Evaluación de la radioterapia adaptativa en acelerador Radixact x9 bajo la influencia del número CT para los sistemas de planeación Precision® y RayStation®

dc.contributor.advisorRozo Albarracín, Edwinspa
dc.contributor.advisorPlazas de Pinzón, María Cristinaspa
dc.contributor.authorVelasco Beltran, Ronald Fabianspa
dc.date.accessioned2025-09-11T20:43:54Z
dc.date.available2025-09-11T20:43:54Z
dc.date.issued2025-09-09
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractUna herramienta fundamental en la radioterapia son las imágenes por tomografía computarizada que generalmente se adquieren pre y durante tratamiento. Es sobre estas donde se realiza el cálculo de dosis por medio de los sistemas de planeación (TPS). Este estudio evaluó la dependencia del número CT (Unidad Hounsfield, HU) en el acelerador Radixact x9 del Instituto de Cáncer Carlos Ardila Lule (ICCAL) con los distintos parámetros de adquisición (kV, mAs, anatomía, FOV, modo) e identificó los protocolos que presentan diferencias estadísticas, posteriormente se analizó el impacto en las dosis calculadas por Precision® y RayStation® debido al uso de protocolos que presentan diferencia significativa y finalmente se verificó las diferencias de dosis medidas respecto a las calculadas en estos protocolos significativos. La metodología comprendió 3 etapas, una inicial, donde se identificó y se analizó la significancia entre montajes, contra un protocolo de referencia y entre protocolos. Se usaron estadísticos de prueba como ANOVA y Kruskal-Wallis dependiendo la naturaleza estadística de los datos con una significancia del 95 % lo que permitió identificar los protocolos que presentan diferencias estadísticamente significativas. La segunda etapa comprendió la realización del cálculo de dosis tanto en Precision® como en RayStation® para luego comparar las diferencias entre los planes en los protocolos hallados en la primera etapa y una tercera etapa que comprendió la medición de dosis en 3 puntos específicos del simulador físico ’Cheese Phantom’ el cual representa un medio homogéneo y un simulador antropomórfico fabricado por Cristian Castellanos que representa un medio heterogéneo donde se obtuvieron las diferencias porcentuales de dosis mediante el uso de cámaras de ionización. Los protocolos que presentaron diferencias significativas fueron aquellos donde se ignora el parámetro de Body Size, ya que el análisis mostró baja dependencia de la corriente (establecido por Body Size) y las HU, las comparaciones de distribuciones de dosis mediante el análisis gamma mostraron diferencias de hasta el 11 % para un índice gamma de 100 % cuando se cambia parámetros como Field Of View (FOV) y Modo en la misma anatomía, finalmente las mediciones con cámara de ionización mostraron diferencias de hasta el 3 % tanto para Precision® como RayStation® para el medio heterogéneo entre el dato calculado y el medido e inferiores al 1 % en medio homogéneo, estos resultados también fueron validados con la literatura, de esta manera se concluye que las imágenes adquiridas en el acelerador Radixact x9 durante la simulación del paciente y durante la entrega del tratamiento (radioterapia adaptativa), son aptas para ser usadas en la planeación de tratamiento y la adaptación del mismo en las imágenes de localización. (Texto tomado de la fuente).spa
dc.description.abstractA fundamental tool in radiotherapy is computed tomography (CT) imaging, which is generally acquired both before and during treatment. These images are the basis for dose calculation performed by treatment planning systems (TPS). This study evaluated the dependence of the CT number (Hounsfield Unit, HU) on the Radixact x9 accelerator at the Carlos Ardila Lule Cancer Institute (ICCAL) with respect to different acquisition parameters (kV, mAs, anatomy, FOV, mode), and identified the protocols that showed statistical differences. Subsequently, the impact on dose calculations performed by Precision® and RayStation® due to the use of protocols with significant differences was analyzed, and finally, the differences between measured and calculated doses for these significant protocols were verified. The methodology comprised three stages. In the first stage, the significance between setups was identified and analyzed against a reference protocol and between protocols. Statistical tests such as ANOVA and Kruskal-Wallis were used depending on the statistical nature of the data, with a significance level of 95%, which allowed the identification of protocols showing statistically significant differences. The second stage consisted of dose calculation in both Precision® and RayStation®, followed by a comparison of plan differences for the protocols identified in the first stage. The third stage involved dose measurements at three specific points of the physical “Cheese Phantom,” which represents a homogeneous medium, and an anthropomorphic phantom manufactured by Cristian Castellanos, which represents a heterogeneous medium. Percentage dose differences were obtained using ionization chambers. The protocols that showed significant differences were those in which the Body Size parameter was ignored, as the analysis revealed low dependence of current (set by Body Size) on HU. Dose distribution comparisons using gamma analysis showed differences of up to 11% for a 100% gamma index when parameters such as Field of View (FOV) and Mode were changed within the same anatomy. Finally, ionization chamber measurements showed differences of up to 3% in the heterogeneous medium between calculated and measured doses for both Precision® and RayStation®, and less than 1% in the homogeneous medium. These results were also validated with the literature. Therefore, it is concluded that the images acquired on the Radixact x9 accelerator during patient simulation and during treatment delivery (adaptive radiotherapy) are suitable for use in treatment planning and adaptation in localization images.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.format.extent176 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88728
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.indexedBiremespa
dc.relation.referencesO. M. Dona Lemus, M. Cao, B. Cai, M. Cummings, and D. Zheng, “Adaptive radiotherapy: Next-generation radiotherapy,” Cancers, vol. 16, no. 6, 2024
dc.relation.referencesPrescribing, recording and reporting photon-beam intensity-modulated radiation therapy (imrt),” Tech. Rep. Report 83, International Commis- sion on Radiation Units and Measurements, Oxford, UK, 2010.
dc.relation.referencesM. Abdulrahaman, N. Faruk, A. Oloyede, Y. Imam-Fulani, A. Fahm, and A. Azeez, “Multimedia tools in the teaching and learning processes: A systematic review,” Heliyon, vol. 6, pp. 47–58, 11 2020.
dc.relation.referencesR. C. Tegtmeier, W. S. Ferris, J. E. Bayouth, J. R. Miller, and W. S. Culberson, “Characterization of imaging performance of a novel helical kVCT for use in image-guided and adaptive radiotherapy,” Journal of Ap- plied clinics Medical Physics, pp. 1–15, 2022.
dc.relation.referencesB. Yang, H. Geng, T. Y. A. Chang, M. Y. Tse, W. W. Lam, C.-Y. Huang, T. Wu, K. K. Lau, K. Y. Cheung, G. Chiu, and S. K. Yu, “Clinical im- plementation of kVCT-guided tomotherapy with ClearRT,” Phys Eng Sci Med, vol. 45, pp. 915–924, 2022.
dc.relation.referencesR. C. Tegtmeier, W. S. Ferris, R. Chen, J. R. Miller, J. E. Bayouth, and W. S. Culberson, “Evaluating on-board kVCT- and MVCT-based do- se calculation accuracy using a thorax phantom for helical tomotherapy treatments,” Biomedical Physics and Engineering Express, vol. 9, pp. 1–14, 2023.
dc.relation.referencesJ. T. Bushberg, A. J. Seibert, E. M. Leidholdt, and J. M. Boone, The es- sential physics of medical imaging; 3rd ed. Philadelphia, PA: Lippincott Wi- lliams & Wilkins, 2012.
dc.relation.referencesAccuray, “Guia de fundamentos fisicos,” 05 2021. version 3.0.x, 1067608-SPA A.
dc.relation.referencesAccuray, “Physics training: Clearrt™ helical kvct imaging for radixact®,” 2022. 1073752.1.
dc.relation.referencesD. Pesolillo, Image quality and dose evaluation of filtered back projection ver- sus iterative reconstruction algorithm in multislice computed tomography. PhD thesis.
dc.relation.references. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems. Upper Saddle River, NJ: Prentice Hall, 2nd ed., 1997.
dc.relation.referencesA. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging. SIAM, 2001.
dc.relation.referencesF. M. Khan and J. P. Gibbons, The Physics of the Radiation Therapy. Phi- ladelphia: Wolters Kluwer, 2014.
dc.relation.referencesRaySearch, “Reference manual,” 06 2023. RAYSTATION 2023B, v5.5.026.1.
dc.relation.referencesQ. Chen, M. Chen, and W. Lu, “Ultrafast convolution/superposition using tabulated and exponential kernels on gpu,” Medical physics, vol. 38, pp. 1150–61, 03 2011.
dc.relation.referencesU. Schneider, E. Pedroni, and A. Lomax, “The calibration of ct houns- field units for radiotherapy treatment planning,” Physics in Medicine and Biology, vol. 41, p. 111, jan 1996.
dc.relation.referencesPrescribing, recording, and reporting photon beam therapy (supplement to icru report 50),” Tech. Rep. ICRU Report 62, International Com- mission on Radiation Units and Measurements (ICRU), Bethesda, MD, 1999.
dc.relation.references. R. R. Andrés, “Método para mejorar la caída de dosis en planeaciones dosimétricas con técnica vmat para tratamientos de srt utilizando casca- rones concéntricos,” 2021-04.
dc.relation.referencesM. Miften, A. Olch, D. Mihailidis, J. Moran, T. Pawlicki, A. Molineu, H. Li, K. Wijesooriya, J. Shi, P. Xia, N. Papanikolaou, and D. A. Low, “Tolerance limits and methodologies for imrt measurement-based ve- rification qa: Recommendations of task group no. 218,” Medical Physics, vol. 45, no. 4, pp. e53–e83, 2018.
dc.relation.references“Absorbed dose determination in external beam radiotherapy: An inter- national code of practice for dosimetry based on standards of absorbed dose to water,” Tech. Rep. Technical Reports Series No. 398, Internatio- nal Atomic Energy Agency, Vienna, 2000
dc.relation.references. Pang, B. Yang, X. Liu, J. R. Castle, L. Yu, N. Liu, W. Li, T. Dong, J. Qiu, and Q. Chen, “Investigation of absolute dose calibration accuracy for tomotherapy using real water,” Journal of Applied Clinical Medical Phy- sics, vol. 22, no. 6, pp. 139–145, 2021.
dc.relation.referencesJ. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Ad- vances. Bellingham, Washington: SPIE Press, 2nd ed., 2009.
dc.relation.referencesK. M. Langen, N. Papanikolaou, J. Balog, R. Crilly, D. Followill, S. M. Goddu, W. Grant III, G. Olivera, C. R. Ramsey, and C. Shi, “Qa for helical tomotherapy: Report of the aapm task group 148a),” Medical Physics, vol. 37, no. 9, pp. 4817–4853, 2010.
dc.relation.referencesA. Cuevas, M. Febrero, and R. Fraiman, “An anova test for functional data,” Computational Statistics & Data Analysis, vol. 47, no. 1, pp. 111–122, 2004.
dc.relation.referencesH. A. Luzuriaga Jaramillo, C. A. Espinosa Pinos, A. F. Haro Sarango, and H. D. Ortiz Román, “Histograma y distribución normal: Shapiro-wilk y kolmogorov smirnov aplicado en spss: Histogram and normal distri- bution: Shapiro-wilk and kolmogorov smirnov applied in spss,” LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, vol. 4, p. 596– 607, oct. 2023.
dc.relation.referencesraySearch Laboratories AB, Stockholm, Sweden, RayStation 2023B Beam Commissioning Data Specification, 2023. Document ID: RSL-D-RS- 2023B-BCDS-EN-1.0, Version: 1.0, Checked in: 2023-06-30.
dc.relation.references. A. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “Aapm radiation therapy committee task group 53: Quality assurance for clinical radiotherapy treatment planning,” Medical Physics, vol. 25, no. 10, pp. 1773–1829, 1998.
dc.relation.referencesA. Ahnesjö, “Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media,” Medical Physics, vol. 16, no. 4, pp. 577–592, 1989.
dc.relation.references. Papanikolaou, J. J. Battista, A. L. Boyer, C. Kappas, E. Klein, T. R. Mackie, M. Sharpe, J. V. Dyk, and A. A. of Physicists in Medicine Radia- tion Therapy Committee Task Group 65, “Tissue inhomogeneity correc- tions for megavoltage photon beams,” aapm report no.85 (report of task group no.65), American Association of Physicists in Medicine, Madison, WI, 2004. Task Group 65 of the AAPM Radiation Therapy Committee.
dc.relation.referencesJ. C. H. Chu, B. Ni, R. Kriz, and A. Saxena, “Applications of simu- lator computed tomography number for photon dose calculations du- ring radiotherapy treatment planning,” Radiotherapy and Oncology, vol. 55, pp. 65–73, 2000.
dc.relation.referencesCR and AAPM, “Acr–aapm technical standard for medical physics per- formance monitoring of image-guided radiation therapy (igrt),” 2023
dc.relation.referencesDose calculation algorithms.” https://oncologymedicalphysics. com/dose-calculation-algorithms/, 2025. Consultado el 18 de abril de 2025.
dc.relation.referencesN. Salkind, Encyclopedia of Research Design. SAGE Publications, Inc., 2010.
dc.relation.references. A. Luzuriaga Jaramillo, C. A. Espinosa Pinos, A. F. Haro Sarango, and H. D. Ortiz Román, “Histograma y distribución normal: Shapiro-wilk y kolmogorov smirnov aplicado en spss: Histogram and normal distri- bution: Shapiro-wilk and kolmogorov smirnov applied in spss,” LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, vol. 4, p. 596– 607, oct. 2023
dc.relation.referencesH. Keselman and J. Rogan, “The tukey multiple comparison test: 1953- 1976,” Psychological Bulletin, vol. 84, pp. 1050–1056, 09 1977.
dc.relation.references. J. A. C. Camilo, “Evaluation of the dosimetric accuracy of the aaa algorithm (analytical anisotropic algorithm) of the eclipse treatment planning system,” 2016-05-25
dc.relation.referencesAccuray, “Manual de tqa,” 05 2021. version 2.4.x, 1072777-SPA A.
dc.relation.referencesM. R. Islam, “Sample size and its role in central limit theorem (clt),” Inter- national Journal of Physics and Mathematics, vol. 1, no. 1, pp. 37–47, 2018.
dc.relation.referencesR. E. Walpole, R. H. Mayers, S. L. Myers, and K. Ye, Probabilidad y es- tadistica para ingenieria y ciencias. Naucalpan de Juarez, Mexico: Pearson Educacion, 2012.
dc.relation.referencesW. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal of the American Statistical Association, vol. 47, no. 260, pp. 583–621, 1952.
dc.relation.referencesR. B. Alzina, “La prueba de levene para la homogeneidad de varianzas en el bmdp,” Revista de Investigación Educativa, V. 5, N. 9, 1987, 1987.
dc.relation.referencesI. A. E. Agency, “Radiation protection in radiotherapy.” https: //www.iaea.org/resources/rpop/health-professionals/ radiotherapy#:~:text=Radiotherapy%20is%20one%20of%20the, physics%20and%20radiation%20therapy%20technology, 2025. Accessed: 2024-08-10.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsTomografía Computarizada por Rayos Xspa
dc.subject.decsTomography, X-Ray Computedeng
dc.subject.decsImagenología Tridimensionalspa
dc.subject.decsImageamento Tridimensionaleng
dc.subject.decsDosis de Radiaciónspa
dc.subject.decsRadiation Dosageeng
dc.subject.proposalRadioterapia adaptativaspa
dc.subject.proposalUnidad hounsfieldspa
dc.subject.proposalCálculo de dosisspa
dc.subject.proposalRadixactspa
dc.subject.proposalModelo masa densidadspa
dc.subject.proposalRaystationspa
dc.subject.proposalEstadisticosspa
dc.subject.proposalAdaptive radiotherapyspa
dc.subject.proposalHounsfield unitseng
dc.subject.proposalDose calculationeng
dc.subject.proposalRadixacteng
dc.subject.proposalMass density modeleng
dc.subject.proposalPrecisioneng
dc.subject.proposalStatisticseng
dc.titleEvaluación de la radioterapia adaptativa en acelerador Radixact x9 bajo la influencia del número CT para los sistemas de planeación Precision® y RayStation®spa
dc.title.translatedEvaluation of adaptive radiotherapy on the Radixact x9 accelerator under the influence of CT number for the Precision® and RayStation® planning systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo_Final_de_Maestria (11).pdf
Tamaño:
28.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: