Test estadístico para la selección de un modelo clúster en procesos puntuales espaciales homogéneos

dc.contributor.advisorRodríguez Cortés, Francisco Javier
dc.contributor.authorOcampo Naranjo, Yeison Yovany
dc.contributor.orcidOcampo-Naranjo, Yeison Yovany [0009-0003-5389-7528]
dc.contributor.orcidRodriguez Cortes, Francisco Javier [0000-0002-2152-8619]
dc.date.accessioned2025-09-11T16:35:35Z
dc.date.available2025-09-11T16:35:35Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractSeleccionar un modelo adecuado que se ajuste a un conjunto de datos para hacer inferencias sobre la estimación de parámetros es un objetivo fundamental en estadística. Esta tarea se vuelve particularmente desafiante en el ámbito de los procesos puntuales espaciales, dado que múltiples modelos candidatos representan un reto teórico y computacional significativo debido a la gran heterogeneidad de las configuraciones espaciales. Si bien las pruebas formales y gráficas pueden ayudar a determinar entre aleatorio, agregado o regular, la esencia de caracterizar un patrón puntual radica en ajustar un modelo específico a través de una prueba de bondad de ajuste. Sin embargo, cuando dos o más modelos pasan esta prueba, surge la pregunta de cuál es el modelo más adecuado. En este trabajo, se propone una prueba estadística formal basada en un método de Montecarlo para la selección de modelos agregados homogéneos para patrones puntuales espaciales agregados estacionarios. Se evalúa el desempeño de la prueba mediante el error tipo I y la potencia de la prueba a través de un extenso estudio de simulación. Finalmente, se aplica esta metodología propuesta a un patrón puntual agregado de herramientas de roca paleolíticas descubiertas en una excavación arqueológica en Tanzania, determinando el modelo Thomas como el modelo más adecuado. (Tomado de la fuente)spa
dc.description.abstractSelecting an appropriate model to fit a data set to make parameter estimation inferences is a fundamental goal in statistics. This task is particularly challenging in spatial point processes, where the large heterogeneity of spatial configurations makes multiple candidate models a significant theoretical and computational challenge. While formal and graphical tests can help distinguish between random, cluster, or regular, the essence of characterizing a point pattern lies in fitting a particular model through a goodness-of-fit test. However, when two or more models pass this test, the question arises about which model is the most appropriate. In this work, a formal statistical test based on a Monte Carlo method is proposed for the selection of homogeneous clustering models for stationary aggregated spatial point patterns. The performance of the test is evaluated in terms of Type I error and the power of the test is assessed through an extensive simulation study. Finally, the proposed method is applied to a point pattern of Paleolithic lithic tools discovered in an archaeological excavation in Tanzania, determining the Thomas model as the most suitable model.eng
dc.description.curricularareaEstadística.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias - Estadística
dc.description.researchareaEstadística Espacial
dc.format.extent141 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88720
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadística
dc.relation.indexedLaReferencia
dc.relation.referencesAn, K. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli Att, 4:89–91.
dc.relation.referencesBaddeley, A. (2017). Local composite likelihood for spatial point processes. Spatial Statistics, 22:261–295.
dc.relation.referencesBaddeley, A., Davies, T. M., Hazelton, M. L., Rakshit, S., and Turner, R. (2022). Fundamental problems in fitting spatial cluster process models. Spatial Statistics.
dc.relation.referencesBaddeley, A., Diggle, P. J., Hardegen, A., Lawrence, T., Milne, R. K., and Nair, G. (2014). On tests of spatial pattern based on simulation envelopes. Ecological Monographs, 84(3):477–489.
dc.relation.referencesBaddeley, A. et al. (2010). Analysing spatial point patterns in r. Technical report, Technical report, CSIRO, 2010. Version 4.
dc.relation.referencesBaddeley, A., Rubak, E., and Turner, R. (2015). Spatial point patterns: methodology and applications with R. Taylor & Francis CRC press, Boca Raton.
dc.relation.referencesBaddeley, A. and Turner, R. (2005). spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12(6):1–42.
dc.relation.referencesBaddeley, A. J., Kerscher, M., Schladitz, K., and Scott, B. T. (2000). Estimating the j function without edge correction. Statistica Neerlandica, 54(3):315–328.
dc.relation.referencesBartlett, M. S. (1963). The spectral analysis of point processes. Journal of the Royal Statistical Society: Series B (Methodological), 25(2):264–281.
dc.relation.referencesBauer, W. (1958). The Monte carlo method. Journal of the Society for Industrial and Applied Mathematics, 6(4):438–451.
dc.relation.referencesBesag, J. and Clifford, P. (1989). Generalized Monte Carlo significance tests. Biometrika, 76(4):633–642.
dc.relation.referencesBesag, J. and Diggle, P. J. (1977). Simple Monte Carlo tests for spatial pattern. Journal of the Royal Statistical Society: Series C (Applied Statistics), 26(3):327–333.
dc.relation.referencesBithell, J. F. (1990). An application of density estimation to geographical epidemiology. Statistics in medicine, 9(6):691–701.
dc.relation.referencesBivand, R. (2008). Applied spatial data analysis with r.
dc.relation.referencesBlackman, G. (1935). A study by statistical methods of the distribution of species in grass- land associations. Annals of Botany, 49(196):749–777.
dc.relation.referencesCasella, G. and Berger, R. (2024). Statistical inference. CRC Press.
dc.relation.referencesChiu, S. N., Stoyan, D., Kendall, W. S., and Mecke, J. (2013). Stochastic geometry and its applications. John Wiley & Sons, Chinchester.
dc.relation.referencesCox, D. R. (1955). Some statistical models related with series of events (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 17:129–164.
dc.relation.referencesCressie, N. (1991). Statistics for spatial data. John Wiley & Sons, New York.
dc.relation.referencesD’Agostino, R. (2017). Goodness-of-fit-techniques. Routledge.
dc.relation.referencesDaley, D. J. and Vere-Jones, D. (2003). An introduction to the theory of point processes: Elementary theory and methods, volume I. Springer, New York.
dc.relation.referencesDiez-Martin, F., Cobo-Sanchez, L., Baddeley, A., Uribelarrea, D., Mabulla, A., Baquedano, E., and Dominguez-Rodrigo, M. (2021). Tracing the spatial imprint of oldowan technological behaviors: A view from ds (bed i, olduvai gorge, tanzania). Plos One, 16(7):e0254603.
dc.relation.referencesDiggle, P. (1985). A kernel method for smoothing point process data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 34(2):138–147.
dc.relation.referencesDiggle, P. J. (1978). On parameter estimation for spatial point processes. Journal of the Royal Statistical Society: Series B (Methodological), 40(2):178–181.
dc.relation.referencesDiggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. Journal of neuroscience methods, 18(1-2):115–125.
dc.relation.referencesDiggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns. CRC press.
dc.relation.referencesDiggle, P. J., Gómez-Rubio, V., Brown, P. E., Chetwynd, A. G., and Gooding, S. (2007). Second-order analysis of inhomogeneous spatial point processes using case–control data. Biometrics, 63(2):550–557.
dc.relation.referencesDiggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society: Series B (Methodological), 46(2):193–212.
dc.relation.referencesDiggle, P. J. and Ribeiro, P. J. (2007). Model-based Geostatistics. Springer, New York.
dc.relation.referencesDrinkwater, M. J., Parker, Q. A., Proust, D., Slezak, E., and Quintana, H. (2004). The large scale distribution of galaxies in the shapley supercluster. Publications of the Astronomical Society of Australia, 21(1):89–96.
dc.relation.referencesDufour, J.-M. (2006). Monte carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics. Journal of econometrics, 133(2):443–477.
dc.relation.referencesFotheringham, A. S., Brunsdon, C., and Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester.
dc.relation.referencesGelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010). Handbook of spatial statistics. Taylor & Francis, Boca Raton.
dc.relation.referencesGuan, Y. (2006). A composite likelihood approach in fitting spatial point process models. Journal of the American Statistical Association, 101(476):1502–1512.
dc.relation.referencesGuan, Y., Jalilian, A., and Waagepetersen, R. (2015). Quasi-likelihood for spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(3):677–697.
dc.relation.referencesHahn, U. and Vedel Jensen, E. B. (2016). Hidden second-order stationary spatial point processes. Scandinavian Journal of Statistics, 43(2):455–475.
dc.relation.referencesHope, A. C. (1968). A simplified monte carlo significance test procedure. Journal of the Royal Statistical Society Series B: Statistical Methodology, 30(3):582–598.
dc.relation.referencesIllian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. John Wiley & Sons, Chichester.
dc.relation.referencesJalilian, A., Guan, Y., and Waagepetersen, R. (2013). Decomposition of variance for spatial cox processes. Scandinavian Journal of Statistics, 40(1):119–137.
dc.relation.referencesLavancier, F., Poinas, A., and Waagepetersen, R. (2021). Adaptive estimating function inference for nonstationary determinantal point processes. Scandinavian Journal of Statistics, 48(1):87–107.
dc.relation.referencesLewis, P. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous poisson processes by thinning. Naval research logistics quarterly, 26(3):403–413.
dc.relation.referencesLoosmore, N. B. and Ford, E. D. (2006). Statistical inference using the G or K point pattern spatial statistics. Ecology, 87(8):1925–1931.
dc.relation.referencesMarriott, F. H. (1979). Barnard’s monte carlo tests: how many simulations? Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1):75–77.
dc.relation.referencesMatérn, B. (1966). Spatial Variation; Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations. Stockholm. Statens Skogsforskningsinstitut. Meddelanden. University of Sweden.
dc.relation.referencesMatérn, B. (1986). Spatial Variation. In Lecture Notes in Statistics. Springer-Verlag, Berlin.
dc.relation.referencesMøller, J. and Berthelsen, K. K. (2012). Transforming spatial point processes into poisson processes using random superposition. Advances in Applied Probability, 44(1):42–62.
dc.relation.referencesMøller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log gaussian cox processes. Scandinavian journal of statistics, 25(3):451–482.
dc.relation.referencesMøller, J. and Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes. CRC press.
dc.relation.referencesMøller, J. and Waagepetersen, R. P. (2007). Modern spatial point process modelling and inference (with discussion). Scandinavian Journal of Statistics, 34:643–711.
dc.relation.referencesMrkvička, T., Myllymäki, M., and Hahn, U. (2017). Multiple monte carlo testing, with applications in spatial point processes. Statistics and Computing, 27:1239–1255.
dc.relation.referencesMyllymäki, M., Grabarnik, P., Seijo, H., and Stoyan, D. (2015). Deviation test construction and power comparison for marked spatial point patterns. Spatial Statistics, 11:19–34.
dc.relation.referencesMyllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., and Hahn, U. (2017). Global envelope tests for spatial processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(2):381–404.
dc.relation.referencesMyllymäki, M. and Mrkvička, T. (2020). Get: Global envelopes in r. arXiv:1911.06583 [stat.ME].
dc.relation.referencesNeyman, J. and Scott, E. L. (1958). Statistical approach to problems of cosmology. Journal of the Royal Statistical Society: Series B (Methodological), 20(1):1–29.
dc.relation.referencesNumata, M. (1961). Forest vegetation in the vicinity of choshi. coastal flora and vegetation at choshi, chiba prefecture iv. Bulletin of Choshi Marine Laboratory, Chiba University, 3:28–48.
dc.relation.referencesOgata, Y. and Katsura, K. (1991). Maximum likelihood estimates of the fractal dimension for random spatial patterns. Biometrika, pages 463–474.
dc.relation.referencesPfanzagl, J. (1969). On the measurability and consistency of minimum contrast estimates. Metrika, 14(1):249–272.
dc.relation.referencesProkešová, M. and Jensen, E. B. V. (2013). Asymptotic palm likelihood theory for stationary point processes. Annals of the Institute of Statistical Mathematics, 65(2):387–412.
dc.relation.referencesR Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.relation.referencesRipley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society: Series B (Methodological), 39(2):172–192.
dc.relation.referencesRipley, B. D. (1981). Spatial Statistic. Wiley, New York.
dc.relation.referencesRipley, B. D. (1987). Stochastic simulation. John Wiley & Sons.
dc.relation.referencesRipley, B. D. (1988). Statistical inference for spatial processes. Cambridge University Press, Cambridge.
dc.relation.referencesSilverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.
dc.relation.referencesStoyan, D. and Stoyan, H. (1994). Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley & Sons.
dc.relation.referencesTanaka, U., Ogata, Y., and Stoyan, D. (2008). Parameter estimation and model selection for neyman-scott point processes. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(1):43–57.
dc.relation.referencesThomas, M. (1949). A generalization of poisson’s binomial limit for use in ecology. Biome- trika, 36(1/2):18–25.
dc.relation.referencesVan Lieshout, M. and Baddeley, A. (1996). A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica, 50(3):344–361.
dc.relation.referencesWaagepetersen, R. P. (2007). An estimating function approach to inference for inhomogeneous neyman–scott processes. Biometrics, 63(1):252–258.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.lembProcesos puntuales
dc.subject.lembProcesos estocásticos
dc.subject.lembMétodo de Montecarlo
dc.subject.lembProceso Bessemer
dc.subject.proposalMonte Carlo testeng
dc.subject.proposalGlobal Envelope Testeng
dc.subject.proposalClustering spatial point processeng
dc.subject.proposalHypothesis Testeng
dc.subject.proposalPrueba Montecarlospa
dc.subject.proposalPrueba de Envolvente Globalspa
dc.subject.proposalProcesos puntuales espaciales agregadosspa
dc.subject.proposalPrueba de hipótesisspa
dc.titleTest estadístico para la selección de un modelo clúster en procesos puntuales espaciales homogéneosspa
dc.title.translatedA statistical test for selecting a cluster model in homogeneous spatial point processeseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Estadística
Tamaño:
45.27 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: