Evaluación del coeficiente de capacidad de disipación de energía R en edificaciones de pórticos de acero, provistas con disipadores histeréticos de acero restringidos al pandeo (BRB), localizadas en zona de amenaza sísmica alta

dc.contributor.advisorMolina Herrera, Maritzabelspa
dc.contributor.advisorVillalba Morales, Jesús Danielspa
dc.contributor.authorOrtiz Álvarez, Nicolásspa
dc.contributor.researchgroupAnálisis, Diseño y Materiales Giesspa
dc.date.accessioned2025-07-30T01:12:38Z
dc.date.available2025-07-30T01:12:38Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl presente trabajo evalúa el coeficiente de capacidad de disipación de energía R en edificaciones de pórticos de acero provistas con disipadores histeréticos de acero restringidos al pandeo (BRB) ubicadas en zona de amenaza sísmica alta. Se modelaron numéricamente cuatro edificios de 4, 8, 12 y 16 niveles, en los cuales los BRBs fueron representados mediante una metodología que emplea elementos tipo Frame, permitiendo identificar los estados de plastificación de estos dispositivos. Para el análisis estructural de las edificaciones se realizó un procedimiento estático no lineal de plastificación progresiva (Pushover) con el cual se obtuvieron las curvas de capacidad y posteriormente los puntos de desempeño para el sismo de diseño y para el máximo considerado (MCE). El dimensionamiento de los BRB se fundamentó en la metodología de Oviedo A. et al. (2010), y su verificación final se llevó a cabo conforme a los requisitos de la ASCE 7‑22 para estructuras con sistemas de disipación. Los resultados muestran que la incorporación de BRB aumenta la ductilidad global e incrementa significativamente la rigidez en el punto de fluencia, especialmente en los edificios de 4 y 8 niveles, concentrando la deformación inelástica en los disipadores y manteniendo vigas y columnas en rango elástico principal. El coeficiente R, calculado mediante los métodos de Abou-Elfath et al. (2018) y Mahmoudi & Zaree (2013), tiende a aumentar con el incremento en el número de niveles. Se obtuvieron valores de 3.42–5.44 en edificios de 4 y 8 niveles a 6.57–15.28 en los de 12 y 16 niveles. Estos hallazgos sugieren la necesidad de profundizar en el estudio de los valores del coeficiente R para pórticos de acero provistos con BRBs, con el propósito de plantear ajustes para representar de una manera más precisa la capacidad real de disipación de este tipo de sistemas estructurales. (Texto tomado de la fuente).spa
dc.description.abstractThis paper evaluates the response modification coefficient R of steel frame buildings with buckling-restrained braces (BRB) located in a high seismic hazard zone. Four buildings of 4, 8, 12 and 16 storeys were modelled numerically in SAP2000, in which the BRBs were represented by means of a methodology that uses Frame type elements, allowing the identification of the plasticization states of these devices. For the structural analysis of the buildings, a non-linear static procedure of progressive plastification (Pushover) was used to obtain the capacity curves and then the performance points for the design earthquake and for the maximum considered (MCE). The sizing of the BRBs was based on the methodology of Oviedo A. et al. (2010), and their final verification was carried out according to the requirements of ASCE 7-22 for structures with damping systems. The results show that the incorporation of BRB increases the global ductility and significantly increases the stiffness at the yield point, especially in the 4 and 8 story buildings, concentrating the inelastic deformation in the dissipators and keeping beams and columns in principal elastic range. The R coefficient, calculated using the methods of Abou-Elfath et al. (2018) and Mahmoudi & Zaree (2013), tends to increase with the increase in the number of levels. Values were obtained from 3.42-5.44 in buildings with 4 and 8 levels to 6.57-15.28 in those with 12 and 16 levels. These findings suggest the need to further study the R values for steel structures provided with BRBs, with the purpose of proposing adjustments to more accurately represent the damping capacity of this type of structural systems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaAnálisis estructuralspa
dc.format.extentxx, 211 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88398
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAbou-Elfath, H., Shamel Fahmy, A., & Mohamed Khalifa, K. (2018). Response modification factors of buckling-restrained braced frames designed according to the Egyptian code. Alexandria Engineering Journal, 57(4), 2851–2864. https://doi.org/10.1016/j.aej.2018.07.001spa
dc.relation.referencesApplied Technology Council. (1996). Seismic evaluation and retrofit of concrete buildings (Vol. 1).spa
dc.relation.referencesArcila R., M. M., García, J., Montejo E., J. S., Eraso, J. F., Valcárcel T., J. A., Mora C., M. G., Viganò, D., Pagani, M., & Díaz P., F. J. (2020). Modelo nacional de amenaza sísmica para Colombia (Eds., Vol. 43). Libros del Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279469spa
dc.relation.referencesArdila Valencia, J. G. (2016). Evaluación del coeficiente de disipación energía, R, para edificios con un sistema estructural combinado de muros y pórticos en concreto, con diferente número de pisos.spa
dc.relation.referencesASCE/SEI. (2021). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers. https://doi.org/10.1061/9780784415788spa
dc.relation.referencesAsgarian, B., & Shokrgozar, H. R. (2009). BRBF response modification factor. Journal of Constructional Steel Research, 65(2), 290–298. https://doi.org/10.1016/j.jcsr.2008.08.002spa
dc.relation.referencesAtashFaraz, B., Jangara, J., & Katebi, J. (2022). Enhancing the seismic performance of building structures equipped with composite braces in mega bracing configuration. The Structural Design of Tall and Special Buildings. https://doi.org/10.1002/tal.1936spa
dc.relation.referencesBosco, M., Marino, E. M., & Rossi, P. P. (2012). Design of steel frames with buckling restrained braces.spa
dc.relation.referencesBraz-César, M., & Carneiro De Barros, R. (2013). Passive control of civil engineering structures.spa
dc.relation.referencesBuitrago Escobar, H. S. (2022). Programa didáctico de análisis no lineal de secciones transversales en elementos estructurales a flexión y fuerza axial. Universidad Nacional de Colombia.spa
dc.relation.referencesBuitrago, H. S. (2022). Programa didáctico de análisis no lineal de secciones transversales en elementos estructurales a flexión y fuerza axial. Universidad Nacional de Colombia.spa
dc.relation.referencesCaballero, L. F. (2022). Evaluación del coeficiente de disipación de energía R, en edificaciones de pórticos en acero, provistos con disipadores histeréticos metálicos triangulares tipo TADAS, localizadas en zona de amenaza sísmica alta. https://repositorio.unal.edu.co/handle/unal/82844spa
dc.relation.referencesCano Castaño, H. A. (2020). Evaluación del coeficiente de disipación de energía R, en edificaciones de concreto reforzado con disipadores histeréticos metálicos triangulares tipo TADAS, ubicados en zona de amenaza sísmica alta.spa
dc.relation.referencesDutta, S. C. (2001). Effect of strength deterioration on inelastic seismic torsional behaviour of asymmetric RC buildings. Building and Environment, 36(10), 1109–1118. https://doi.org/https://doi.org/10.1016/S0360-1323(00)00076-7spa
dc.relation.referencesEbadi Jamkhaneh, M., Homaioon Ebrahimi, A., & Shokri Amiri, M. (2018). Seismic Performance of Steel-Braced Frames with an All-Steel Buckling Restrained Brace. Practice Periodical on Structural Design and Construction, 23(3), 04018016. https://doi.org/10.1061/(asce)sc.1943-5576.0000381spa
dc.relation.referencesEghbali, M., Asadian, E., Amiri, G. G., & Amrei, S. A. R. (2017). Seismic performance of steel frames equipped with buckling-restrained braces (BRBs) using nonlinear static and dynamic analyses. Journal of Vibroengineering, 19(2), 1131–1146. https://doi.org/10.21595/jve.2016.16578spa
dc.relation.referencesEl-Bahey, S., & Bruneau, M. (2011). Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents. Engineering Structures, 33(3), 1052–1061. https://doi.org/10.1016/j.engstruct.2010.12.027spa
dc.relation.referencesFederal Emergency Management Agency. (2003). NEHRP Recommended Provisions for Seismic Regulations for New Buildings — Provisions and Commentary. Building Seismic Safety Council, National Institute of Buildings Sciences.spa
dc.relation.referencesFEMA. (2020). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-2082-1) (2020th ed., Vol. 1).spa
dc.relation.referencesGómez Navarrete, D. C. (2020). Evaluación del coeficiente de disipación de energía R en edificaciones de concreto reforzado con disipadores de energía viscosos ubicados en zona de amenaza sísmica alta.spa
dc.relation.referencesGondaliya, K., Amin, J., Vasanwala, S., & Desai, A. (2024). Comparison of Methodologies for Seismic Fragility Analysis of Designed RC Frame Building as Per Indian Provisions. In R. Ghai, L.-M. Chang, R. Sharma, & A. K. Chandrappa (Eds.), Sustainable Design and Eco Technologies for Infrastructure (pp. 103–113). Springer Nature Singapore.spa
dc.relation.referencesGu, Z. Q., & Oyadiji, S. O. (2008). Application of MR damper in structural control using ANFIS method. Computers and Structures, 86(3–5), 427–436. https://doi.org/10.1016/j.compstruc.2007.02.024spa
dc.relation.referencesGuerrero, H., Escobar, J. A., & Teran-Gilmore, A. (2018). Experimental damping on frame structures equipped with buckling-restrained braces (BRBs) working within their linear-elastic response. Soil Dynamics and Earthquake Engineering, 106, 196–203. https://doi.org/10.1016/j.soildyn.2017.12.028spa
dc.relation.referencesJia, M. M., Li, L., Hong, C., Liu, K., & Sun, L. (2021). Experiment of hysteretic behavior and stability performance of buckling-restrained braced composite frame. Advanced Steel Construction, 17(2), 149–157. https://doi.org/10.18057/IJASC.2021.17.2.5spa
dc.relation.referencesKasai, K., Ito, H., Ooki, Y., Hikino, T., Kajiwara, K., Motoyui, S., Ozaki, H., & Ishii, M. (2010). FULL-SCALE SHAKE TABLE TESTS OF 5-STORY STEEL BUILDING WITH VARIOUS DAMPERS.spa
dc.relation.referencesKiggins, S., & Uang, C. M. (2006). Reducing residual drift of buckling-restrained braced frames as a dual system. Engineering Structures, 28(11), 1525–1532. https://doi.org/10.1016/j.engstruct.2005.10.023spa
dc.relation.referencesKing, D., Priestley, M., & Park, R. (1986). Computer programs for concrete column design. University of Canterbury.spa
dc.relation.referencesLiang, Q. (2009). Performance-based analysis of concrete-filled steel tubular beam – columns, Part I: Theory and algorithms. Journal of Construction Steel Research, 65, 363–372.spa
dc.relation.referencesLu, X., & Xu, L. (2022). Displacement mitigation mechanism and parameters sensitivity analysis of steel moment frame retrotted by self-centering braces. https://doi.org/10.21203/rs.3.rs-1514033/v1spa
dc.relation.referencesMacedo, L., Silva, A., & Castro, J. M. (2019). A more rational selection of the behaviour factor for seismic design according to Eurocode 8. Engineering Structures, 188, 69–86. https://doi.org/10.1016/j.engstruct.2019.03.007spa
dc.relation.referencesMahmoudi, M., & Zaree, M. (2013). Determination the response modification factors of buckling restrained braced frames. Procedia Engineering, 54, 222–231. https://doi.org/10.1016/j.proeng.2013.03.020spa
dc.relation.referencesMohamed, A.-R., & H, L. H. (1980). Automatic Active Control of Structures. Journal of the Structural Division, 106(3), 663–677. https://doi.org/10.1061/JSDEAG.0005386spa
dc.relation.referencesNastri, E., D’Aniello, M., Zimbru, M., Streppone, S., Landolfo, R., Montuori, R., & Piluso, V. (2019). Seismic response of steel Moment Resisting Frames equipped with friction beam-to-column joints. Soil Dynamics and Earthquake Engineering, 119, 144–157. https://doi.org/10.1016/j.soildyn.2019.01.009spa
dc.relation.referencesOviedo A., J. A., Midorikawa, M., & Asari, T. (2010). Earthquake response of ten-story story-drift-controlled reinforced concrete frames with hysteretic dampers. Engineering Structures, 32(6), 1735–1746. https://doi.org/10.1016/j.engstruct.2010.02.025spa
dc.relation.referencesÖzkılıç, Y. O., Bozkurt, M. B., & Topkaya, C. (2018). Evaluation of seismic response factors for BRBFs using FEMA P695 methodology. Journal of Constructional Steel Research, 151, 41–57. https://doi.org/10.1016/j.jcsr.2018.09.015spa
dc.relation.referencesPapanikolaou, V. K., Thermou, G. E., & Kappos, A. J. (2012). Moment-Curvature Analysis of R/C Jacketed Rectangular Sections Including Interface Slip Under Cyclic Loading.spa
dc.relation.referencesPei, S., Zhang, Z., Deng, E. F., & Wang, Y. B. (2021). Experimental study on seismic performance of ultrahigh-strength steel frames with buckling-restrained braces. Archives of Civil and Mechanical Engineering, 21(4). https://doi.org/10.1007/s43452-021-00313-4spa
dc.relation.referencesPnevmatikos, N. G., & Thomos, G. C. (2014). Stochastic structural control under earthquake excitations. Structural Control and Health Monitoring, 21(4), 620–633. https://doi.org/10.1002/stc.1589spa
dc.relation.referencesRahai, A. R., & Alinia, M. M. (2008). Performance evaluation and strengthening of concrete structures with composite bracing members. Construction and Building Materials, 22(10), 2100–2110. https://doi.org/10.1016/j.conbuildmat.2007.07.020spa
dc.relation.referencesSpencer, B. F., & Nagarajaiah, S. (2003). State of the Art of Structural Control. Journal of Structural Engineering, 129(7), 845–856. https://doi.org/10.1061/(asce)0733-9445(2003)129:7(845)spa
dc.relation.referencesTremblay, R., & Poncet, L. (2007). Improving the Seismic Stability of Concentrically Braced Steel Frames. 44, 103–116.spa
dc.relation.referencesValencia R., D., & Valencia C., G. (2008). Evaluating response modification factor (R) for some types of steel structure. Ingeniería e Investigación, 28(1), 41–49.spa
dc.relation.referencesVelásquez Mejía, J. D. (2020). Estimación para edificaciones de concreto reforzado con arriostramiento restringido al pandeo del coeficiente de disipación de energía R en zona de amenaza sísmica alta.spa
dc.relation.referencesWang, T., Noori, M., Altabey, W. A., Wu, Z., Ghiasi, R., Kuok, S. C., Silik, A., Farhan, N. S. D., Sarhosis, V., & Farsangi, E. N. (2023). From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems. In Mechanical Systems and Signal Processing (Vol. 204). Academic Press. https://doi.org/10.1016/j.ymssp.2023.110785spa
dc.relation.referencesWani, Z. R., Tantray, M., Noroozinejad Farsangi, E., Nikitas, N., Noori, M., Samali, B., & Yang, T. Y. (2022). A Critical Review on Control Strategies for Structural Vibration Control. In Annual Reviews in Control (Vol. 54, pp. 103–124). Elsevier Ltd. https://doi.org/10.1016/j.arcontrol.2022.09.002spa
dc.relation.referencesWen, Y. K. (1976). Method for Random Vibration of Hysteretic Systems. Journal of the Engineering Mechanics Division, ASCE, 102(EM2).spa
dc.relation.referencesZhu, B. L., Guo, Y. L., & Zhang, C. (2021). Global buckling behaviours and design of uniform-section BRBs considering lateral load effects. Journal of Constructional Steel Research, 186. https://doi.org/10.1016/j.jcsr.2021.106928spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.proposalDisipación de energíaspa
dc.subject.proposalRiostras restringidas al pandeospa
dc.subject.proposalCoeficiente Rspa
dc.subject.proposalAnálisis Pushoverspa
dc.subject.proposalEstructuras metálicasspa
dc.subject.proposalEnergy dissipationeng
dc.subject.proposalBuckling restrained braceseng
dc.subject.proposalResponse modification coefficienteng
dc.subject.proposalPushover analysiseng
dc.subject.proposalSteel structureseng
dc.subject.unescoSismicidadspa
dc.subject.unescoSeismicityeng
dc.subject.unescoElemento estructural (construcción)spa
dc.subject.unescoStructural elements (buildings)eng
dc.subject.unescoPrevención antisísmicaspa
dc.subject.unescoEarthquake predictioneng
dc.subject.unescoAcerospa
dc.subject.unescoSteeleng
dc.titleEvaluación del coeficiente de capacidad de disipación de energía R en edificaciones de pórticos de acero, provistas con disipadores histeréticos de acero restringidos al pandeo (BRB), localizadas en zona de amenaza sísmica altaspa
dc.title.translatedEvaluation of the response modification coefficient R of steel frame buildings with steel buckling-restrained braces (BRB) located in a high seismic hazard zoneeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094580633.2025.pdf
Tamaño:
13.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: