Modelo de analítica predictiva para hacer correctitud en un ambiente de RPA

dc.contributor.advisorGuzmán Luna, Jaime Alberto
dc.contributor.authorMonsalve Machado, Juan Camilo
dc.contributor.cvlacJuan Camilo Monsalve Machadospa
dc.contributor.orcidJuan C. Monsalve [0000-0001-5327-5719]spa
dc.contributor.orcidGuzmán Luna, Jaime [0000-0003-4737-1119]spa
dc.contributor.researchgroupSistemas Inteligentes Web (Sintelweb)spa
dc.date.accessioned2023-07-21T16:36:18Z
dc.date.available2023-07-21T16:36:18Z
dc.date.issued2023-05
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa automatización de procesos robóticos o RPA (por sus siglas en ingles Robotic Process Automation), permite crear un robot de software que puede ser programado para ejecutar tareas repetitivas en un computador. Cuando se implementa un RPA en ambientes productivos, el RPA puede presentar fallas o mostrar un rendimiento diferente al esperado. Para esto, se implementa un modelo de analítica que permite hacer análisis de conformidad, es decir, permite hacer seguimiento a las ejecuciones del RPA, y poder así, encontrar fallas y hacer análisis de rendimiento. Lo primero que se hace es hacer un estudio de la composición de un RPA, para conocer las estructuras de programación y los operadores más importantes de los RPA. Después se diseña un modelo que permite representar y hacer seguimiento a las ejecuciones del RPA. Seguido a esto, se diseña un modelo de analítica, que permite verificar la conformidad del robot de software, es decir, comparar el proceso del RPA con las ejecuciones del RPA, y así, analizar si se presentan fallas provenientes de los recursos, los operadores o los datos. También se diseña un modelo de analítica que permite analizar el rendimiento del RPA, esto por medio de variables no funcionales del sistema como tiempo. Finalmente, se implementa un RPA en un ambiente de pruebas para evaluar el funcionamiento de los modelos en un caso de uso. (Texto tomado de la fuente)spa
dc.description.abstractRobotic Process Automation (RPA), is a tool to create a software robot in order to perform repetitive tasks on a computer. When RPA is working in production environments, the RPA could fail or could has different perform. I propose an analytic model to analyze the compliance between the process model and robot execution, in order to  nd errors and do performance analysis. Firstly, I shown the composition of an RPA, the programming structures and the most important operators. Secondly, a model is designed in order to monitor the RPA executions. After. that, an analytical model is designed, to verifying the compliance of the process model and RPA execution, in order to analyze errors. Then an analytical model to analyzing the performance of the RPA is shown. Lastly, RPA test environment is presented in order to evaluate the models in a use case.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extentxx, 122 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84242
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdobbati, F. et al. (2023). Formal analysis of information flow and control properties in petri nets.spa
dc.relation.referencesAhram, T., Sargolzaei, A., Amaba, B., Laplante, P. A., Sargolzaei, S., and Daniels, J. (2019). The Internet of Things, Artificial Intelligence, Blockchain, and Professionalism. IT Professional, 20(6):15–19.spa
dc.relation.referencesBadakhshan, P., Bernhart, G., Geyer-Klingeberg, J., Nakladal, J., Schenk, S., and Vogelgesang, T. (2019). The action engine – Turning process insights into action. CEUR Workshop Proceedings, 2374:28–31.spa
dc.relation.referencesBerti, A., Van Zelst, S. J., Van Der Aalst, W. M., and Gesellschaf, F. (2019). Process mining for python (PM4py): Bridging the gap between process- And data science. CEUR Workshop Proceedings, 2374:13–16.spa
dc.relation.referencesBiel, J. I. L., Tofé, E. J., Cámara, E. M., and de la Parte, M. M. P. (2022). Redes de petri aplicadas a la simulación del comportamiento de consumidores en escenarios concurridos. In XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja), pages 537–543. Servizo de Publicacións.spa
dc.relation.referencesBosco, A., Augusto, A., Dumas, M., La Rosa, M., and Fortino, G. (2019). Discovering automatable routines from user interaction logs. Lecture Notes in Business Information Processing, 360:144–162.spa
dc.relation.referencesCarmona J., e.-a. (November 2018). Conformance Checking: Relating Processes and Models. Springer Publishing Company, Incorporated, isbn:978-3-319-99413- 0 edition.spa
dc.relation.referencesChacón-Montero, J., Jiménez-Ramírez, A., and Enríquez, J. G. (2019). Towards a method for automated testing in robotic process automation projects. Proceedings - 2019 IEEE/ACM 14th International Workshop on Automation of Software Test, AST 2019, pages 42–47.spa
dc.relation.referencesChakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y., Muthu- samy, V., Rizk, Y., and Unuvar, M. (2020). From Robotic Process Automation to Intelli- gent Process Automation: – Emerging Trends –. Lecture Notes in Business Information Processing, 393 LNBIP:215–228.spa
dc.relation.referencesDe Leoni, M., Lanciano, G., and Marrella, A. (2017). A tool for aligning event logs and prescriptive process models through automated planning. CEUR Workshop Proceedings, 1920 (September).spa
dc.relation.referencesHu, L., Liu, Z., Hu, W., Wang, Y., Tan, J., and Wu, F. (2020). Petri- net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network. Journal of Manufacturing Systems, 55:1–14.spa
dc.relation.referencesHuang, B., Zhou, M., Lu, X. S., and Abusorrah, A. (2023). Scheduling of resource allocation systems with timed petri nets: A survey. ACM Computing Surveys, 55(11):1–27.spa
dc.relation.referencesIEEE (2017). IEEE Guide for Terms and Concepts in Intelligent Process Automation. The Institute of Electrical and Electronics Engineers Standards Association.spa
dc.relation.referencesJan Mendling, e.-a. (2007). On the degree of behavioral similarity between business process models. Queensland University of Technology.spa
dc.relation.referencesLeno, V., Dumas, M., Maggi, F. M., and La Rosa, M. (2018). Multi- Perspective process model discovery for robotic process automation. In Kirikova M. Te- niente E., L. A., editor, CEUR Workshop Proceedings, volume 2114, pages 37–45. CEUR- WS.spa
dc.relation.referencesLeno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., and Maggi, F. M. (2020). Robotic Process Mining: Vision and Challenges. Business and Information Sys- tems Engineering.spa
dc.relation.referencesLeno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., and Maggi, F. M. (2019). Action logger: Enabling process mining for robotic process automation. In Depaire B. De Smedt J., D. M. F. D. K. A. L. H. R. M. R.-M. S. S. S. S. S. v. d. A. W., editor, CEUR Workshop Proceedings, volume 2420. CEUR-WS.spa
dc.relation.referencesLeshob, A., Bourgouin, A., and Renard, L. (2018). Towards a Process Analysis Approach to Adopt Robotic Process Automation. In 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), pages 46–53.spa
dc.relation.referencesLu, Y., Zhang, L., and Sun, J. (2019). Using colored petri nets to model and analyze workflow with separation of duty constraints. The International Journal of Advanced Manufacturing Technology, 40:179–192.spa
dc.relation.referencesMalathi, T., Navaneethakrishnan, P. L., Arun, E., and Devakipri- yadharshini, V. N. (2021). Performance analysis on automating the PDF download process using Robotics Process Automation. IOP Conference Series: Materials Science and Engineering, 1059(1).spa
dc.relation.referencesMolka, T, e.-a. (2014). Conformance checking for bpmn-based process models. Proceedings of the 29th Annual ACM Symposium on Applied Computing.spa
dc.relation.referencesMuminov, B. and Kh, E. (2019). Modelling asynchronous parallel process with petri net. International Journal of Engineering and Advanced Technology (IJEAT), 8:400–405.spa
dc.relation.referencesRatia, M., Myll ̈arniemi, J., and Helander, N. (2018). Robotic Process Automation - Creating Value by Digitalizing Work in the Private Healthcare? In Proceedings of the 22Nd International Academic Mindtrek Conference, Mindtrek ’18, pages 222–227, New York, NY, USA. ACM.spa
dc.relation.referencesRozinat, A. and van der Aalst, W. (2008). Conformance checking of processes based on monitoring real behavior. Information Systems, 33(1):64– 95.spa
dc.relation.referencesSarno, R., Sinaga, F., and Sungkono, K. R. (2020). Anomaly detection in business processes using process mining and fuzzy association rule learning. Journal of Big Data, 7(1):1–19.spa
dc.relation.referencesVan Der Aalst, W. (2016). Process mining: data science in action, volume 2. Springer.spa
dc.relation.referencesvan der Aalst, W. M. P. (2016). Conformance checking using causal footprints. Technische universiteit Eindhoven.spa
dc.relation.referencesVeit, F., Geyer-Klingeberg, J., Madrzak, J., Haug, M., and Thomson, J. (2017). The proactive insights engine: Process mining meets machine learning and artificial intelligence. CEUR Workshop Proceedings, 1920(July).spa
dc.relation.referencesWanner, J., Hofmann, A., Fischer, M., Imgrund, F., Janiesch, C., and Geyer-Klingeberg, J. (2020). Process selection in RPA projects - Towards a quantifiable method of decision making. 40th International Conference on Information Systems, ICIS 2019, 6(November).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAutomatizaciónspa
dc.subject.lembRobóticaspa
dc.subject.lembAutomationeng
dc.subject.lembRoboticseng
dc.subject.lembRobots - Control systemseng
dc.subject.lembSistemas de control de autómatasspa
dc.subject.proposalRPAspa
dc.subject.proposalAnalíticaspa
dc.subject.proposalConformidadspa
dc.subject.proposalFallasspa
dc.subject.proposalRendimientospa
dc.subject.proposalRPAeng
dc.subject.proposalAnalyticeng
dc.subject.proposalConformanceeng
dc.subject.proposalErrorseng
dc.subject.proposalPerformanceeng
dc.titleModelo de analítica predictiva para hacer correctitud en un ambiente de RPAspa
dc.title.translatedConformance analytical model applied to RPA environmentseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017202556.2023.pdf
Tamaño:
2.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: