C., Luz, P.H. de C., Otto, R., 2017. Yield performance of soybean and corn subjected to magnesium foliar spray. Pesqui. Agropecu. Bras. 52, 1185–1191. https://doi.org/10.1590/S0100-204X2017001200007spa
dc.relation.referencesAlvarado, A., Cabalceta, G., 2005. Absorción De Nutrimentos En El Cultivar De Papa Mnf-80. Agron. Costarric. 29, 107–123.spa
dc.relation.referencesAssunção, N.S., Ribeiro, N.P., da Silva, R.M., Soratto, R.P., Fernandes, A.M., 2020. Tuber yield and allocation of nutrients and carbohydrates in potato plants as affected by limestone type and magnesium supply. J. Plant Nutr. 43, 51–63. https://doi.org/10.1080/01904167.2019.1659345spa
dc.relation.referencesAula, L., Dhillon, J.S., Omara, P., Wehmeyer, G.B., Freeman, K.W., Raun, W.R., 2019. World sulfur use efficiency for cereal crops. Agron. J. 111, 2485–2492. https://doi.org/10.2134/agronj2019.02.0095spa
dc.relation.referencesBanerjee, H., Sarkar, S., Deb, P., Chakraborty, I., Sau, S., Ray, K., 2017. Zinc Fertilization in Potato: A Physiological and Bio-chemical Study. Int. J. Plant Soil Sci. 16, 1–13. https://doi.org/10.9734/ijpss/2017/33844spa
dc.relation.referencesBarczak, B., Nowak, K., 2015. Effect of sulphur fertilisation on the content of macroelements and their ionic ratios in potato tubers. J. Elem. 20, 37–47. https://doi.org/10.5601/jelem.2014.19.1.471spa
dc.relation.referencesBarrientos, J.C., Ñústez, C.E., 2014. Difusión de seis nuevas variedades de papa en Boyacá y Cundinamarca (Colombia) entre 2003 y 2010. Rev. Colomb. Ciencias Hortícolas 8, 126–141. https://doi.org/10.17584/rcch.2014v8i1.2806spa
dc.relation.referencesBarroso, F. de L., Milagres, C. do C., Fontes, P.C.R., Cecon, P.R., 2021. Magnesium-influenced seed potato development and yield. J. Plant Nutr. 44, 296–308. https://doi.org/10.1080/01904167.2020.1822404spa
dc.relation.referencesBassirirad, H., 2000. Kinetics of nutrient uptake by roots: Responses to global change. New Phytol. 147, 155–169. https://doi.org/10.1046/j.1469-8137.2000.00682.xspa
dc.relation.referencesBelanger, G., Walsh, J., Richars, J., Milburn, P., Ziadi, N., 2001. Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agron. J. 78, 355–364. https://doi.org/10.2134/agronj2007.0059spa
dc.relation.referencesBender, R.R., Haegele, J.W., Below, F.E., 2015. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 107, 563–573. https://doi.org/10.2134/agronj14.0435spa
dc.relation.referencesBouranis, D.L., Malagoli, M., Avice, J.C., Bloem, E., 2020. Advances in plant sulfur research. Plants 9, 4–9. https://doi.org/10.3390/plants9020256spa
dc.relation.referencesCampos, H., Ortiz, O., 2020. The Potato Crop, The Potato Crop. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-28683-5spa
dc.relation.referencesCarciochi, W.D., Wyngaard, N., Reussi Calvo, N.I., Pagani, A., Divito, G.A., Echeverría, H.E., Ciampitti, I.A., 2019. Critical sulfur dilution curve and sulfur nutrition index in maize. Agron. J. 111, 448–456. https://doi.org/10.2134/agronj2018.07.0467spa
dc.relation.referencesCastro, H., Gómez, M., 2013. Fertilidad y fertilizantes, in: Burbano, H., Silva, F. (Eds.), Ciencia Del Suelo - Principios Básicos. 2a Ed. Sociedad Colombiana de La Ciencia Del Suelo. pp. 231–304.spa
dc.relation.referencesChen, R., Zhu, Y., Cao, W., Tang, L., 2021. A bibliometric analysis of research on plant critical dilution curve conducted between 1985 and 2019. Eur. J. Agron. 123, 126199. https://doi.org/10.1016/j.eja.2020.126199spa
dc.relation.referencesChen, Z.C., Peng, W.T., Li, J., Liao, H., 2018. Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biol. 74, 142–152. https://doi.org/10.1016/j.semcdb.2017.08.005spa
dc.relation.referencesCogo, C.M., Andriolo, J.L., Bisognin, D.A., Godoi, R.D.S., Bortolotto, O.C., Da Luz, G.L., 2006. Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da cultura da batata. Pesqui. Agropecu. Bras. 41, 1781–1786. https://doi.org/10.1590/S0100-204X2006001200013spa
dc.relation.referencesDahal, K., Li, X.Q., Tai, H., Creelman, A., Bizimungu, B., 2019. Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00563spa
dc.relation.referencesDhakad, H., Verma, S.K., Singh, S.P., Gaur, D., Arya, V., 2019. Effect of sulphur levels in combination of organic and inorganic sources of nutrient on plant growth and yield of potato ( Solanum tuberosum L .) 8, 1855–1861.spa
dc.relation.referencesDivito, G.A., Echeverría, H.E., Andrade, F.H., Sadras, V.O., 2016. N and S concentration and stoichiometry in soybean during vegetative growth: Dynamics of indices for diagnosing the S status. F. Crop. Res. 198, 140–147. https://doi.org/10.1016/j.fcr.2016.08.018spa
dc.relation.referencesDuarte, L.O., Clemente, J.M., Caixeta, I.A.B., Senoski, M.D.P., Aquino, L.A. De, 2019. Dry matter and nutrient accumulation curve in cabbage crop. Rev. Caatinga 32, 679–689. https://doi.org/10.1590/1983-21252019v32n312rcspa
dc.relation.referencesEppendorfer, W.H., 1994. Sulphur deficiency of potatoes as reflected in chemical composition and in some measures of nutritive value. Nor. J. Agric. Sci. 15.spa
dc.relation.referencesFedepapa, 2018. Boletín mensual regional No 2. Fedepapa 2, 1–2.spa
dc.relation.referencesFernandes, A.M., Soratto, R.P., dos Santos, L.A., Job, A.L.G., 2011. Extração e exportação de nutrientes em cultivares de feijoeiro, sob níveis de adubação: I - Macronutrientes. Rev. Bras. Cienc. do Solo 37, 1027–1042. https://doi.org/10.1590/S0100-06832013000400020spa
dc.relation.referencesFerreira, G., Ernst, O., 2014. Diagnóstico del estado nutricional del cultivo de colza (Brassica napus) en base a curvas de dilución de nitrógeno y azufre. Agrociencia Uruguay 18, 65–74. https://doi.org/10.2477/vol18iss1pp75-85spa
dc.relation.referencesFerreira, M., Andrade, V., Oliveira, A., Ferreira, E., Brito, O., Silva, L., 2019. Physiological characterization of plant growth in sweet potato. Hortic. Bras. 37, 112–118. https://doi.org/- http://dx.doi.org/10.1590/S0102-053620190118 Physiologicalspa
dc.relation.referencesGaj, R., Chudzińska, E., Borowski-Beszta, J., Spychalski, W., 2020. Effect of potassium and micronutrient foliar fertilisation on the content and accumulation of macroelements, yield and quality parameters of potato tubers. J. Elem. 25, 1213–1231. https://doi.org/10.5601/jelem.2020.25.1.1990spa
dc.relation.referencesGerendás, J., Führs, H., 2013. The significance of magnesium for crop quality. Plant Soil 368, 101–128. https://doi.org/10.1007/s11104-012-1555-2spa
dc.relation.referencesGiletto, C.M., Echeverría, H.E., 2015. Critical Nitrogen Dilution Curve in Processing Potato Cultivars. Am. J. Plant Sci. 6, 3144–3156. https://doi.org/10.1007/s12230-011-9226-zspa
dc.relation.referencesGómez, M.I., Magnitskiy, S., Rodríguez, L.E., 2019a. Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutr. Cycl. Agroecosystems 113, 349–363. https://doi.org/10.1007/s10705-019-09986-zspa
dc.relation.referencesGómez, M.I., Magnitskiy, S., Rodríguez, L.E., 2019b. Critical dilution curves for nitrogen, phosphorus, and potassium in potato group andigenum. Agron. J. 111, 419–427. https://doi.org/10.2134/agronj2018.05.0357spa
dc.relation.referencesGómez, M.I., Magnitskiy, S., Rodríguez, L.E., 2018. Potential yield and efficiency of N and K uptake in tubers of cvs. Capiro and Suprema (Solanum tuberosum Group Andigenum). Agron. Colomb. 36, 126–134. https://doi.org/10.15446/agron.colomb.v36n2.72766spa
dc.relation.referencesGoméz, M.I., Magnitskiy, S., Rodríguez, L.E., Darghan, A.E., 2017. Accumulation of N , P , and K in the tubers of potato ( Solanum tuberosum L . ssp . andigena ) under contrasting soils of the Andean region of Colombia Acumulación de N , P y K en tubérculos de papa ( Solanum tuberosum L . ssp . 35, 59–67. https://doi.org/10.15446/agron.colomb.v35n1.61068spa
dc.relation.referencesGondwe, R.L., Kinoshita, R., Suminoe, T., Aiuchi, D., Palta, J., Tani, M., 2019. Soil and tuber calcium affecting tuber quality of processing potato (Solanum tuberosum L.) cultivars grown in Hokkaido, Japan. Soil Sci. Plant Nutr. 65, 159–165. https://doi.org/10.1080/00380768.2019.1579044spa
dc.relation.referencesGreenwood, D.J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A., Neeteson, J.J., 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot. 66, 425–436. https://doi.org/10.1093/oxfordjournals.aob.a088044spa
dc.relation.referencesGuerrero-Guio, J.C., Cabezas Gutiérrez, M., Galvis Quintero, J.H., 2019. Efecto de dos sistemas de riego sobre la producción y uso eficiente del agua en el cultivo de papa variedad diacol capiro. Rev. Investig. Agrar. y Ambient. 11, 41–52. https://doi.org/10.22490/21456453.3080spa
dc.relation.referencesHamdi, W., Helali, L., Beji, R., Zhani, K., Ouertatani, S., Gharbi, A., 2015. Effect of levels calcium nitrate addition on potatoes fertilizer. Int. Res. J. Eng. Technol. 2, 2006–2013spa
dc.relation.referencesHameed, A., Zaidi, S.S. e. A., Shakir, S., Mansoor, S., 2018. Applications of new breeding technologies for potato improvement. Front. Plant Sci. 9, 1–15. https://doi.org/10.3389/fpls.2018.00925spa
dc.relation.referencesHandayani, T., Gilani, S.A., Watanabe, K.N., 2019. Climatic changes and potatoes: How can we cope with the abiotic stresses? Breed. Sci. 69, 545–563. https://doi.org/10.1270/jsbbs.19070spa
dc.relation.referencesHauer-Jákli, M., Tränkner, M., 2019. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research. Front. Plant Sci. 10, 1–15. https://doi.org/10.3389/fpls.2019.00766spa
dc.relation.referencesHelal, N., AbdElhady, S., 2015. Calcium and Potassium Fertilization May Enhance Potato Tuber Yield and Quality. Middle East J 4, 991–998.spa
dc.relation.referencesIGAC, 2006. Métodos analíticos del Laboratorio de Suelos. Instituto Geográfico Agustín Codazzi, 6th ed. Bogotá.spa
dc.relation.referencesJahanzad, E., Barker, A. V., Hashemi, M., Sadeghpour, A., Eaton, T., Park, Y., 2017. Improving yield and mineral nutrient concentration of potato tubers through cover cropping. F. Crop. Res. 212, 45–51. https://doi.org/10.1016/j.fcr.2017.06.023spa
dc.relation.referencesKlikocka, H., Głowacka, A., 2013. Does the sulphur fertilization modify magnesium and calcium content in potato tubers (Solanum tuberosum L.)? Acta Sci. Pol. Hortorum Cultus 12, 41–53.spa
dc.relation.referencesKoch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., Pawelzik, E., 2019a. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol. Plant. 166, 921–935. https://doi.org/10.1111/ppl.12846spa
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., 2019b. Cracking and fracture properties of potato (Solanum tuberosum L.) tubers and their relation to dry matter, starch, and mineral distribution. J. Sci. Food Agric. 99, 3149–3156. https://doi.org/10.1002/jsfa.9530spa
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., Gransee, A., Hiel, H., 2020. The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Res. 63, 97–119. https://doi.org/10.1007/s11540-019-09430-3spa
dc.relation.referencesKoch, M.T., 2018. Effect of the potassium and magnesium nutrition on potato (Solanum tuberosum L.) tuber quality and plant development 142.spa
dc.relation.referencesKopriva, S., Rennenberg, H., 2004. Control of sulphate assimilation and glutathione synthesis: Interaction with N and C metabolism. J. Exp. Bot. 55, 1831–1842. https://doi.org/10.1093/jxb/erh203spa
dc.relation.referencesKratzke, M., Palta, J., 1985. Evidence for the existence of functional roots on potato tubers and stolons: significance in water transport to the tuber. Biol. Conserv. 62, 227–236. https://doi.org/10.1016/0006-3207(72)90131-0spa
dc.relation.referencesLemaire, G., Sinclair, T., Sadras, V., Bélanger, G., 2019. Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agron. Sustain. Dev. 39, 1–17. https://doi.org/10.1007/s13593-019-0570-6spa
dc.relation.referencesMaathuis, F.J., 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. https://doi.org/10.1016/j.pbi.2009.04.003spa
dc.relation.referencesMarouani, A., Behi, O., Sahli, A., Ben Jeddi, F., 2014. CRITICAL NITROGEN CURVE FOR TWO POTATO CULTIVARS UNDER SEMI- ARID CONDITIONS, in: Fifth International Scientific Agricultural Symposium „Agrosym 2014“. pp. 23–26.spa
dc.relation.referencesMinagricultura, 2019. Estrategia de ordenamiento de la producción cadena productiva de la papa y su industria. Minist. Agric. y Desarro. Rural. https://doi.org/10.22201/fq.18708404e.2004.3.66178spa
dc.relation.referencesMitra, G., 2017. Essential plant nutrients: Uptake, use efficiency, and management, Essential Plant Nutrients: Uptake, Use Efficiency, and Management. https://doi.org/10.1007/978-3-319-58841-4spa
dc.relation.referencesMuthanna, M.A., K. Singh, A., Tiwari, A., Jain, V.K., Padhi, M., 2017. Effect of Boron and Sulphur Application on Plant Growth and Yield Attributes of Potato (Solanum tuberosum L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 399–404. https://doi.org/10.20546/ijcmas.2017.610.049spa
dc.relation.referencesNaumann, M., Koch, M., Thiel, H., Gransee, A., Pawelzik, E., 2020. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Res. 63, 121–137. https://doi.org/10.1007/s11540-019-09430-3spa
dc.relation.referencesPalta, J., 1996. Role of Calcium in Plant Responses to Stresses: Linking Basic Research to the Solution of Practical Problems. HortScience 31, 51–57. https://doi.org/10.21273/hortsci.31.1.31spa
dc.relation.referencesPalta, J.P., 2010. Improving Potato Tuber Quality and Production by Targeted Calcium Nutrition: The Discovery of Tuber Roots Leading to a New Concept in Potato Nutrition. Potato Res. 53, 267–275. https://doi.org/10.1007/s11540-010-9163-0spa
dc.relation.referencesPereira, G.E., Melo, J.W.P. de, Ragassi, C.F., Carvalho, A.D.F. de, Silva, J. da, Silva, G.O. da, Vilela, M.S., 2020. Macronutrient accumulation curves in potato genotypes in the Brazilian Savanna. Pesqui. Agropecuária Trop. 50, 1–11. https://doi.org/10.1590/1983-40632020v5064416spa
dc.relation.referencesPoljak, M., Lazarević, B., Horvat, T., Karažija, T., 2011. Influence of nitrogen fertilization and plant density on yield and nitrogen use efficiency of the potato ( Solanum tuberosum L .), in: 46th Croatian and 6th International Symposium on Agriculture. Opatija, pp. 667–671.spa
dc.relation.referencesRamaekers, L., Remans, R., Rao, I.M., Blair, M.W., Vanderleyden, J., 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. F. Crop. Res. 117, 169–176. https://doi.org/10.1016/j.fcr.2010.03.001spa
dc.relation.referencesRaymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008spa
dc.relation.referencesReussi, N., Echeverría, H.E., RozasHerná, H.S., 2012. Stability of foliar nitrogen: Sulfur ratio in spring red wheat and sulfur dilution curve. J. Plant Nutr. 35, 990–1003. https://doi.org/10.1080/01904167.2012.671403spa
dc.relation.referencesRhodes, R., Miles, N., Hughes, J.C., 2018. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. F. Crop. Res. 223, 1–11. https://doi.org/10.1016/j.fcr.2018.01.001spa
dc.relation.referencesRietra, R.P.J.J., Heinen, M., Dimkpa, C.O., Bindraban, P.S., 2017. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920. https://doi.org/10.1080/00103624.2017.1407429spa
dc.relation.referencesRitz, C., Baty, F., Streibig, J., Gerhard, D., 2015. Dose-response analysis using R. PLoS One. https://doi.org/https://doi.org/10.1371/journal.pone.0146021spa
dc.relation.referencesRoy, T.S., Rahman, M., Pulok, I., 2014. Influence of potassium and sulfur on growth and yield of potato crop derived from tps seedling tuber. J. Sustain. Agril. Tech. 10, 15–21.spa
dc.relation.referencesSameh A.M. Moussa, L.M.H. and N.I.A.E.-F., 2019. Effect of different levels of sulphur and nitrogen fertilizers on potato productivity , acrylamide formation and amino acids content in processed potatoes. Middle East J. Agric. Res. 07, 1626–1646.spa
dc.relation.referencesSánchez, A.D., Nieto, M.F., Dossmann, J., Camacho-Tamayo, J.H., Restrepo-Díaz, H., 2019. Nutrient uptake, partitioning, and removal in two modern high-yielding Colombian rice genotypes. J. Plant Nutr. 42, 2373–2387. https://doi.org/10.1080/01904167.2019.1659334spa
dc.relation.referencesSantana, A.C.D.A., Oliveira, E.C.A. De, Silva, V.S.G., Santos, R.L., Silva, M.A., Freire, F.J., 2020. Revista Brasileira de Engenharia Agrícola e Ambiental Critical nitrogen dilution curves and productivity assessments for plant cane Curvas de diluição do nitrogênio crítico e produtividade da cana planta 244–251.spa
dc.relation.referencesSAS Institute, 2017. Base SAS 9.4 procedures guide : statistical procedures., 5th ed. SAS institute, Cary.spa
dc.relation.referencesSchabow, J.E., Palta, J.P., 2019. Intumescence Injury in the Leaves of Russet Burbank Potato Plants is Mitigated by Calcium Nutrition. Am. J. Potato Res. 96, 6–12. https://doi.org/10.1007/s12230-018-9682-9spa
dc.relation.referencesSeifu, Y.W., 2017. Reducing severity of late blight (Phytophthora infestans) and improving Potato (Solanum tuberosum L.) tuber yield with pre-harvest application of calcium nutrients. Agronomy 7. https://doi.org/10.3390/agronomy7040069spa
dc.relation.referencesSeifu, Y.W., Deneke, S., 2017. Effect of Calcium Chloride and Calcium Nitrate on Potato (Solanum tuberosum L.) Growth and Yield. J. Hortic. 04. https://doi.org/10.4172/2376-0354.1000207spa
dc.relation.referencesSeling, S., Wissemeier, A.H., Cambier, P., Van Cutsem, P., 2000. Calcium deficiency in potato (Solanum tuberosum ssp. tuberosum) leaves and its effects on the pectic composition of the apoplastic fluid. Physiol. Plant. 109, 44–50. https://doi.org/10.1034/j.1399-3054.2000.100107.xspa
dc.relation.referencesSenbayram, M., Gransee, A., Wahle, V., Thiel, H., 2015. Role of magnesium fertilisers in agriculture: Plant-soil continuum. Crop Pasture Sci. 66, 1219–1229. https://doi.org/10.1071/CP15104spa
dc.relation.referencesSharma, D., Kushwah, S., Nema, P., Rathore, S., 2011. Effect of sulphur on yield and quality of potato (Solanum tuberosum L.). Int. J. Agric. Res. 6, 143–148.spa
dc.relation.referencesShen, X., Yuan, Y., Zhang, H., Guo, Y., Zhao, Y., Li, S., Kong, F., 2019. The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes (Basel). 10. https://doi.org/10.3390/genes10080607spa
dc.relation.referencesSilva, C.D., Soares, M.E.P., Ferreira, M.H., Cavalcante, A.C.P., Andrade, G.A.V. De, Aquino, L.A. De, 2020. Dry matter and macronutrient extraction curves of potato varieties in the Alto Paranaíba region , Brazil. Rev. Bras. Eng. Agrícola e Ambient. 24, 176–186.spa
dc.relation.referencesSingh, H., Sharma, M., Goyal, A., Bansal, M., 2016. Effect of Nitrogen and Sulphur on Growth and Yield Attributes of Potato (Solanum tuberosum L.). Int. J. Plant Soil Sci. 9, 1–8. https://doi.org/10.9734/ijpss/2016/20237spa
dc.relation.referencesSingh, S., Sharma, M., Reddy, K., Venkatesh, T., 2018. Integrated application of boron and sulphur to improve quality and economic yield in potato 39, 228–236.spa
dc.relation.referencesSoil Survey Staff, 2014. Keys to soil taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.spa
dc.relation.referencesSoratto, R.P., Job, A.L.G., Fernandes, A.M., Assunção, N.S., Fernandes, F.M., 2020. Biomass Accumulation and Nutritional Requirements of Potato as Affected by Potassium Supply. J. Soil Sci. Plant Nutr. 20, 1051–1066. https://doi.org/10.1007/s42729-020-00192-3spa
dc.relation.referencesSoto, M., 2020. Efectos de la materia orgánica sobre el suelo 1, 1–5.spa
dc.relation.referencesStewart, W.M., 2007. Consideraciones en el uso eficiente de los nutrientes. Inf. agronómicas 67, 1–7. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesSubramanian, N.K., White, P.J., Broadley, M.R., Ramsay, G., 2011. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 107, 681–691. https://doi.org/10.1093/aob/mcr009spa
dc.relation.referencesSzczepaniak, W., 2016. Evaluating nitrogen use efficiency (NUE) indices on the background of mineral status of the seed crop at maturity: A case study of maize. Polish J. Environ. Stud. 25, 2129–2138. https://doi.org/10.15244/pjoes/61817spa
dc.relation.referencesTabares, E., Villegas, S., González, L., Cotes, J., 2009. Respuesta de la papa (Solanum tuberosum L.) Variedad diacol capiro a la fertilización en un andisol del oriente antioqueño, Colombia. Rev. Fac. Nac. Agron. 62, 5099–5110.spa
dc.relation.referencesTamagno, S., Balboa, G.R., Assefa, Y., Kovács, P., Casteel, S.N., Salvagiotti, F., García, F.O., Stewart, W.M., Ciampitti, I.A., 2017. Nutrient partitioning and stoichiometry in soybean: A synthesis-analysis. F. Crop. Res. 200, 18–27. https://doi.org/10.1016/j.fcr.2016.09.019spa
dc.relation.referencesThor, K., 2019. Calcium—nutrient and messenger. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00440spa
dc.relation.referencesValbuena, R.I., Roveda, G., 2010. Escalas fenológicas de las variedades de papa parda pastusa, diacol capiro y criolla “yema de huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y Antioquia. Produmedios.spa
dc.relation.referencesVillamil, H.J., Castro, H., Valvuena, I., Cabezas, M., Porras, P., 2005. Memorias Taller Nacional Sobre Suelo, Fisiologia Y Nutricion Vegetal, in: Cevipapa. Bogotá, p. 19.spa
dc.relation.referencesWalworth, J.L., Muniz, J.E., 1993. A compendium of tissue nutrient concentrations for field-grown potatoes. Am. Potato J. 70, 579–597. https://doi.org/10.1007/BF02850848spa
dc.relation.referencesWang, M., Wang, H., Hou, L., Zhu, Y., Zhang, Q., Chen, L., Mao, P., 2018. Development of a critical nitrogen dilution curve of Siberian wildrye for seed production. F. Crop. Res. 219, 250–255. https://doi.org/10.1016/j.fcr.2018.01.030spa
dc.relation.referencesWang, X., Ye, T., Ata-Ul-Karim, S.T., Zhu, Y., Liu, L., Cao, W., Tang, L., 2017. Development of a critical nitrogen dilution curve based on leaf area duration in wheat. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01517spa
dc.relation.referencesWang, Z., Hassan, M.U., Nadeem, F., Wu, L., Zhang, F., Li, X., 2020. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 10, 1–10. https://doi.org/10.3389/fpls.2019.01727spa
dc.relation.referencesWendimu Seifu, Y., Deneke, S., 2017. Effect of Calcium Chloride and Calcium Nitrate on Potato (Solanum tuberosum L.) Growth and Yield. J. Hortic. 04. https://doi.org/10.4172/2376-0354.1000207spa
dc.relation.referencesWhite, P.J., Broadley, M.R., 2003. Calcium in plants. Ann. Bot. 92, 487–511. https://doi.org/10.1093/aob/mcg164spa
dc.relation.referencesWickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. New York.spa
dc.relation.referencesWszelaczyńska, E., Pobereżny, J., Lamparski, R., Kozera, W., Knapowski, T., 2020. Effect of potato tuber biofortification with magnesium and the storage time on the content of nutrients. J. Elem. 25, 687–700. https://doi.org/10.5601/jelem.2019.24.4.1880spa
dc.relation.referencesYin, X., Goudriaan, J., Lantinga, E.A., Vos, J., Spiertz, H.J., 2003. A flexible sigmoid function of determinate growth. Ann. Bot. 91, 361–371. https://doi.org/10.1093/aob/mcg029spa
dc.relation.referencesZamuner, E.C., Lloveras, J., Echeverría, H.E., 2016. Use of a Critical Phosphorus Dilution Curve to Improve Potato Crop Nutritional Management. Am. J. Potato Res. 93, 392–403. https://doi.org/10.1007/s12230-016-9514-8spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembPotatoeseng
dc.subject.lembSolanum tuberosumeng
dc.subject.lembBotanyeng
dc.subject.lembSolanum tuberosumspa
dc.subject.lembBotánicaspa
dc.subject.lembPapas (Tubérculos)spa
dc.subject.proposalCritical concentrationeng
dc.subject.proposalNutritional diagnosiseng
dc.subject.proposalNutrient harvest indexeng
dc.subject.proposalSecondary nutrientseng
dc.subject.proposalConcentración críticaspa
dc.subject.proposalDiagnóstico nutricionalspa
dc.subject.proposalÍndice de cosecha de nutrientesspa
dc.subject.proposalNutrientes secundariosspa
dc.titleCalcio, magnesio y azufre, consumo y distribución en papa (Solanum tuberosum L. Grupo Andigenum)spa
dc.title.translatedCalcium, magnesium and sulfur, uptake and distribution in potato (Solanum tuberosum Grupo Andigenum)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032472633.2021.pdf
Tamaño:
1.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: