ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos

dc.contributor.advisorSoto Ospina, Carlos Yesidspa
dc.contributor.advisorLópez Vallejo, Fabián Harveyspa
dc.contributor.authorSantos Ruiz, Paola Andreaspa
dc.contributor.researchgroupBioquímica y Biología Molecular de las Micobacteriasspa
dc.date.accessioned2020-08-05T09:35:00Zspa
dc.date.available2020-08-05T09:35:00Zspa
dc.date.issued2020-02-14spa
dc.description.abstractTuberculosis (TB) is an infectious disease caused by the acid-fast bacillus Mycobacterium tuberculosis (Mtb), which is one of the most important public health problems worldwide. Furthermore, the emergence of resistant Mtb strains to current anti-TB drugs has increased the search for alternative therapeutic targets and methods for the rational design of new effective drugs. In this sense, membrane proteins have been considered interesting targets due to their biological implication and for being highly accessible to active compounds. Particularly, P-type ATPases membrane transporters are interesting targets due to their implication in ionic homeostasis and mycobacterial viability. This work was oriented to CtpF, a calcium P-type ATPase, related to a broad number of biological conditions associated to processes of infection such as oxidative stress, adaptation of tubercle bacilli to anaerobic conditions, hypoxia and latency. Due to that, the main objective of this doctoral Thesis was to determine, through in silico and in vitro analysis, the potential of P-type ATPases of Mtb, especially the calcium transporter CtpF, as a target for the rational design of anti-TB compounds. Initially, a 3D homology model of CtpF was generated, which was employed for identified key pharmacophoric features of the CtpF-cyclopiazonic acid (CPA) complex, a well-known inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a), from which its 3D structure is known experimentally and was used as a template in the construction of the model. By using a repertoire of experimental techniques, it was evaluated and found that CPA causes inhibition of the Ca2+-ATPase activity of CtpF, as well as mycobactericidal activity. The analysis of the transcriptional response of P2 ATPases to treatment with CPA showed a specific response of ctpF in comparison with other P-type ATPases. These initial results provide evidence that CtpF is a molecular target for the design of compounds with anti-TB potential. Thereupon, with the CtpF-CPA pharmacophoric features, a pharmacophore-based virtual screening was performed using the ZINC database in order to select candidate molecules to inhibitors of CtpF. Molecular docking-based virtual screening and binding free energy calculations (MM-GBSA) of selected candidates allowed identifying six compounds with the best relative binding energies to be evaluated in vitro. The compounds selected displayed in vitro antimycobacterial activity, showing a minimum inhibitory concentrations (MIC) ranging from 50 -100 μg/mL, and growth inhibitions of 29.5 - 64.0 % on Mtb. Likewise, they causes inhibition of Ca2+-ATPase activity in Mtb membrane vesicles (IC50) ranging from 4.1 - 35.8 μM. Finally, the activity of the compounds with the best biological activity was evaluated in a macrophage infection model, as an approach to evaluate the effect of compounds once the infection has occurred. The compound ZINC63908257 was the best candidate by displaying a MIC of 50 μg/mL, a Ca2+ P-type ATPase inhibition with IC50 = 4.4 μM and 81 % decrease in Mtb replication within macrophage. This compound showed cytotoxic activity of 12.9 % in MH-S cells and hemolysis of 2 % of human erythrocytes, thus, this compound shows a good pharmacokinetic profile (drug-like). Overall, the results presented here shows the importance of the P-type ATPases of Mtb for the mycobacteria survival during infection, and identify the CtpF as a key molecular target for the design of new antituberculous compounds.spa
dc.description.abstractLa Tuberculosis (TB) es una enfermedad infectocontagiosa causada por el bacilo ácido-alcohol resistente Mycobacterium tuberculosis (Mtb). A su vez, la TB es un problema muy relevante de salud pública a nivel mundial. Por otra parte, la aparición de cepas de Mtb resistentes a los fármacos antituberculosos actualmente empleados, ha impulsado la búsqueda de dianas terapéuticas alternativas y metodologías para el diseño racional de nuevos fármacos efectivos. En ese sentido, las proteínas de membrana son considerados blancos de interés al ser mayormente accesibles a los compuestos activos. Particularmente los transportadores de membrana ATPasas tipo P son dianas interesantes por su implicación en la homeóstasis iónica y la viabilidad de las micobacterias. El presente trabajo se orientó en CtpF, una ATPasa tipo P de Mtb transportadora de Ca2+, relacionada con una gran cantidad de condiciones biológicas asociadas al proceso de infección tales como estrés oxidativo, la adaptación del bacilo tuberculoso a condiciones anaeróbicas, hipoxia y latencia. Por lo anterior, el objetivo principal de esta Tesis fue determinar mediante análisis in silico e in vitro el potencial de las ATPasas tipo P de Mtb, especialmente el trasportador de calcio CtpF, como diana para la búsqueda racional de compuestos con actividad antituberculosa. Inicialmente se generó un modelo 3D de CtpF por homología, el que fue empleado para identificar las características farmacofóricas del complejo CtpF-ácido ciclopiazónico (CPA), un inhibidor de la Ca2+-ATPasa de retículo sarco-endoplásmico (SERCA1a), de la que se conoce experimentalmente su estructura 3D, y fue usada como plantilla en la construcción del modelo. Utilizando un repertorio de técnicas experimentales, se evaluó y encontró que CPA causa inhibición de la actividad Ca2+-ATPasa de CtpF, así como actividad micobactericida. El análisis de la respuesta transcripcional de los genes de las ATPasas tipo P2 al tratamiento con CPA, mostró una respuesta específica de ctpF en comparación a otras ATPasas tipo P. Estos resultados iniciales permitieron sugerir a CtpF como una diana molecular para el diseño de compuestos con potencial anti-TB. A continuación, con las características farmacofóricas CtpF-CPA se realizó un cribado virtual basado en farmacóforo utilizando la base de datos ZINC, para seleccionar moléculas candidatas a inhibidores de CtpF. Estudios de acoplamiento molecular y cálculos de MM-GBSA de los candidatos permitieron la identificación de seis compuestos con la mejor energía libre de unión para ser evaluados in vitro. Los compuestos finalmente seleccionados demostraron tener actividad antimicobacteriana mostrando una concentración mínima inhibitoria (CMI) entre 50 - 100 μg/mL, e inhibición del crecimiento de Mtb entre el 29.5 - 64.0 %. De manera similar, causaron inhibición de la actividad Ca2+-ATPasa en vesículas de membrana de Mtb con un rango IC50 entre 4.1 - 35.8 μM. Finalmente se evaluó la actividad de los compuestos con mejor respuesta biológica, en un modelo de infección de macrófagos, como un acercamiento al efecto de los compuestos en la sobrevida de Mtb durante la infección. El compuesto ZINC63908257 fue seleccionado como el candidato más activo con una CMI de 50 μg/mL, inhibición de la actividad Ca2+-ATPasa con IC50 = 4.4 μM y disminución del 81 % de la replicación intracelular de Mtb en macrófagos una vez ocurrida la fagocitosis. Este compuesto demostró un efecto citotóxico del 12.9 % en células MH-S y hemólisis del 2 % de glóbulos rojos humanos, además de presentar propiedades farmacocinéticas adecuadas (drug-like). El conjunto de resultados obtenidos muestra la importancia de las ATPasas tipo P de Mtb para la supervivencia del bacilo durante la infección, e identifican la proteína CtpF como una diana molecular clave para el diseño de nuevos compuestos antituberculosos.spa
dc.description.degreelevelDoctoradospa
dc.description.projectBúsqueda racional de compuestos inhibidores de la actividad ATPasa tipo P de membrana plasmática y determinación de su actividad antimicobacteriana.spa
dc.description.sponsorshipProyecto DIB_2016_Numero_35885 y Colciencias Programa Nacional en Ciencias Básicas-Cod. 110171250419spa
dc.format.extent143spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculososspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77933
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímicaspa
dc.relation.referencesAchard, M.E.S., Stafford, S.L., Bokil, N.J., Chartres, J., Bernhardt, P. V., Schembri, M.A., Sweet, M.J., Mcewan, A.G., 2012. Copper redistribution in murine macrophages in response to Salmonella infection. Biochem. J. 444, 51–57. https://doi.org/10.1042/BJ20112180spa
dc.relation.referencesAguilar-Ayala, D.A., Cnockaert, M., Vandamme, P., Palomino, J.C., Martin, A., Gonzalez-Y-Merchand, J., 2018. Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J. Med. Microbiol. 67, 282–285. https://doi.org/10.1099/jmm.0.000681spa
dc.relation.referencesAhmad, S., 2011. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin. Dev. Immunol. 2011, 814943. https://doi.org/10.1155/2011/814943spa
dc.relation.referencesAlmerico, A.M., Tutone, M., Lauria, A., 2012. Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors. J. Mol. Model. https://doi.org/10.1007/s00894-011-1304-0spa
dc.relation.referencesAndersen, P., Doherty, T.M., 2005. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3, 656–662. https://doi.org/10.1038/nrmicro1211spa
dc.relation.referencesAndries, K., Verhasselt, P., Guillemont, J., Göhlmann, H.W.H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., Jarlier, V., 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis., Science (New York, N.Y.). https://doi.org/10.1126/science.1106753spa
dc.relation.referencesAparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., Hopper, W., 2014. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 9. https://doi.org/10.1371/journal.pone.0101840spa
dc.relation.referencesAxelsen, K.B., Palmgren, M.G., 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101. https://doi.org/10.1007/PL00006286spa
dc.relation.referencesAyala-Torres, C., Novoa-Aponte, L., Soto, C.Y., 2015. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane. Microbiol. Res. 176, 1–6. https://doi.org/10.1016/j.micres.2015.04.004spa
dc.relation.referencesBasu, J., Chattopadhyay, R., Kundu, M., Chakrabarti, P., 1992. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174, 4829–4832. https://doi.org/10.1128/jb.174.14.4829-4832.1992spa
dc.relation.referencesBeresford, N.J., Mulhearn, D., Szczepankiewicz, B., Liu, G., Johnson, M.E., Fordham-Skelton, A., Abad-Zapatero, C., Cavet, J.S., Tabernero, L., 2009. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J. Antimicrob. Chemother. 63, 928–936. https://doi.org/10.1093/jac/dkp031spa
dc.relation.referencesBers, D.M., Patton, C.W., Nuccitelli, R., 2010. A practical guide to the preparation of Ca2+buffers. Methods Cell Biol. 99, 1–26. https://doi.org/10.1016/B978-0-12-374841-6.00001-3spa
dc.relation.referencesBetts, J.C., McLaren, A., Lennon, M.G., Kelly, F.M., Lukey, P.T., Blakemore, S.J., Duncan, K., 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47, 2903–2913. https://doi.org/10.1128/AAC.47.9.2903-2913.2003spa
dc.relation.referencesBotella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charrire, G.M., Waddell, S.J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P.D., Castagnoli, P.R., Gicquel, B., De Chastellier, C., Neyrolles, O., 2011. Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259. https://doi.org/10.1016/j.chom.2011.08.006spa
dc.relation.referencesCaballero, J., Alzate-Morales, J.H., Vergara-Jaque, A., 2011. Investigation of the Differences in Activity between Hydroxycycloalkyl N1 Substituted Pyrazole Derivatives As Inhibitors of B-Raf Kinase by Using Docking, Molecular Dynamics, QM/MM, and Fragment-Based De Novo Design: Study of Binding Mode of Diastereomer . J. Chem. Inf. Model. 51, 2920–2931. https://doi.org/10.1021/ci200306wspa
dc.relation.referencesCambier, C.J., Falkow, S., Ramakrishnan, L., 2014. Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 159, 1497–1509. https://doi.org/Doi 10.1016/J.Cell.2014.11.024spa
dc.relation.referencesCaminero, J.A., 2006. Treatment of multidrug-resistant tuberculosis: evidence and controversies. Int. J. Tuberc. Lung Dis. 10, 829–37.spa
dc.relation.referencese Knegt, G.J., Bruning, O., Ten Kate, M.T., De Jong, M., Van Belkum, A., Endtz, H.P., Breit, T.M., Bakker-Woudenberg, I.A.J.M., De Steenwinkel, J.E.M., 2013. Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis 93, 96–101. https://doi.org/10.1016/j.tube.2012.10.013spa
dc.relation.referencesDi Marino, D., D’Annessa, I., Coletta, A., Via, A., Tramontano, A., 2015. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct. Funct. Bioinforma. 83, 564–574. https://doi.org/10.1002/prot.24734spa
dc.relation.referencesEkins, S., Freundlich, J.S., Hobrath, J. V., Lucile White, E., Reynolds, R.C., 2014. Combining computational methods for hit to lead optimization in mycobacterium tuberculosis drug discovery. Pharm. Res. 31, 414–435. https://doi.org/10.1007/s11095-013-1172-7spa
dc.relation.referencesEspinoza-Moraga, M., Njuguna, N.M., Mugumbate, G., Caballero, J., Chibale, K., 2013. In silico comparison of antimycobacterial natural products with known antituberculosis drugs. J. Chem. Inf. Model. 53, 649–660. https://doi.org/10.1021/ci300467bspa
dc.relation.referencesaraco, M., Li, Y., Li, S., Spelt, C., Di Sansebastiano, G. Pietro, Reale, L., Ferranti, F., Verweij, W., Koes, R., Quattrocchio, F.M., 2017. A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells. Cell Rep. 19, 2413–2422. https://doi.org/10.1016/j.celrep.2017.05.076spa
dc.relation.referencesFord, C.B., Shah, R.R., Maeda, M.K., Gagneux, S., Murray, M.B., Cohen, T., Johnston, J.C., Gardy, J., Lipsitch, M., Fortune, S.M., 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–90. https://doi.org/10.1038/ng.2656spa
dc.relation.referencesGalagan, J.E., Minch, K., Peterson, M., Lyubetskaya, A., Azizi, E., Sweet, L., Gomes, A., Rustad, T., Dolganov, G., Glotova, I., Abeel, T., Mahwinney, C., Kennedy, A.D., Allard, R., Brabant, W., Krueger, A., Jaini, S., Honda, B., Yu, W.H., Hickey, M.J., Zucker, J., Garay, C., Weiner, B., Sisk, P., Stolte, C., Winkler, J.K., Van De Peer, Y., Iazzetti, P., Camacho, D., Dreyfuss, J., Liu, Y., Dorhoi, A., Mollenkopf, H.J., Drogaris, P., Lamontagne, J., Zhou, Y., Piquenot, J., Park, S.T., Raman, S., Kaufmann, S.H.E., Mohney, R.P., Chelsky, D., Branch Moody, D., Sherman, D.R., Schoolnik, G.K., 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183. https://doi.org/10.1038/nature12337spa
dc.relation.referencesGangopadhyay, A., Chakraborty, H.J., Datta, A., 2019. Employing virtual screening and molecular dynamics simulations for identifying hits against the active cholera toxin. Toxicon. https://doi.org/10.1016/j.toxicon.2019.09.005spa
dc.relation.referencesGordon, A.H., Hart, P.D., Young, M.R., 1980. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286, 79–80. https://doi.org/10.1038/286079a0spa
dc.relation.referencesHameed, H.M.A., Islam, M.M., Chhotaray, C., Wang, C., Liu, Y., Tan, Y., Li, X., Tan, S., Delorme, V., Yew, W.W., Liu, J., Zhang, T., 2018. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol. 8. https://doi.org/10.3389/fcimb.2018.00114spa
dc.relation.referencesHofman, S., Segers, M.M., Ghimire, S., Bolhuis, M.S., Sturkenboom, M.G.G., Van Soolingen, D., Alffenaar, J.W.C., 2016. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin. Emerg. Drugs 21, 103–116. https://doi.org/10.1517/14728214.2016.1151000spa
dc.relation.referencesIshiyama, M., Tominaga, H., Shiga, M., SASAMOTO, K., OHKURA, Y., UENO, K., 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19, 1518–1520. https://doi.org/10.1248/bpb.19.1518spa
dc.relation.referencesJaconi, M.E.E., Lew, D.P., Carpentier, J.L., Magnusson, K.E., Sjogren, M., Stendahl, O., 1990. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J. Cell Biol. 110, 1555–1564. https://doi.org/10.1083/jcb.110.5.1555spa
dc.relation.referencesJensen, A.M., Sorensen, T.L., Olesen, C., Moller, J. V, Nissen, P., 2006. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25, 2305–2314. https://doi.org/7601135 [pii]\r10.1038/sj.emboj.7601135spa
dc.relation.referencesKandasamy, S., Hassan, S., Gopalaswamy, R., Narayanan, S., 2014. Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. J. Mol. Graph. Model. 52, 11–19. https://doi.org/10.1016/j.jmgm.2014.05.011spa
dc.relation.referencesKhalifa, R.A., Nasser, M.S., Gomaa, A.A., Osman, N.M., Salem, H.M., 2013. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 62, 241–247. https://doi.org/10.1016/j.ejcdt.2013.05.008spa
dc.relation.referencesLaursen, M., Bublitz, M., Moncoq, K., Olesen, C., Møller, J.V., Young, H.S., Nissen, P., Morth, J.P., 2009. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518. https://doi.org/10.1074/jbc.C900031200spa
dc.relation.referencesLeón-Torres, A., Novoa-Aponte, L., Soto, C.-Y., 2015. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, 713–724. https://doi.org/10.1007/s10534-015-9860-xspa
dc.relation.referencesLópez, M., Quitian, L.V., Calderón, M.N., Soto, C.Y., 2018. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch. Microbiol. 200, 483–492. https://doi.org/10.1007/s00203-017-1465-zspa
dc.relation.referencesMalik, Z.A., Denning, G.M., Kusner, D.J., 2000. Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191, 287–302. https://doi.org/10.1084/jem.191.2.287spa
dc.relation.referencesMaya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E., Soto, C.Y., 2019. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 5, e02852. https://doi.org/10.1016/j.heliyon.2019.e02852spa
dc.relation.referencesNaik, P.K., Srivastava, M., Bajaj, P., Jain, S., Dubey, A., Ranjan, P., Kumar, R., Singh, H., 2011. The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase (PfATP6). J. Mol. Model. 17, 333–357. https://doi.org/10.1007/s00894-010-0726-4spa
dc.relation.referencesNeyrolles, O., Wolschendorf, F., Mitra, A., Niederweis, M., 2015. Mycobacteria, metals, and the macrophage. Immunol. Rev. 264, 249–63. https://doi.org/10.1111/imr.12265spa
dc.relation.referencesNovoa-Aponte, L., León-Torres, A., Patiño-Ruiz, M., Cuesta-Bernal, J., Salazar, L.-M., Landsman, D., Mariño-Ramírez, L., Soto, C.-Y., 2012. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct. Biol. 12, 25. https://doi.org/10.1186/1472-6807-12-25spa
dc.relation.referencesNovoa-Aponte, L., Soto Ospina, C.Y., 2014. Mycobacterium tuberculosis P-type ATPases: Possible Targets for Drug or Vaccine Development. Biomed Res. Int. 2014, 296. https://doi.org/10.1155/2014/296986spa
dc.relation.referencesO´Shea, R., Moser, H.E., 2008. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878. https://doi.org/10.1021/jm700967espa
dc.relation.referencesOcampo, M., Aristizbal-Ramrez, D., Rodrguez, D.M., Muoz, M., Curtidor, H., Vanegas, M., Patarroyo, M.A., Patarroyo, M.E., 2012. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Eng. Des. Sel. 25, 235–242. https://doi.org/10.1093/protein/gzs011spa
dc.relation.referencesPalmgren, M.G., Nissen, P., 2011. P-Type ATPases. Annu. Rev. Biophys. 40, 243–266. https://doi.org/10.1146/annurev.biophys.093008.131331spa
dc.relation.referencesPalomino, J.-C., Martin, A., Camacho, M., Guerra, H., Swings, J., Portaels, F., 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2. https://doi.org/10.1128/AAC.46.8.2720spa
dc.relation.referencesPulido, P.A., Novoa-Aponte, L., Villamil, N., Soto, C.Y., 2014. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na(+)/K (+) and Ca (2+) ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr. Microbiol. 69, 604–10. https://doi.org/10.1007/s00284-014-0632-6spa
dc.relation.referencesRaimunda, D., Long, J.E., Sassetti, C.M., Argüello, J.M., 2012. Role in metal homeostasis of CtpD, a Co(2+) transporting P(1B4) -ATPase of Mycobacterium smegmatis. Mol. Microbiol. 1–11. https://doi.org/10.1111/j.1365-2958.2012.08082.xspa
dc.relation.referencesRamírez, D., Concha, G., Arévalo, B., Prent-Peñaloza, L., Zúñiga, L., Kiper, A.K., Rinné, S., Reyes-Parada, M., Decher, N., González, W., Caballero, J., 2019. Discovery of novel TASK-3 channel blockers using a Pharmacophore-Based Virtual Screening. Int. J. Mol. Sci. 20, 4014. https://doi.org/10.3390/ijms20164014spa
dc.relation.referencesSantos, P., Gordillo, A., Osses, L., Salazar, L.M., Soto, C.Y., 2012. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36, 121–128. https://doi.org/10.1016/j.peptides.2012.04.018spa
dc.relation.referencesSantos, P., López-Vallejo, F., Soto, C.Y., 2017. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. https://doi.org/10.1111/cbdd.12950spa
dc.relation.referencesSharma, S., Meena, L.S., 2017. Potential of Ca2+ in Mycobacterium tuberculosis H 37 Rv Pathogenesis and Survival. Appl. Biochem. Biotechnol. 181, 762–771. https://doi.org/10.1007/s12010-016-2247-9spa
dc.relation.referencesSoldati, T., Neyrolles, O., 2012. Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! Traffic 13, 1042–1052. https://doi.org/10.1111/j.1600-0854.2012.01358.xspa
dc.relation.referencesTakahashi, M., Kondou, Y., Toyoshima, C., 2007. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc. Natl. Acad. Sci. 104, 5800–5805. https://doi.org/10.1073/pnas.0700979104spa
dc.relation.referencesToro, J.C., Hoffner, S., Linde, C., Andersson, M., Andersson, J., Grundström, S., 2006. Enhanced susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to granulysin peptides correlates with a reduced fitness phenotype. Microbes Infect. 8, 1985–93. https://doi.org/10.1016/j.micinf.2006.02.030spa
dc.relation.referencesTrauner, A., Borrell, S., Reither, K., Gagneux, S., 2014. Evolution of drug resistance in tuberculosis: Recent progress and implications for diagnosis and therapy. Drugs 74, 1063–1072. https://doi.org/10.1007/s40265-014-0248-yspa
dc.relation.referencesVasava, M.S., Bhoi, M.N., Rathwa, S.K., Borad, M.A., Nair, S.G., Patel, H.D., 2017. Drug development against tuberculosis: Past, present and future. Indian J. Tuberc. 64, 252–275. https://doi.org/10.1016/j.ijtb.2017.03.002spa
dc.relation.referencesVelázquez-Libera, J.L., Rossino, G., Navarro-Retamal, C., Collina, S., Caballero, J., 2019. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front. Chem. https://doi.org/10.3389/fchem.2019.00496spa
dc.relation.referencesVilchèze, C., Baughn, A.D., Tufariello, J.A., Leung, L.W., Kuo, M., Basler, C.F., Alland, D., Sacchettini, J.C., Freundlich, J.S., Jacobs, W.R., 2011. Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob. Agents Chemother. 55, 3889–3898. https://doi.org/10.1128/AAC.00266-11spa
dc.relation.referencesWagner, D., Maser, J., Moric, I., Boechat, N., Vogt, S., Gicquel, B., Lai, B., Reyrat, J.M., Bermudez, L., 2005. Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. Microbiology 151, 323–332. https://doi.org/10.1099/mic.0.27213-0spa
dc.relation.referencesWard, S.K., Abomoelak, B., Hoye, E.A., Steinberg, H., Talaat, A.M., 2010. CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110. https://doi.org/10.1111/j.1365-2958.2010.07273.xspa
dc.relation.referencesWolber, G., Langer, T., 2005. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45, 160–169. https://doi.org/10.1021/ci049885espa
dc.relation.referencesWorld Health Organization, 2019. Global tuberculosis report 2019. https://doi.org/ISBN 978 92 4 156539 4spa
dc.relation.referencesYatime, L., Buch-Pedersen, M.J., Musgaard, M., Morth, J.P., Winther, A.M.L., Pedersen, B.P., Olesen, C., Andersen, J.P., Vilsen, B., Schiøtt, B., Palmgren, M.G., Møller, J. V, Nissen, P., Fedosova, N., 2009. P-type ATPases as drug targets: Tools for medicine and science. Biochim. Biophys. Acta - Bioenerg. https://doi.org/10.1016/j.bbabio.2008.12.019spa
dc.relation.referencesZanotti, G., 2016. The Ca2+ ATPase of the Sarco-/Endoplasmic Reticulum (SERCA): Structure and Control, in: Chakraborti, S., Dhalla, N. (Eds.), Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Springer, pp. 137–151. https://doi.org/10.1007/978-3-319-24780-9_9spa
dc.relation.referencesZumla, A., Nahid, P., Cole, S.T., 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404. https://doi.org/10.1038/nrd4001spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc572 - Bioquímicaspa
dc.subject.ddc614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaspa
dc.subject.proposalATPasas tipo Pspa
dc.subject.proposaltuberculosiseng
dc.subject.proposalcompuestos antituberculososspa
dc.subject.proposalcyclopiazonic acideng
dc.subject.proposalacoplamiento molecularspa
dc.titleATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculososspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_DoctodoBioquímica_P.Santos_2020.pdf
Tamaño:
4.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: