Evaluación del coeficiente de capacidad de disipación de energía R en edificaciones de pórticos de acero, provistas con disipadores histeréticos de acero restringidos al pandeo (BRB), localizadas en zona de amenaza sísmica alta
dc.contributor.advisor | Molina Herrera, Maritzabel | spa |
dc.contributor.advisor | Villalba Morales, Jesús Daniel | spa |
dc.contributor.author | Ortiz Álvarez, Nicolás | spa |
dc.contributor.researchgroup | Análisis, Diseño y Materiales Gies | spa |
dc.date.accessioned | 2025-07-30T01:12:38Z | |
dc.date.available | 2025-07-30T01:12:38Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El presente trabajo evalúa el coeficiente de capacidad de disipación de energía R en edificaciones de pórticos de acero provistas con disipadores histeréticos de acero restringidos al pandeo (BRB) ubicadas en zona de amenaza sísmica alta. Se modelaron numéricamente cuatro edificios de 4, 8, 12 y 16 niveles, en los cuales los BRBs fueron representados mediante una metodología que emplea elementos tipo Frame, permitiendo identificar los estados de plastificación de estos dispositivos. Para el análisis estructural de las edificaciones se realizó un procedimiento estático no lineal de plastificación progresiva (Pushover) con el cual se obtuvieron las curvas de capacidad y posteriormente los puntos de desempeño para el sismo de diseño y para el máximo considerado (MCE). El dimensionamiento de los BRB se fundamentó en la metodología de Oviedo A. et al. (2010), y su verificación final se llevó a cabo conforme a los requisitos de la ASCE 7‑22 para estructuras con sistemas de disipación. Los resultados muestran que la incorporación de BRB aumenta la ductilidad global e incrementa significativamente la rigidez en el punto de fluencia, especialmente en los edificios de 4 y 8 niveles, concentrando la deformación inelástica en los disipadores y manteniendo vigas y columnas en rango elástico principal. El coeficiente R, calculado mediante los métodos de Abou-Elfath et al. (2018) y Mahmoudi & Zaree (2013), tiende a aumentar con el incremento en el número de niveles. Se obtuvieron valores de 3.42–5.44 en edificios de 4 y 8 niveles a 6.57–15.28 en los de 12 y 16 niveles. Estos hallazgos sugieren la necesidad de profundizar en el estudio de los valores del coeficiente R para pórticos de acero provistos con BRBs, con el propósito de plantear ajustes para representar de una manera más precisa la capacidad real de disipación de este tipo de sistemas estructurales. (Texto tomado de la fuente). | spa |
dc.description.abstract | This paper evaluates the response modification coefficient R of steel frame buildings with buckling-restrained braces (BRB) located in a high seismic hazard zone. Four buildings of 4, 8, 12 and 16 storeys were modelled numerically in SAP2000, in which the BRBs were represented by means of a methodology that uses Frame type elements, allowing the identification of the plasticization states of these devices. For the structural analysis of the buildings, a non-linear static procedure of progressive plastification (Pushover) was used to obtain the capacity curves and then the performance points for the design earthquake and for the maximum considered (MCE). The sizing of the BRBs was based on the methodology of Oviedo A. et al. (2010), and their final verification was carried out according to the requirements of ASCE 7-22 for structures with damping systems. The results show that the incorporation of BRB increases the global ductility and significantly increases the stiffness at the yield point, especially in the 4 and 8 story buildings, concentrating the inelastic deformation in the dissipators and keeping beams and columns in principal elastic range. The R coefficient, calculated using the methods of Abou-Elfath et al. (2018) and Mahmoudi & Zaree (2013), tends to increase with the increase in the number of levels. Values were obtained from 3.42-5.44 in buildings with 4 and 8 levels to 6.57-15.28 in those with 12 and 16 levels. These findings suggest the need to further study the R values for steel structures provided with BRBs, with the purpose of proposing adjustments to more accurately represent the damping capacity of this type of structural systems. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Estructuras | spa |
dc.description.researcharea | Análisis estructural | spa |
dc.format.extent | xx, 211 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88398 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Civil y Agrícola | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras | spa |
dc.relation.references | Abou-Elfath, H., Shamel Fahmy, A., & Mohamed Khalifa, K. (2018). Response modification factors of buckling-restrained braced frames designed according to the Egyptian code. Alexandria Engineering Journal, 57(4), 2851–2864. https://doi.org/10.1016/j.aej.2018.07.001 | spa |
dc.relation.references | Applied Technology Council. (1996). Seismic evaluation and retrofit of concrete buildings (Vol. 1). | spa |
dc.relation.references | Arcila R., M. M., García, J., Montejo E., J. S., Eraso, J. F., Valcárcel T., J. A., Mora C., M. G., Viganò, D., Pagani, M., & Díaz P., F. J. (2020). Modelo nacional de amenaza sísmica para Colombia (Eds., Vol. 43). Libros del Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279469 | spa |
dc.relation.references | Ardila Valencia, J. G. (2016). Evaluación del coeficiente de disipación energía, R, para edificios con un sistema estructural combinado de muros y pórticos en concreto, con diferente número de pisos. | spa |
dc.relation.references | ASCE/SEI. (2021). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers. https://doi.org/10.1061/9780784415788 | spa |
dc.relation.references | Asgarian, B., & Shokrgozar, H. R. (2009). BRBF response modification factor. Journal of Constructional Steel Research, 65(2), 290–298. https://doi.org/10.1016/j.jcsr.2008.08.002 | spa |
dc.relation.references | AtashFaraz, B., Jangara, J., & Katebi, J. (2022). Enhancing the seismic performance of building structures equipped with composite braces in mega bracing configuration. The Structural Design of Tall and Special Buildings. https://doi.org/10.1002/tal.1936 | spa |
dc.relation.references | Bosco, M., Marino, E. M., & Rossi, P. P. (2012). Design of steel frames with buckling restrained braces. | spa |
dc.relation.references | Braz-César, M., & Carneiro De Barros, R. (2013). Passive control of civil engineering structures. | spa |
dc.relation.references | Buitrago Escobar, H. S. (2022). Programa didáctico de análisis no lineal de secciones transversales en elementos estructurales a flexión y fuerza axial. Universidad Nacional de Colombia. | spa |
dc.relation.references | Buitrago, H. S. (2022). Programa didáctico de análisis no lineal de secciones transversales en elementos estructurales a flexión y fuerza axial. Universidad Nacional de Colombia. | spa |
dc.relation.references | Caballero, L. F. (2022). Evaluación del coeficiente de disipación de energía R, en edificaciones de pórticos en acero, provistos con disipadores histeréticos metálicos triangulares tipo TADAS, localizadas en zona de amenaza sísmica alta. https://repositorio.unal.edu.co/handle/unal/82844 | spa |
dc.relation.references | Cano Castaño, H. A. (2020). Evaluación del coeficiente de disipación de energía R, en edificaciones de concreto reforzado con disipadores histeréticos metálicos triangulares tipo TADAS, ubicados en zona de amenaza sísmica alta. | spa |
dc.relation.references | Dutta, S. C. (2001). Effect of strength deterioration on inelastic seismic torsional behaviour of asymmetric RC buildings. Building and Environment, 36(10), 1109–1118. https://doi.org/https://doi.org/10.1016/S0360-1323(00)00076-7 | spa |
dc.relation.references | Ebadi Jamkhaneh, M., Homaioon Ebrahimi, A., & Shokri Amiri, M. (2018). Seismic Performance of Steel-Braced Frames with an All-Steel Buckling Restrained Brace. Practice Periodical on Structural Design and Construction, 23(3), 04018016. https://doi.org/10.1061/(asce)sc.1943-5576.0000381 | spa |
dc.relation.references | Eghbali, M., Asadian, E., Amiri, G. G., & Amrei, S. A. R. (2017). Seismic performance of steel frames equipped with buckling-restrained braces (BRBs) using nonlinear static and dynamic analyses. Journal of Vibroengineering, 19(2), 1131–1146. https://doi.org/10.21595/jve.2016.16578 | spa |
dc.relation.references | El-Bahey, S., & Bruneau, M. (2011). Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents. Engineering Structures, 33(3), 1052–1061. https://doi.org/10.1016/j.engstruct.2010.12.027 | spa |
dc.relation.references | Federal Emergency Management Agency. (2003). NEHRP Recommended Provisions for Seismic Regulations for New Buildings — Provisions and Commentary. Building Seismic Safety Council, National Institute of Buildings Sciences. | spa |
dc.relation.references | FEMA. (2020). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-2082-1) (2020th ed., Vol. 1). | spa |
dc.relation.references | Gómez Navarrete, D. C. (2020). Evaluación del coeficiente de disipación de energía R en edificaciones de concreto reforzado con disipadores de energía viscosos ubicados en zona de amenaza sísmica alta. | spa |
dc.relation.references | Gondaliya, K., Amin, J., Vasanwala, S., & Desai, A. (2024). Comparison of Methodologies for Seismic Fragility Analysis of Designed RC Frame Building as Per Indian Provisions. In R. Ghai, L.-M. Chang, R. Sharma, & A. K. Chandrappa (Eds.), Sustainable Design and Eco Technologies for Infrastructure (pp. 103–113). Springer Nature Singapore. | spa |
dc.relation.references | Gu, Z. Q., & Oyadiji, S. O. (2008). Application of MR damper in structural control using ANFIS method. Computers and Structures, 86(3–5), 427–436. https://doi.org/10.1016/j.compstruc.2007.02.024 | spa |
dc.relation.references | Guerrero, H., Escobar, J. A., & Teran-Gilmore, A. (2018). Experimental damping on frame structures equipped with buckling-restrained braces (BRBs) working within their linear-elastic response. Soil Dynamics and Earthquake Engineering, 106, 196–203. https://doi.org/10.1016/j.soildyn.2017.12.028 | spa |
dc.relation.references | Jia, M. M., Li, L., Hong, C., Liu, K., & Sun, L. (2021). Experiment of hysteretic behavior and stability performance of buckling-restrained braced composite frame. Advanced Steel Construction, 17(2), 149–157. https://doi.org/10.18057/IJASC.2021.17.2.5 | spa |
dc.relation.references | Kasai, K., Ito, H., Ooki, Y., Hikino, T., Kajiwara, K., Motoyui, S., Ozaki, H., & Ishii, M. (2010). FULL-SCALE SHAKE TABLE TESTS OF 5-STORY STEEL BUILDING WITH VARIOUS DAMPERS. | spa |
dc.relation.references | Kiggins, S., & Uang, C. M. (2006). Reducing residual drift of buckling-restrained braced frames as a dual system. Engineering Structures, 28(11), 1525–1532. https://doi.org/10.1016/j.engstruct.2005.10.023 | spa |
dc.relation.references | King, D., Priestley, M., & Park, R. (1986). Computer programs for concrete column design. University of Canterbury. | spa |
dc.relation.references | Liang, Q. (2009). Performance-based analysis of concrete-filled steel tubular beam – columns, Part I: Theory and algorithms. Journal of Construction Steel Research, 65, 363–372. | spa |
dc.relation.references | Lu, X., & Xu, L. (2022). Displacement mitigation mechanism and parameters sensitivity analysis of steel moment frame retrotted by self-centering braces. https://doi.org/10.21203/rs.3.rs-1514033/v1 | spa |
dc.relation.references | Macedo, L., Silva, A., & Castro, J. M. (2019). A more rational selection of the behaviour factor for seismic design according to Eurocode 8. Engineering Structures, 188, 69–86. https://doi.org/10.1016/j.engstruct.2019.03.007 | spa |
dc.relation.references | Mahmoudi, M., & Zaree, M. (2013). Determination the response modification factors of buckling restrained braced frames. Procedia Engineering, 54, 222–231. https://doi.org/10.1016/j.proeng.2013.03.020 | spa |
dc.relation.references | Mohamed, A.-R., & H, L. H. (1980). Automatic Active Control of Structures. Journal of the Structural Division, 106(3), 663–677. https://doi.org/10.1061/JSDEAG.0005386 | spa |
dc.relation.references | Nastri, E., D’Aniello, M., Zimbru, M., Streppone, S., Landolfo, R., Montuori, R., & Piluso, V. (2019). Seismic response of steel Moment Resisting Frames equipped with friction beam-to-column joints. Soil Dynamics and Earthquake Engineering, 119, 144–157. https://doi.org/10.1016/j.soildyn.2019.01.009 | spa |
dc.relation.references | Oviedo A., J. A., Midorikawa, M., & Asari, T. (2010). Earthquake response of ten-story story-drift-controlled reinforced concrete frames with hysteretic dampers. Engineering Structures, 32(6), 1735–1746. https://doi.org/10.1016/j.engstruct.2010.02.025 | spa |
dc.relation.references | Özkılıç, Y. O., Bozkurt, M. B., & Topkaya, C. (2018). Evaluation of seismic response factors for BRBFs using FEMA P695 methodology. Journal of Constructional Steel Research, 151, 41–57. https://doi.org/10.1016/j.jcsr.2018.09.015 | spa |
dc.relation.references | Papanikolaou, V. K., Thermou, G. E., & Kappos, A. J. (2012). Moment-Curvature Analysis of R/C Jacketed Rectangular Sections Including Interface Slip Under Cyclic Loading. | spa |
dc.relation.references | Pei, S., Zhang, Z., Deng, E. F., & Wang, Y. B. (2021). Experimental study on seismic performance of ultrahigh-strength steel frames with buckling-restrained braces. Archives of Civil and Mechanical Engineering, 21(4). https://doi.org/10.1007/s43452-021-00313-4 | spa |
dc.relation.references | Pnevmatikos, N. G., & Thomos, G. C. (2014). Stochastic structural control under earthquake excitations. Structural Control and Health Monitoring, 21(4), 620–633. https://doi.org/10.1002/stc.1589 | spa |
dc.relation.references | Rahai, A. R., & Alinia, M. M. (2008). Performance evaluation and strengthening of concrete structures with composite bracing members. Construction and Building Materials, 22(10), 2100–2110. https://doi.org/10.1016/j.conbuildmat.2007.07.020 | spa |
dc.relation.references | Spencer, B. F., & Nagarajaiah, S. (2003). State of the Art of Structural Control. Journal of Structural Engineering, 129(7), 845–856. https://doi.org/10.1061/(asce)0733-9445(2003)129:7(845) | spa |
dc.relation.references | Tremblay, R., & Poncet, L. (2007). Improving the Seismic Stability of Concentrically Braced Steel Frames. 44, 103–116. | spa |
dc.relation.references | Valencia R., D., & Valencia C., G. (2008). Evaluating response modification factor (R) for some types of steel structure. Ingeniería e Investigación, 28(1), 41–49. | spa |
dc.relation.references | Velásquez Mejía, J. D. (2020). Estimación para edificaciones de concreto reforzado con arriostramiento restringido al pandeo del coeficiente de disipación de energía R en zona de amenaza sísmica alta. | spa |
dc.relation.references | Wang, T., Noori, M., Altabey, W. A., Wu, Z., Ghiasi, R., Kuok, S. C., Silik, A., Farhan, N. S. D., Sarhosis, V., & Farsangi, E. N. (2023). From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems. In Mechanical Systems and Signal Processing (Vol. 204). Academic Press. https://doi.org/10.1016/j.ymssp.2023.110785 | spa |
dc.relation.references | Wani, Z. R., Tantray, M., Noroozinejad Farsangi, E., Nikitas, N., Noori, M., Samali, B., & Yang, T. Y. (2022). A Critical Review on Control Strategies for Structural Vibration Control. In Annual Reviews in Control (Vol. 54, pp. 103–124). Elsevier Ltd. https://doi.org/10.1016/j.arcontrol.2022.09.002 | spa |
dc.relation.references | Wen, Y. K. (1976). Method for Random Vibration of Hysteretic Systems. Journal of the Engineering Mechanics Division, ASCE, 102(EM2). | spa |
dc.relation.references | Zhu, B. L., Guo, Y. L., & Zhang, C. (2021). Global buckling behaviours and design of uniform-section BRBs considering lateral load effects. Journal of Constructional Steel Research, 186. https://doi.org/10.1016/j.jcsr.2021.106928 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción | spa |
dc.subject.proposal | Disipación de energía | spa |
dc.subject.proposal | Riostras restringidas al pandeo | spa |
dc.subject.proposal | Coeficiente R | spa |
dc.subject.proposal | Análisis Pushover | spa |
dc.subject.proposal | Estructuras metálicas | spa |
dc.subject.proposal | Energy dissipation | eng |
dc.subject.proposal | Buckling restrained braces | eng |
dc.subject.proposal | Response modification coefficient | eng |
dc.subject.proposal | Pushover analysis | eng |
dc.subject.proposal | Steel structures | eng |
dc.subject.unesco | Sismicidad | spa |
dc.subject.unesco | Seismicity | eng |
dc.subject.unesco | Elemento estructural (construcción) | spa |
dc.subject.unesco | Structural elements (buildings) | eng |
dc.subject.unesco | Prevención antisísmica | spa |
dc.subject.unesco | Earthquake prediction | eng |
dc.subject.unesco | Acero | spa |
dc.subject.unesco | Steel | eng |
dc.title | Evaluación del coeficiente de capacidad de disipación de energía R en edificaciones de pórticos de acero, provistas con disipadores histeréticos de acero restringidos al pandeo (BRB), localizadas en zona de amenaza sísmica alta | spa |
dc.title.translated | Evaluation of the response modification coefficient R of steel frame buildings with steel buckling-restrained braces (BRB) located in a high seismic hazard zone | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1094580633.2025.pdf
- Tamaño:
- 13.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Estructuras
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: