En 6 día(s), 12 hora(s) y 30 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Bioprospection of marine-derived bacteria with biocontrol activity against Fusarium oxysporum f. sp. lycopersici

dc.contributor.advisorRamos Rodriguez, Freddy Alejandrospa
dc.contributor.advisorSuárez Moreno, Zulma Rocíospa
dc.contributor.authorVinchira Villarraga, Diana Marcelaspa
dc.contributor.researchgroupEstudio y aprovechamiento de Productos Naturales Marinos y Frutas de Colombiaspa
dc.date.accessioned2021-01-22T16:11:19Zspa
dc.date.available2021-01-22T16:11:19Zspa
dc.date.issued2020-11-24spa
dc.description.abstractla marchitez vascular, causada por el hongo fitopatógeno Fusarium oxysporum f. sp. lycopersici (FOL), es una limitante importante en la productividad de los cultivos de tomate (Solanum lycopersicum). Las bacterias derivadas de ambientes marinos producen metabolitos activos estructuralmente diversos. Estos compuestos han sido usados para el control de fitopatógenos, y recientemente, se ha propuesto evaluarlos junto con las bacterias que los producen como potenciales agentes de control biológico. En la presente investigación, se propuso usar bacterias derivadas de ambientes marinos como posibles biocontroladores de FOL. Para ello, este estudio se dividió en tres fases: (I) La selección y caracterización de bacterias con actividad antifúngica frente a FOL, (II) El análisis de competencia rizosférica y la evaluación de actividad antifúngica in vivo de las bacterias activas, y, (III) El análisis metabolómico no dirigido de la interacción tomate-Paenibacillus sp.-FOL59 bajo condiciones de invernadero y la interacción Paenibacillus sp.-FOL59 en co-cultivo. En la fase I, se llevó a cabo el tamizaje primario de actividad antifúngica con una colección de bacterias obtenidas de ambientes marinos compuesta por 152 aislamientos. De estas, 28 bacterias fueron seleccionadas con base en su actividad antifúngica in vitro contra nueve aislamientos de F. oxysporum y el fitopatógeno control FOL59. La caracterización fenotípica y la identificación molecular de estas bacterias se obtuvo con el fin de priorizar las cepas que deberían ser avaluadas en los ensayos de la fase II. Este proceso condujo a la selección de nueve aislamientos de bacterias pertenecientes al orden Bacillales, que presentaron la mayor actividad antifúngica contra FOL. A partir de los resultados obtenidos en la fase II, la bacteria Paenibacillus sp. PNM200 se seleccionó como el candidato más apropiado para el control de FOL. Paenibacillus PNM200 colonizó el sistema radicular de dos variedades de tomate (Milano y Santa Cruz Kada) bajo condiciones de invernadero, y generó un efecto positivo sobre el crecimiento de las plantas tratadas (Santa Cruz Kada) a los 30 días post inoculación. Este efecto fue correlacionado con la capacidad de Paenibacillus sp. PNM200 de producir Ácido indolacético y solubilizar fosfatos. En un esfuerzo por caracterizar la interacción tripartita tomate-Paenibacillus PNM200-FOL59, en la fase III se llevó a cabo un perfilado metabólico por LCMS bajo condiciones controladas. En los experimentos de perfilado metabólico de la interacción tomate-FOL59, se observó la acumulación de los glicoalcaloides esteroidales α-tomatina, hidroxitomatina, tomatidina tetrahexósido, y la aglicona tomatidina en las raíces de la planta. Sin embargo, este efecto no se observó en la interacción tripartita tomate-Paenibacillus sp. PNM200-FOL59, ni en el perfil metabólico de las raíces de plantas de tomate tratadas solo con Paenibacillus sp. PNM200. En ensayos metabolómicos adicionales, que pretendían caracterizar la interacción Paenibacillus sp. PNM200, se observó la producción diferencial de metabolitos en ambos microorganismos en mono y co-cultivo. Se evidenció también que la adición de tejido vascular de tomate genera cambios significativos en el perfil metabólico de ambos microorganismos. Al ser cultivado en un medio suplementado con tejido de tomate, el fitopatógeno FOL59 induce la síntesis de ácido fusárico, beauvericina J, y al menos cinco depsipéptidos estructuralmente relacionados a la beauvericina. Estos metabolitos son bien conocidos por su rol en la patogenicidad de Fusarium en plantas de tomate. Sin embargo, en co-cultivo con Paenibacillus sp. PNM200, se observó una reducción en la producción de estos metabolitos. Esta respuesta podría estar correlacionada con la disminución en la patogenicidad de FOL59 contra tomate en la interacción tripartita. Por otra parte, los cambios más relevantes en el perfil metabólico de Paenibacillus sp. PNM200 en su interacción con FOL59 se asociaron a la producción de una familia de nueve péptidos, con pesos moleculares entre 1100-1600 Da, que se relacionan estructuralmente con los lipopéptidos Pelgipeptina B y Paneipaptina C. Tres de los péptidos se produjeron exclusivamente en el co-cultivo en medio suplementado con tomate. Los demás péptidos detectados en el co-cultivo presentaron un incremento de entre 2 y 56 veces en su abundancia relativa en comparación con el monocultivo. Los extractos etanólicos enriquecidos en esta familia de péptidos mostraron actividad antifúngica contra la cepa tipo FOL CBS 164.85, con un valor de IC50 de 125 μg·mL-1, confirmando su rol como antibióticos frente a FOL. Ninguno de estos péptidos fue identificado por derreplicación usando bases de datos y fuentes bibliográficas, lo que permite sugerir que pueden tratarse de metabolitos nuevos. En este contexto, se propone que la actividad antifúngica in vivo de Paenibacillus sp. PNM200 está asociada a la síntesis de esta familia de péptidos, y que su producción es modificada (inducida o sobre-expresada) en respuesta a la presencia de FOL59. Esta hipótesis debe ser confirmada con nuevos experimentos dirigidos a evaluar la producción de los péptidos de interés bajo condiciones in vivo.spa
dc.description.abstractVascular wilt (VW), caused by the phytopathogenic fungus Fusarium oxysporum f. sp. lycopersici (FOL), is a significant disease that limits the yield in tomato crop (Solanum lycopersicum). Marine-derived bacteria produce structurally diverse bioactive metabolites. These compounds have been used for phytopathogens control, and recently, alongside marine-derived bacteria proposed as biological control candidates. In the present research, the use of marine-derived bacteria, isolated from the Colombian Caribbean Sea as biocontrol agents for FOL was proposed. The study was developed in three phases: (I) the selection and characterization of bacteria with antifungal activity against FOL, (II) the analysis of rhizospheric competence and in vivo antifungal activity of the active bacteria, and (III) the untargeted-metabolomic analysis of the interaction between tomato – Paenibacillus sp. - FOL under controlled greenhouse conditions and Paenibacillus sp. PNM200 - FOL by co-cultivation. In phase I, primary screening was carried out with a marine -derived bacterial collection composed of 152 isolates. Twenty-eight bacterial strains were selected based on in vitro antifungal activity test against nine F. oxysporum isolates and one control pathogen FOL59. The phenotypical characterization and molecular identification of these isolates were done aiming to prioritize the better candidates to be tested on phase II. These processes lead to the selection of nine bacteria belonging to the Bacillales order, which presented the higher antifungal activity against FOL. From phase II, isolate Paenibacillus sp. PNM200 was selected as a potential biocontrol strain. Paenibacillus sp. PNM200 colonized the root system of the tomato cultivars Milano and Santa Cruz Kada under greenhouse conditions and generated a positive effect on the growth of the treated plants after 30 days inoculation (Santa Cruz Kada tomato cultivar). This effect was correlated with the ability of Paenibacillus sp. PNM200 to produce IAA (Indoleacetic acid) and solubilize phosphates. These results are one of the first evidence of marine-derived bacteria’s rhizospheric competence of for its use as biocontrol agents. As an effort to characterize the tripartite tomato plant-Paenibacillus sp. PNM200-FOL59 interaction, a LCMS metabolic profiling approach was developed as part of phase III. A significant accumulation of the steroidal glycoalkaloids (SGA) α-tomatine, hydroxytomatine, tomatidine tetrahexoside, and the aglycone tomatidine on the plant's root of was observed in the metabolic profiling experiments to characterize the tomato-FOL59 interaction. However, this effect was not detected in the tripartite tomato-Paenibacillus sp. PNM200-FOL59 interaction, nor in the metabolic profiles of the tomato root system treated with Paenibacillus sp. PNM200. In other metabolomic experiments aimed at characterizing Paenibacillus sp. PNM200-FOL59 interaction, differential production of metabolites could be observed in the mono- and co-cultivation metabolic profiles of both microorganisms. Moreover, the addition of tomato vascular tissue also generated significant changes in the metabolic profile of both microorganisms. The pathogenic strain FOL59, when cultured in a growth medium supplemented with tomato plant tissue, induced the synthesis of fusaric acid, beauvericin J, and at least five additional depsipeptides structurally related to beauvericin. These are well-known metabolites related to the pathogenic effect of Fusarium against plants. However, in co-cultivation with Paenibacillus sp. PNM200, a reduction in the production of these metabolites was observed. This response could be related to the decrease of FOL59 pathogenicity against the tomato. On the other hand, the most relevant changes in the metabolic profiles of Paenibacillus sp. PNM200 were associated to the production of a family of nine peptides, with molecular weights between 1100-1600 Da, and structurally related to the peptide pelgipeptine B and paenipeptin C. Three of these peptides were produced exclusively in the co-culture when the growth medium was supplemented with tomato plant tissue. The other peptides detected in the co-culture showed a significant increase in their abundance compared to the monoculture (2 to 56-fold change), suggesting their role in the biocontrol of FOL59. The ethanolic extracts enriched in this family of peptides showed antifungal activity against FOL CBS 164.85, with an IC50 of 125 μg·mL-1, confirming the role mentioned above as antibiotics against FOL. None of these peptides could be identified by dereplication using databases and literature sources, suggesting that they may be new metabolites. In this context, it is proposed that the in vivo antifungal activity of Paenibacillus sp. PNM200 is associated with the synthesis of this family of peptides, and its production is modified (triggered and enhanced) in response to the presence of FOL59. This hypothesis must be confirmed by new experiments aimed at evaluating the peptides' production under in vivo conditions.spa
dc.description.additionalLínea de Investigación: Microbiología marinaspa
dc.description.degreelevelDoctoradospa
dc.description.projectProyecto 776-2017. Desarrollo de estrategias de control biológico en cultivos forestales y transitorios de interés comercial para Colombia empleando bacterias nativas colombianasspa
dc.description.sponsorshipCOLCIENCIAS - UNIVERSIDAD NACIONAL DE COLOMBIAspa
dc.format.extent185spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVinchira-Villarraga Diana Marcela (2020). Bioprospección de bacterias aisladas de ambientes marinos con actividad biocontroladora frente a Fusarium oxysporum f. sp. lycopersici. Tesis de doctorado. Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78875
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesKimura S, Sinha N. Tomato (Solanum lycopersicum): a model fruit-bearing crop. . Cold Spring Harb Prot. 2008;3(11).spa
dc.relation.referencesCosta JM, Heuvelink E. The global tomato industry. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388spa
dc.relation.referencesValue of Agricultural Production [Internet]. 2019 [cited 05 September 2019]. Available from: http://www.fao.org/faostat/en/#data/QC/visualize.spa
dc.relation.referencesResearch&Markets. Tomato - Market Analysis, Forecast, Size, Trends and Insights. Research & Markets; 2019.spa
dc.relation.referencesAlseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, et al. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell. 2015;27(3):485-512.spa
dc.relation.referencesKoenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110(28):E2655-62.spa
dc.relation.referencesLi H, Qi M, Sun M, Liu Y, Liu Y, Xu T, et al. Tomato Transcription Factor SlWUS Plays an Important Role in Tomato Flower and Locule Development. Front Plant Sci. 2017;8:457.spa
dc.relation.referencesTomato Genome C. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635-41.spa
dc.relation.referencesArie T, Takahashi H, Kodama M, Teraoka T. Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology. 2007;24(1):135-47.spa
dc.relation.referencesHusaini AM, Sakina A, Cambay SR. Host-Pathogen Interaction in Fusarium oxysporum Infections: Where Do We Stand? Mol Plant Microbe Interact. 2018;31(9):889-98.spa
dc.relation.referencesJashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. 2015;6(584).spa
dc.relation.referencesTakken F, Rep M. The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol. 2010;11(2):309-14.spa
dc.relation.referencesMa LJ, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, et al. Fusarium pathogenomics. Annu Rev Microbiol. 2013;67:399-416.spa
dc.relation.referencesRampersad SN. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens. 2020;9(5).spa
dc.relation.referencesMcGovern RJ. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015;73:78-92.spa
dc.relation.referencesNirmaladevi D, Venkataramana M, Srivastava RK, Uppalapati SR, Gupta VK, Yli-Mattila T, et al. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci Rep. 2016;6:21367.spa
dc.relation.referencesAkhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016;406(1):425-40.spa
dc.relation.referencesDi X, Takken FL, Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Frontiers in plant science. 2016;7.spa
dc.relation.referencesTurra D, El Ghalid M, Rossi F, Di Pietro A. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature. 2015;527(7579):521-4.spa
dc.relation.referencesvanderDoes HC, Constantin ME, Houterman PM, Takken FLW, Cornelissen BJC, Haring MA, et al. Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European Journal of Plant Pathology. 2019;154(1):55-65.spa
dc.relation.referencesRaza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol. 2017;37(2):202-12.spa
dc.relation.referencesSchreiter S, Sandmann M, Smalla K, Grosch R. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce. PLOS ONE. 2014;9(8):e103726.spa
dc.relation.referencesGómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM. Current insights into the role of rhizosphere bacteria in disease suppressive soils. J Frontiers in Microbiology. 2017;8:2529.spa
dc.relation.referencesRodríguez MA, Rothen C, Lo TE, Cabrera GM, Godeas AM. Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646. J Biocontrol science technology. 2015;25(12):1388-409.spa
dc.relation.referencesDe Carvalho CC, Fernandes P. Production of metabolites as bacterial responses to the marine environment. J Marine drugs. 2010;8(3):705-27.spa
dc.relation.referencesBetancur LA, Forero AM, Romero-Otero A, Sepulveda LY, Moreno-Sarmiento NC, Castellanos L, et al. Cyclic tetrapeptides from the marine strain Streptomyces sp. PNM-161a with activity against rice and yam phytopathogens. J Antibiot (Tokyo). 2019;72(10):744-51.spa
dc.relation.referencesBetancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, et al. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLOS ONE. 2017;12(2):e0170148.spa
dc.relation.referencesBlunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2018;35(1):8-53.spa
dc.relation.referencesEl-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, et al. Antifungal potential of marine natural products. Eur J Med Chem. 2017;126:631-51.spa
dc.relation.referencesFudou R, Iizuka T, Sato S, Ando T, Shimba N, Yamanaka S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J Antibiot (Tokyo). 2001;54(2):153-6.spa
dc.relation.referencesReyes-Perez JJ, Hernandez-Montiel LG, Vero S, Noa-Carrazana JC, Quiñones-Aguilar EE, Rincón-Enríquez G. Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology. 2019;56(11):4992-9.spa
dc.relation.referencesTareq FS, Lee HS, Lee YJ, Lee JS, Shin HJ. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus licheniformis 09IDYM23. Lipids. 2015;50(5):513-9.spa
dc.relation.referencesTareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, et al. Non-cytotoxic antifungal agents: isolation and structures of gageopeptides A-D from a Bacillus strain 109GGC020. J Agric Food Chem. 2014;62(24):5565-72.spa
dc.relation.referencesHernandez Montiel LG, Zulueta Rodriguez R, Angulo C, Rueda Puente EO, Quiñonez Aguilar EE, Galicia R. Marine yeasts and bacteria as biological control agents against anthracnose on mango. J Journal of Phytopathology. 2017;165(11-12):833-40.spa
dc.relation.referencesOrtega-Morales BO, Ortega-Morales FN, Lara-Reyna J, De la Rosa-Garcia SC, Martinez-Hernandez A, Montero MJ. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi. Mar Biotechnol (NY). 2009;11(3):375-83spa
dc.relation.referencesEscudero N, Marhuenda-Egea FC, Ibanco-Cañete R, Zavala-Gonzalez EA, Lopez-Llorca LV. A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics. 2014;10(5):788-804.spa
dc.relation.referencesMatilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivanco JM, et al. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environmental Microbiology Reports. 2010;2(3):381-8.spa
dc.relation.referencesScherling C, Ulrich K, Ewald D, Weckwerth W. A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. Isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe In. 2009;22(8):1032-7.spa
dc.relation.referencesvan de Mortel JE, de Vos RC, Dekkers E, Pineda A, Guillod L, Bouwmeester K, et al. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant physiology. 2012:pp. 112.207324.spa
dc.relation.referencesWalker V, Bertrand C, Bellvert F, Moënne‐Loccoz Y, Bally R, Comte G. Host plant secondary metabolite profiling shows a complex, strain‐dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum. New Phytologist. 2011;189(2):494-506.spa
dc.relation.referencesKiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, et al. Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microbial ecology. 2006;51(3):257-66.spa
dc.relation.referencesvan Dam NM, Bouwmeester HJ. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends Plant Sci. 2016;21(3):256-65.spa
dc.relation.referencesAliferis KA, Jabaji S. Deciphering plant-pathogen interactions applying metabolomics: principles and applications. Can J Plant Pathol. 2012;34(1):29-33.spa
dc.relation.referencesWolfender JL, Rudaz S, Choi YH, Kim HK. Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem. 2013;20(8):1056-90.spa
dc.relation.referencesSärkinen T, Bohs L, Olmstead RG, Knapp S. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology. 2013;13(1):214.spa
dc.relation.referencesWeese TL, Bohs L. A three-gene phylogeny of the genus Solanum (Solanaceae). Systematic Botany. 2007;32(2):445-63.spa
dc.relation.referencesSpooner DM, Anderson GJ, Jansen RK. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). American Journal of Botany. 1993;80(6):676-88.spa
dc.relation.referencesPeralta IE, Spooner DM, Knapp S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic botany monographs. 2008;84.spa
dc.relation.referencesBlanca J, Canizares J, Cordero L, Pascual L, Diez MJ, Nuez F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One. 2012;7(10):e48198.spa
dc.relation.referencesLin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46(11):1220-6.spa
dc.relation.referencesRazifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ, et al. Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America. Mol Biol Evol. 2020;37(4):1118-32.spa
dc.relation.referencesPeralta IE, Spooner DM. History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK, editors. Genetic improvement of solanaceous crops. 2. New Hampshire, USA: Science Publishers; 2006. p. 1-27.spa
dc.relation.referencesRothan C, Diouf I, Causse M. Trait discovery and editing in tomato. The Plant Journal. 2019;97(1):73-90.spa
dc.relation.referencesSalehi B, Sharifi-Rad R, Sharopov F, Namiesnik J, Roointan A, Kamle M, et al. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition. 2019;62:201-8.spa
dc.relation.referencesKhachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao D-Y, Katz NB. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. J Experimental biology medicine. 2002;227(10):845-51.spa
dc.relation.referencesFriedman M. Anticarcinogenic, Cardioprotective, and Other Health Benefits of Tomato Compounds Lycopene, α-Tomatine, and Tomatidine in Pure Form and in Fresh and Processed Tomatoes. Journal of Agricultural and Food Chemistry. 2013;61(40):9534-50.spa
dc.relation.referencesKubatka P, Liskova A, Kello M, Mojzis J, Solar P, Solarova Z, et al. Plant-derived functional foods with chemopreventive and therapeutic potential against breast cancer: A review of the preclinical and clinical data. In: Kabir Y, editor. Functional Foods in Cancer Prevention and Therapy: Academic Press; 2020. p. 283-314.spa
dc.relation.referencesSant’Ana, Parrine DV, Lefsrud M. Tomato proteomics: Tomato as a model for crop proteomics. Scientia Horticulturae. 2018;239:224-33.spa
dc.relation.referencesMoco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 2006;141(4):1205-18.spa
dc.relation.referencesPentimone I, Colagiero M, Rosso LC, Ciancio A. Omics applications: towards a sustainable protection of tomato. Appl Microbiol Biotechnol. 2020;104(10):4185-95.spa
dc.relation.referencesSant’Ana DVP, Lefsrud M. Tomato proteomics: Tomato as a model for crop proteomics. Scientia Horticulturae. 2018;239:224-33.spa
dc.relation.referencesBarone A, Chiusano ML, Ercolano MR, Giuliano G, Grandillo S, Frusciante L. Structural and functional genomics of tomato. Int J Plant Genomics. 2008;2008:820274.spa
dc.relation.referencesGao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019;51(6):1044-51.spa
dc.relation.referencesPesaresi P, Mizzotti C, Colombo M, Masiero S. Genetic regulation and structural changes during tomato fruit development and ripening. Front Plant Sci. 2014;5:124.spa
dc.relation.referencesBallester AR, Tikunov Y, Molthoff J, Grandillo S, Viquez-Zamora M, de Vos R, et al. Identification of Loci Affecting Accumulation of Secondary Metabolites in Tomato Fruit of a Solanum lycopersicum x Solanum chmielewskii Introgression Line Population. Front Plant Sci. 2016;7:1428spa
dc.relation.referencesPanthee DR, Chen F. Genomics of fungal disease resistance in tomato. Curr Genomics. 2010;11(1):30-9.spa
dc.relation.referencesHanson P, Lu S-F, Wang J-F, Chen W, Kenyon L, Tan C-W, et al. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae. 2016;201:346-54.spa
dc.relation.referencesde Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz B. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv. 2016:064824.spa
dc.relation.referencesPrihatna C, Barbetti MJ, Barker SJ. A Novel Tomato Fusarium Wilt Tolerance Gene. Front Microbiol. 2018;9:1226.spa
dc.relation.referencesHu X, Puri KD, Gurung S, Klosterman SJ, Wallis CM, Britton M, et al. Proteome and metabolome analyses reveal differential responses in tomato -Verticillium dahliae-interactions. J Proteomics. 2019;207:103449.spa
dc.relation.referencesManzo D, Ferriello F, Puopolo G, Zoina A, D’Esposito D, Tardella L, et al. Fusarium oxysporum f. sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. BMC Plant Biology. 2016;16(1):53.spa
dc.relation.referencesPetrasch S, Silva CJ, Mesquida-Pesci SD, Gallegos K, van den Abeele C, Papin V, et al. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage. Front Plant Sci. 2019;10:223.spa
dc.relation.referencesChen F, Ma R, Chen X-L. Advances of metabolomics in fungal pathogen–plant interactions. Metabolites. 2019;9(8):169.spa
dc.relation.referencesFriedman M, Levin CE, Lee SU, Kim HJ, Lee IS, Byun JO, et al. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem. 2009;57(13):5727-33.spa
dc.relation.referencesLiu J, Kanetake S, Wu YH, Tam C, Cheng LW, Land KM, et al. Antiprotozoal Effects of the Tomato Tetrasaccharide Glycoalkaloid Tomatine and the Aglycone Tomatidine on Mucosal Trichomonads. J Agric Food Chem. 2016;64(46):8806-10.spa
dc.relation.referencesShamshiri R, Jones J, Thorp K, Ahmad D, Che Man H, Taheri S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. International Agrophysics. 2018;32:287-302.spa
dc.relation.referencesJones J. Instructions for growing tomatoes in the garden and green-house. SC, USA: GroSystems, Anderson; 2013.spa
dc.relation.referencesHeuvelink E, Okello CO. Developmental processes. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.spa
dc.relation.referencesSantos BM, Torres-Quezada EA. Irrigation and fertilization In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.spa
dc.relation.referencesHeuvelink E, Li T, Dorais M. Crop growth and yield. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.spa
dc.relation.referencesBaudoin W, Nersisyan A, Shamilov A, Hodder A, Gutierrez D, Nicola S, et al. Good Agricultural Practices for greenhouse vegetable production in the South East European countries-Principles for sustainable intensification of smallholder farms. Duffy R, editor. Rome, Italy: FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS; 2017.spa
dc.relation.referencesWang X, Xing Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: a principal component analysis. Scientific Reports. 2017;7(1):350.spa
dc.relation.referencesChen J, Kang S, Du T, Qiu R, Guo P, Chen R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management. 2013;129:152-62.spa
dc.relation.referencesPark Y, Na MH, Cho W. Determination on environmental factors and growth factors affecting tomato yield using pattern recognition techniques. Multimedia Tools and Applications. 2019;78(20):28815-34.spa
dc.relation.referencesSilva RS, Kumar L, Shabani F, PicanÇO MC. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3·0 global climate model. The Journal of Agricultural Science. 2017;155(3):407-20.spa
dc.relation.referencesBarrientos-Fuentes JC, Torrico-Albino JC. Socio-economic perspectives of family farming in South America: cases of Bolivia, Colombia and Peru. Agronomía Colombiana. 2014;32(2):266-75.spa
dc.relation.referencesSchneider S. Family farming in Latin America and the Caribbean: looking for new paths of rural development and food security. Brasilia, Brazil: FAO; IPC-IG; 2016.spa
dc.relation.referencesUlrichs C, Fischer G, Büttner C, Mewis I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agronomía Colombiana. 2008;26(1):40-6.spa
dc.relation.referencesDANE. Encuesta Nacional Agropecuaria (ENA) 2019. In: DANE, editor. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena2019. p. 31.spa
dc.relation.referencesFIRA. Panorama agroalimentario. Tomate rojo 2019. In: sectorial Ddiyeey, editor. México: FIRA; 2019. p. 26.spa
dc.relation.referencesAgronet. Colombian Ministry of Agriculture and Rural Development Statistics for the Agricultural Sector: AGRONET; 2010 [Available from: http://www.agronet.gov.cospa
dc.relation.referencesMiranda D, Fischer G, Carranza C, Rodríguez M, Lanchero O, Barrientos J. Characterization of productive systems of tomato (Solanum lycopersicum L.) in producing zones of Colombia. Acta Hort. 2009;821:35-46.spa
dc.relation.referencesBojacá CR, Arias LA, Ahumada DA, Casilimas HA, Schrevens E. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control. 2013;30(2):400-3.spa
dc.relation.referencesGil R, Bojacá CR, Schrevens E. Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences. 2019;88:1-9.spa
dc.relation.referencesGil R, Bojacá C, Schrevens E. A tailor-made crop growth model for the tomato production systems in Colombia. Agronomia Colombiana. 2018;35:301-13.spa
dc.relation.referencesSingh VK, Singh AK, Kumar A. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech. 2017;7(4):255.spa
dc.relation.referencesGary E. Vallad, Messelink G, Smith HA. Crop protection. Pest and disease management. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.spa
dc.relation.referencesDesneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science. 2010;83(3):197-215.spa
dc.relation.referencesDesneux N, Luna MG, Guillemaud T, Urbaneja A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science. 2011;84(4):403-8.spa
dc.relation.referencesChailleux A, Desneux N, Seguret J, Do Thi Khanh H, Maignet P, Tabone E. Assessing European Egg Parasitoids as a Mean of Controlling the Invasive South American Tomato Pinworm Tuta absoluta. PLOS ONE. 2012;7(10):e48068spa
dc.relation.referencesGiorgini M, Guerrieri E, Cascone P, Gontijo L. Current strategies and future outlook for managing the Neotropical tomato pest Tuta absoluta (Meyrick) in the Mediterranean Basin. Neotropical entomology. 2019;48(1):1-17.spa
dc.relation.referencesHanssen IM, Lapidot M, Thomma BP. Emerging viral diseases of tomato crops. Mol Plant Microbe In. 2010;23(5):539-48.spa
dc.relation.referencesKil E-J, Kim S, Lee Y-J, Byun H-S, Park J, Seo H, et al. Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Scientific Reports. 2016;6(1):19013.spa
dc.relation.referencesShattock RC. Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Manag Sci. 2002;58(9):944-50.spa
dc.relation.referencesFoolad MR, Merk HL, Ashrafi H. Genetics, Genomics and Breeding of Late Blight and Early Blight Resistance in Tomato. Critical Reviews in Plant Sciences. 2008;27(2):75-107.spa
dc.relation.referencesNowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and Tomato Late Blight Caused by Phytophthora infestans: An Overview of Pathology and Resistance Breeding. Plant Dis. 2012;96(1):4-17.spa
dc.relation.referencesHausbeck MK, Lamour KH. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant disease. 2004;88(12):1292-303.spa
dc.relation.referencesNaveed ZA, Ali GS. Comparative Transcriptome Analysis between a Resistant and a Susceptible Wild Tomato Accession in Response to Phytophthora parasitica. International Journal of Molecular Sciences. 2018;19(12).spa
dc.relation.referencesJupe J, Stam R, Howden AJM, Morris JA, Zhang R, Hedley PE, et al. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biology. 2013;14(6):R63.spa
dc.relation.referencesCamaradecomerciodeBogotá. Manual de tomate. agroindustrial Pdaay, editor. Bogotá, Colombia: Camara de comercio de Bogotá; 2015. 56 p.spa
dc.relation.referencesMontenegro I, Madrid A, Cuellar M, Seeger M, Alfaro JF, Besoain X, et al. Biopesticide Activity from Drimanic Compounds to Control Tomato Pathogens. Molecules. 2018;23(8).spa
dc.relation.referencesBawa I. Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici(Sacc.) A Review. Int J Adv Acad Res. 2016;2(5).spa
dc.relation.referencesApodaca-Sánchez MA, Zavaleta ME, Osada KS, García ER. Hospedantes asintomáticos de Fusarium oxysporum Schlechtend. f. sp. radicis-lycopersici WR Jarvis y Shoemaker en Sinaloa, México. . Rev Mex Fitopatol. 2004;22(1):7-13spa
dc.relation.referencesEnespa, Dwivedi SK. Effectiveness of some antagonistic fungi and botanicals against Fusarium solani and Fusarium oxysporum f. sp. lycopersici infecting brinjal and tomato plants. Asian J Plant Pathol. 2014;8(1):18-25.spa
dc.relation.referencesCarmona SL, Burbano-David D, Gómez MR, Lopez W, Ceballos N, Castaño-Zapata J, et al. Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens. 2020;9(1).spa
dc.relation.referencesSingh VK, Singh HB, Upadhyay RS. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemistry. 2017;118:320-32.spa
dc.relation.referencesSrinivas C, Nirmala Devi D, Narasimha Murthy K, Mohan CD, Lakshmeesha TR, Singh B, et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences. 2019;26(7):1315-24.spa
dc.relation.referencesSuga H, Hyakumachi M. Genomics of Phytopathogenic Fusarium. Applied Mycology and Biotechnology. 2004;4:161-89.spa
dc.relation.referencesWatanabe M, Yonezawa T, Lee K-i, Kumagai S, Sugita-Konishi Y, Goto K, et al. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC evolutionary biology. 2011;11:322-.spa
dc.relation.referencesEdel-Hermann V, Lecomte C. Current Status of Fusarium oxysporum Formae Speciales and Races. Phytopathology. 2019;109(4):512-30.spa
dc.relation.referencesBiju VC, Fokkens L, Houterman PM, Rep M, Cornelissen BJC. Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol. 2017;83(4).spa
dc.relation.referencesGonçalves A, Costa H, Fonseca M, Boiteux L, Lopes C, Reis A, editors. Variability and geographical distribution of Fusarium oxysporum f. sp. lycopersici physiological races and field performance of resistant sources in Brazil. V International Symposium on Tomato Diseases: Perspectives and Future Directions in Tomato Protection 1207; 2016.spa
dc.relation.referencesSepúlveda-Chavera G, Huanca W, Salvatierra-Martínez R, Latorre BA. First Report of Fusarium oxysporum f. sp. lycopersici Race 3 and F. oxysporum f. sp. radicis-lycopersici in Tomatoes in the Azapa Valley of Chile. Plant Disease. 2014;98(10):1432-.spa
dc.relation.referencesReis A, Costa H, Boiteux LS, Lopes CA. First report of Fusarium oxysporum f. sp. lycopersici race 3 on tomato in Brazil. Fitopatologia Brasileira. 2005;30(4):426-8spa
dc.relation.referencesde Sain M, Rep M. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. Int J Mol Sci. 2015;16(10):23970-93.spa
dc.relation.referencesDi XT, Takken FLW, Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Frontiers in Plant Science. 2016;7spa
dc.relation.referencesGordon TR. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu Rev Phytopathol. 2017;55:23-39.spa
dc.relation.referencesPietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MI. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol. 2003;4(5):315-25.spa
dc.relation.referencesAgrios GN. chapter eleven - PLANT DISEASES CAUSED BY FUNGI. In: Agrios GN, editor. Plant Pathology (Fifth Edition). San Diego: Academic Press; 2005. p. 385-614.spa
dc.relation.referencesBravo Ruiz G, Di Pietro A, Roncero MI. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum. Mol Plant Pathol. 2016;17(3):339-53.spa
dc.relation.referencesIto S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T. Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett. 2004;571(1-3):31-4.spa
dc.relation.referencesIto S, Kawaguchi T, Nagata A, Tamura H, Matsushita H, Takahara H, et al. Distribution of the FoToml gene encoding tomatinase in formae speciales of Fusarium oxysporum and identification of a novel tomatinase from F. oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato. Journal of General Plant Pathology. 2004;70(4):195-201.spa
dc.relation.referencesKang S, Demers J, Jimenez-Gasco MdM, Rep M. Fusarium oxysporum. In: Dean RA, Kole C, Lichens-Park A, editors. Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Berlin Heidelberg: Springer-Verlag; 2014. p. 244.spa
dc.relation.referencesKatan T, Shlevin E, Katan J. Sporulation of Fusarium oxysporum f. sp. lycopersici on Stem Surfaces of Tomato Plants and Aerial Dissemination of Inoculum. Phytopathology. 1997;87(7):712-9.spa
dc.relation.referencesGale LR, Katan T, Kistler HC. The Probable Center of Origin of Fusarium oxysporum f. sp. lycopersici VCG 0033. Plant Dis. 2003;87(12):1433-8.spa
dc.relation.referencesGonzalez-Cendales Y, Catanzariti AM, Baker B, McGrath DJ, Jones DA. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol. 2016;17(3):448-63.spa
dc.relation.referencesMata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, et al. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research. 2020;7(1):66.spa
dc.relation.referencesEl Mohtar CA, Atamian HS, Dagher RB, Abou-Jawdah Y, Salus MS, Maxwell DP. Marker-Assisted Selection of Tomato Genotypes with the I-2 Gene for Resistance to Fusarium oxysporum f. sp. lycopersici Race 2. Plant Dis. 2007;91(6):758-62.spa
dc.relation.referencesSegal G, Sarfatti M, Schaffer MA, Ori N, Zamir D, Fluhr R. Correlation of genetic and physical structure in the region surrounding the I2 Fusarium oxysporum resistance locus in tomato. Molecular and General Genetics MGG. 1992;231(2):179-85.spa
dc.relation.referencesBournival BL, Vallejos CE, Scott JW. Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theoretical and Applied Genetics. 1990;79(5):641-5.spa
dc.relation.referencesMandal S, Mallick N, Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem. 2009;47(7):642-9.spa
dc.relation.referencesBenhamou N, Lafontaine P, Nicole M. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology. 1994;84(12):1432-44.spa
dc.relation.referencesElmer WH, White JC. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano. 2016;3(5):1072-9.spa
dc.relation.referencesKumar A, Biswas S. Biochemical evidences of induced resistance in tomato plant against Fusarium with through inorganic chemicals. Journal of Mycopathological Research. 2010;48(2):213-9.spa
dc.relation.referencesChakraborty N, Chandra S, Acharya K. Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl2. Physiology and Molecular Biology of Plants. 2017;23(3):581-96.spa
dc.relation.referencesSong W, Zhou L, Yang C, Cao X, Zhang L, Liu X. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot. 2004;23(3):243-7.spa
dc.relation.referencesChen C, Wang J, Luo Q, Yuan S, Zhou M. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag Sci. 2007;63(12):1201-7.spa
dc.relation.referencesLiu S, Fu L, Wang S, Chen J, Jiang J, Che Z, et al. Carbendazim Resistance of Fusarium graminearum From Henan Wheat. Plant Dis. 2019:PDIS02190391RE.spa
dc.relation.referencesYin Y, Liu X, Li B, Ma Z. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology. 2009;99(5):487-97.spa
dc.relation.referencesAmini J, Sidovich D. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J Plant Prot Res. 2010;50(2):172-8.spa
dc.relation.referencesShoaib A, Dliferoze A, Khan A, Khurshid S, Akhtar S. Effect of Fungicides on the Morphology, Physiology and Biochemistry of Tomato Seedlings Infected with Fusarium oxysporum f. sp lycopersici. Philipp Agric Sci. 2014;97(4):416-21.spa
dc.relation.referencesArias LA, Bojacá CR, Ahumada DA, Schrevens E. Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control. 2014;35(1):213-7.spa
dc.relation.referencesBonanomi G, Antignani V, Pane C, Scala F. Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology. 2007;89(3):311-24.spa
dc.relation.referencesStevens C, Khan VA, Rodriguez-Kabana R, Ploper LD, Backman PA, Collins DJ, et al. Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil. 2003;253(2):493-506.spa
dc.relation.referencesBarakat RM, Al-Masri MI. Enhanced Soil Solarization against Fusarium oxysporum f. sp. lycopersici in the Uplands. International Journal of Agronomy. 2012;2012:368654.spa
dc.relation.referencesYücel S, Ozarslandan A, Colak A, Ay T. Methyl bromide alternatives for controlling Fusarium wilt and root knot nematodes in tomatoes in Turkey. Acta Horticulturae. 2009;808:381-6.spa
dc.relation.referencesXie H, Yan D, Mao L, Wang Q, Li Y, Ouyang C, et al. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community. PloS one. 2015;10(2):e0117980-e.spa
dc.relation.referencesRosskopf EN, Chellemi DO, Kokalis-Burelle N, Church GT. Alternatives to methyl bromide: A Florida perspective. Plant Health Progress. 2005;6(1):19.spa
dc.relation.referencesIoannou N. Soil solarization as a substitute for methyl bromide fumigation in greenhouse tomato production in Cyprus. Phytoparasitica. 2000;28(3):248-56.spa
dc.relation.referencesPaudel BR, Di Gioia F, Zhao X, Ozores-Hampton M, Hong JC, Kokalis-Burelle N, et al. Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renewable Agriculture and Food Systems. 2020;35(3):274-85.spa
dc.relation.referencesAjilogba C, Babalola O. Integrated Management Strategies for Tomato Fusarium Wilt. Biocontrol science. 2013;18:117-27.spa
dc.relation.referencesCary LR, Frank JL. Grafting to Manage Soilborne Diseases in Heirloom Tomato Production. HortScience horts. 2008;43(7):2104-11.spa
dc.relation.referencesSyed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018;267:102-11.spa
dc.relation.referencesCha J-Y, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. The ISME Journal. 2016;10(1):119-29.spa
dc.relation.referencesKöhl J, Kolnaar R, Ravensberg WJ. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. 2019;10(845).spa
dc.relation.referencesOrozco-Mosqueda MdC, Rocha-Granados MdC, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research. 2018;208:25-31.spa
dc.relation.referencesWallenstein MD. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere. 2017;3:230-2.spa
dc.relation.referencesKoch E, Ole Becker J, Berg G, Hauschild R, Jehle J, Köhl J, et al. Biocontrol of plant diseases is not an unsafe technology! Journal of Plant Diseases and Protection. 2018;125(2):121-5.spa
dc.relation.referencesHeimpel GE, Mills NJ. Biological control: Cambridge University Press; 2017.spa
dc.relation.referencesFravel D. Commercialization and implementation of biocontrol. Annu Rev Phytopathol. 2005;43:337-59.spa
dc.relation.referencesBrodeur J, Abram PK, Heimpel GE, Messing RH. Trends in biological control: public interest, international networking and research direction. BioControl. 2018;63(1):11-26.spa
dc.relation.referencesKöhl J, Postma J, Nicot P, Ruocco M, Blum B. Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control. 2011;57(1):1-12.spa
dc.relation.referencesGardener BBM, Fravel DRJPHP. Biological control of plant pathogens: research, commercialization, and application in the USA. 2002;3(1):17.spa
dc.relation.referencesEl-Mohamedy RSR. Efficiency of different application methods of biocontrol agents and biocides in control of Fusarium root rot on some citrus rootstocks. Archives of Phytopathology Plant Protection. 2009;42(9):819-28.spa
dc.relation.referencesHinarejos E, Castellano M, Rodrigo I, Bellés JM, Conejero V, López-Gresa MP, et al. Bacillus subtilis IAB/BS03 as a potential biological control agent. European Journal of Plant Pathology. 2016;146(3):597-608.spa
dc.relation.referencesJang Y, Kim SG, Kim YH. Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathol J. 2011;27(333):e41.spa
dc.relation.referencesWei Z, Huang J, Yang T, Jousset A, Xu Y, Shen Q, et al. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J Appl Ecol. 2017;54(5):1440-8.spa
dc.relation.referencesJacobsen BJ, Zidack NK, Larson BJ. The Role of Bacillus-Based Biological Control Agents in Integrated Pest Management Systems: Plant Diseases. Phytopathology®. 2004;94(11):1272-5.spa
dc.relation.referencesSchisler DA, Slininger PJ, Behle RW, Jackson MA. Formulation of Bacillus spp. for Biological Control of Plant Diseases. Phytopathology®. 2004;94(11):1267-71.spa
dc.relation.referencesFira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology. 2018;285:44-55.spa
dc.relation.referencesRybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil. 2016;405(1):125-40.spa
dc.relation.referencesGrady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016;15(1):203.spa
dc.relation.referencesLaw JW-F, Ser H-L, Khan TM, Chuah L-H, Pusparajah P, Chan K-G, et al. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae). 2017;8(3).spa
dc.relation.referencesSchrey SD, Tarkka MT. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek. 2008;94(1):11-9.spa
dc.relation.referencesPanpatte DG, Jhala YK, Shelat HN, Vyas RV. Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. Microbial inoculants in sustainable agricultural productivity: Springer; 2016. p. 257-70.spa
dc.relation.referencesMark GL, Morrissey JP, Higgins P, O'Gara F. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiology Ecology. 2006;56(2):167-77.spa
dc.relation.referencesVerma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal. 2007;37(1):1-20.spa
dc.relation.referencesSharma A. Fungi as Biological Control Agents. In: Giri B, Prasad R, Wu Q, Varma A, editors. Biofertilizers for Sustainable Agriculture and Environment: Springer; 2019. p. 395-411.spa
dc.relation.referencesDatnoff LE, Nemec S, Pernezny K. Biological Control of Fusarium Crown and Root Rot of Tomato in Florida Using Trichoderma harzianum and Glomus intraradices. Biol Control. 1995;5(3):427-31.spa
dc.relation.referencesOmar I, O'Neill TM, Rossall S. Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol. 2006;55(1):92-9.spa
dc.relation.referencesFravel DR, Deahl KL, Stommel JR. Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biol Control. 2005;34(2):165-9spa
dc.relation.referencesSomeya N, Tsuchiya K, Yoshida T, Noguchi MT, Sawada H. Combined use of the biocontrol bacterium Pseudomonas fluorescens strain LRB3W1 with reduced fungicide application for the control of tomato Fusarium wilt. Biocontrol science. 2006;11(2):75-80.spa
dc.relation.referencesMinuto A, Spadaro D, Garibaldi A, Gullino ML. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot. 2006;25(5):468-75.spa
dc.relation.referencesJayaraj J, Radhakrishnan NV. Enhanced activity of introduced biocontrol agents in solarized soils and its implications on the integrated control of tomato damping-off caused by Pythium spp. Plant Soil. 2008;304(1):189-97.spa
dc.relation.referencesSpadaro D, Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 2005;24(7):601-13.spa
dc.relation.referencesDukare AS, Prasanna R, Chandra Dubey S, Nain L, Chaudhary V, Singh R, et al. Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot. 2011;30(4):436-42.spa
dc.relation.referencesJi P, Wilson M. Enhancement of Population Size of a Biological Control Agent and Efficacy in Control of Bacterial Speck of Tomato through Salicylate and Ammonium Sulfate Amendments. Applied and Environmental Microbiology. 2003;69(2):1290.spa
dc.relation.referencesArseneault T, Filion M. Biocontrol through antibiosis: exploring the role played by subinhibitory concentrations of antibiotics in soil and their impact on plant pathogens. Canadian Journal of Plant Pathology. 2017;39(3):267-74.spa
dc.relation.referencesNguvo KJ, Gao X. Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. Journal of Plant Diseases and Protection. 2019;126(3):177-90.spa
dc.relation.referencesBakker PAHM, Ran LX, Pieterse CMJ, van Loon LC. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Canadian Journal of Plant Pathology. 2003;25(1):5-9.spa
dc.relation.referencesBais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiology. 2004;134(1):307.spa
dc.relation.referencesSegarra G, Casanova E, Avilés M, Trillas I. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial ecology. 2010;59(1):141-9.spa
dc.relation.referencesBardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, et al. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci. 2015;6(566).spa
dc.relation.referencesLiu P, Luo L, Long C-a. Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biol Control. 2013;67(2):157-62.spa
dc.relation.referencesElad Y, Chet I. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology. 1987;77(2):190-5.spa
dc.relation.referencesVero S, Mondino P, Burgueño J, Soubes M, Wisniewski M. Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology. 2002;26(1):91-8.spa
dc.relation.referencesBencheqroun SK, Bajji M, Massart S, Labhilili M, Jaafari SE, Jijakli MH. In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology and Technology. 2007;46(2):128-35.spa
dc.relation.referencesSayyed R, Chincholkar S, Reddy M, Gangurde N, Patel P. Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: D. M, editor. Bacteria in Agrobiology: Disease Management. Berlin, Heidelberg: Springer; 2013. p. 449-71.spa
dc.relation.referencesMoretti M, Gilardi G, Gullino ML, Garibaldi A. Biological control potential of Achromobacter xylosoxydans for suppressing Fusarium wilt of tomato. J Int J Bot. 2008;4(4):369-75.spa
dc.relation.referencesGoudjal Y, Zamoum M, Sabaou N, Mathieu F, Zitouni A. Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Science and Technology. 2016;26(12):1691-705.spa
dc.relation.referencesDhouib H, Zouari I, Ben Abdallah D, Belbahri L, Taktak W, Triki MA, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control. 2019;139:104092.spa
dc.relation.referencesRojas-Rojas FU, Salazar-Gómez A, Vargas-Díaz ME, Vásquez-Murrieta MS, Hirsch AM, De Mot R, et al. Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. 2018;164(9):1072-86.spa
dc.relation.referencesGautam S, Chauhan A, Sharma R, Sehgal R, Shirkot CK. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microbial Pathogenesis. 2019;130:196-203.spa
dc.relation.referencesPandin C, Le Coq D, Canette A, Aymerich S, Briandet R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microbial Biotechnology. 2017;10(4):719-34.spa
dc.relation.referencesHaggag WM, Timmusk S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol. 2008;104(4):961-9.spa
dc.relation.referencesDi Francesco A, Ugolini L, D'Aquino S, Pagnotta E, Mari M. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space. International Journal of Food Microbiology. 2017;248:32-8.spa
dc.relation.referencesTan S, Gu Y, Yang C, Dong Y, Mei X, Shen Q, et al. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology Fertility of Soils. 2016;52(3):341-51.spa
dc.relation.referencesDefoirdt T, Boon N, Bossier P. Can Bacteria Evolve Resistance to Quorum Sensing Disruption? PLOS Pathogens. 2010;6(7):e1000989.spa
dc.relation.referencesRodríguez M, Torres M, Blanco L, Béjar V, Sampedro I, Llamas I. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Scientific Reports. 2020;10(1):4121.spa
dc.relation.referencesFetzner S. Quorum quenching enzymes. Journal of biotechnology. 2015;201:2-14.spa
dc.relation.referencesGutiérrez-Pacheco MM, Bernal-Mercado AT, Vázquez-Armenta FJ, Mart ínez-Tellez MA, González-Aguilar GA, Lizardi-Mendoza J, et al. Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiological and Molecular Plant Pathology. 2019;106:281-91.spa
dc.relation.referencesvon Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria. Annual review of phytopathology. 2003;41(1):455-82.spa
dc.relation.referencesHelman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. 2015;16(3):316-29.spa
dc.relation.referencesKatoch S, Kumari N, Salwan R, Sharma V, Sharma PN. Recent developments in social network disruption approaches to manage bacterial plant diseases. Biol Control. 2020;150:104376.spa
dc.relation.referencesKumar Jayanna S, Umesha S. Quorum quenching activity of rhizosphere bacteria against Ralstonia solanacearum. Rhizosphere. 2017;4:22-4.spa
dc.relation.referencesFan X, Ye T, Li Q, Bhatt P, Zhang L, Chen S. Potential of a Quorum Quenching Bacteria Isolate Ochrobactrum intermedium D-2 Against Soft Rot Pathogen Pectobacterium carotovorum subsp. carotovorum. Front Microbiol. 2020;11(898).spa
dc.relation.referencesPieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology. 2014;52(1):347-75.spa
dc.relation.referencesTakahashi H, Nakaho K, Ishihara T, Ando S, Wada T, Kanayama Y, et al. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum. Plant Cell Reports. 2014;33(1):99-110.spa
dc.relation.referencesNawrocka J, Małolepsza U. Diversity in plant systemic resistance induced by Trichoderma. Biol Control. 2013;67(2):149-56.spa
dc.relation.referencesFatima S, Anjum T. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato. Front Plant Sci. 2017;8(848).spa
dc.relation.referencesChoudhary DK, Johri BN. Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research. 2009;164(5):493-513.spa
dc.relation.referencesCouillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology. 2009;48(5):505-12.spa
dc.relation.referencesTakishita Y, Charron J-B, Smith DLJFim. Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. 2018;9:2119.spa
dc.relation.referencesBenítez T, Rincón AM, Limón MC, Codon AC. Biocontrol mechanisms of Trichoderma strains. International microbiology. 2004;7(4):249-60.spa
dc.relation.referencesOmann M, Zeilinger S. How a Mycoparasite Employs G-Protein Signaling: Using the Example of Trichoderma. Journal of Signal Transduction. 2010;2010:123126.spa
dc.relation.referencesMonteiro VN, do Nascimento Silva R, Steindorff AS, Costa FT, Noronha EF, Ricart CAO, et al. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Current microbiology. 2010;61(4):298-305.spa
dc.relation.referencesSteindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ, Jr., Ulhoa CJ, et al. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics. 2014;15:204-.spa
dc.relation.referencesOjha S, Chatterjee NC. Mycoparasitism of Trichoderma spp. in biocontrol of fusarial wilt of tomato. Archives of Phytopathology and Plant Protection. 2011;44(8):771-82.spa
dc.relation.referencesEl Komy MH, Saleh AA, Eranthodi A, Molan YY. Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. Plant Pathol J. 2015;31(1):50-60.spa
dc.relation.referencesIida Y, Ikeda K, Sakai H, Nakagawa H, Nishi O, Higashi Y. Evaluation of the potential biocontrol activity of Dicyma pulvinata against Cladosporium fulvum, the causal agent of tomato leaf mould. Plant Pathol. 2018;67(9):1883-90.spa
dc.relation.referencesRaaijmakers JM, Vlami M, de Souza JT. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek. 2002;81(1):537.spa
dc.relation.referencesThomashow L, Bonsall R, Weller D. Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst C, Knudsen G, McInerney M, Stetzenbach L, Walter M, editors. Manual of Environmental Microbiology. Washington, DC: ASM Press; 1997. p. 493–99.spa
dc.relation.referencesRaaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol. 2012;50:403-24.spa
dc.relation.referencesOkada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017;41(1):19-33.spa
dc.relation.referencesPishchany G, Kolter R. On the possible ecological roles of antimicrobials. Molecular Microbiology. 2020;113(3):580-7.spa
dc.relation.referencesCochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Medicinal Research Reviews. 2016;36(1):4-31.spa
dc.relation.referencesMavrodi DV, Blankenfeldt W, Thomashow LS. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol. 2006;44:417-45.spa
dc.relation.referencesFickers P. Antibiotic compounds from Bacillus: why are they so amazing. American Journal of Biochemistry Biotechnology. 2012(8):38-43.spa
dc.relation.referencesChater KF. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci. 2006;361(1469):761-8.spa
dc.relation.referencesDanaei M, Baghizadeh A, Pourseyedi S, Amini J, Yaghoobi MM. Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Eur J Exp Biol. 2014;4(1):334-9.spa
dc.relation.referencesDeryabin DG, Inchagova KS. Inhibitory effect of aminoglycosides and tetracyclines on quorum sensing in Chromobacterium violaceum. Microbiology. 2018;87(1):1-8.spa
dc.relation.referencesOlivain C, Humbert C, Nahalkova J, Fatehi J, L'Haridon F, Alabouvette C. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol. 2006;72(2):1523-31.spa
dc.relation.referencesAimé S, Alabouvette C, Steinberg C, Olivain C. The Endophytic Strain Fusarium oxysporum Fo47: A Good Candidate for Priming the Defense Responses in Tomato Roots. Molecular Plant-Microbe Interactions. 2013;26(8):918-26.spa
dc.relation.referencesConstantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. 2019;10(979).spa
dc.relation.referencesShcherbakova LA, Odintsova TI, Stakheev AA, Fravel DR, Zavriev SK. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato. Front Plant Sci. 2016;6(1207).spa
dc.relation.referencesSingh P, Singh J, Ray S, Rajput RS, Vaishnav A, Singh RK, et al. Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research. 2020;237:126482.spa
dc.relation.referencesJangir M, Pathak R, Sharma S, Sharma S. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control. 2018;123:60-70.spa
dc.relation.referencesPatel S, Saraf M. Interaction of root colonizing biocontrol agents demonstrates the antagonistic effect against Fusarium oxysporum f. sp. lycopersici on tomato. European Journal of Plant Pathology. 2017;149(2):425-33.spa
dc.relation.referencesWan T, Zhao H, Wang W. Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. Journal of Phytopathology. 2018;166(5):324-32.spa
dc.relation.referencesElanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, et al. Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology. 2018;103:92-101.spa
dc.relation.referencesKamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol. 2005;7(11):1809-17.spa
dc.relation.referencesArya N, Rana A, Rajwar A, Sahgal M, Sharma AK. Biocontrol Efficacy of Siderophore Producing Indigenous Pseudomonas Strains Against Fusarium Wilt in Tomato. National Academy Science Letters. 2018;41(3):133-6.spa
dc.relation.referencesNaing KW, Anees M, Kim SJ, Nam Y, Kim YC, Kim KY. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Annals of Microbiology. 2014;64(1):55-63.spa
dc.relation.referencesNaing KW, Nguyen XH, Anees M, Lee YS, Kim YC, Kim SJ, et al. Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38. World J Microbiol Biotechnol. 2015;31(1):165-74.spa
dc.relation.referencesKim YH, Park SK, Hur JY, Kim YC. Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73. Plant Pathol J. 2017;33(3):318-28.spa
dc.relation.referencesLee YS, Nguyen XH, Cho JY, Moon JH, Kim KY. Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Microb Pathog. 2017;106:139-45.spa
dc.relation.referencesMei L, Liang Y, Zhang L, Wang Y, Guo Y. Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Annals of Applied Biology. 2014;165(2):270-9.spa
dc.relation.referencesAl-Askar AA, Baka ZA, Rashad YM, Ghoneem KM, Abdulkhair WM, Hafez EE, et al. Evaluation of Streptomyces griseorubens E44G for the biocontrol of Fusarium oxysporum f. sp. lycopersici: ultrastructural and cytochemical investigations. Annals of Microbiology. 2015;65(4):1815-24spa
dc.relation.referencesRashad YM, Al-Askar AA, Ghoneem KM, Saber WIA, Hafez EE. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica. 2017;45(2):227-37spa
dc.relation.referencesAbbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms. 2019;10(1505).spa
dc.relation.referencesAntoniou A, Tsolakidou M-D, Stringlis IA, Pantelides IS. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Front Plant Sci. 2017;8(2022).spa
dc.relation.referencesZhao F, Zhang Y, Dong W, Zhang Y, Zhang G, Sun Z, et al. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil. 2019;440(1):491-505.spa
dc.relation.referencesDe Corato U, Patruno L, Avella N, Salimbeni R, Lacolla G, Cucci G, et al. Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Applied Soil Ecology. 2020;154:103601.spa
dc.relation.referencesDe Cal A, Melgarejo P. Repeated applications of Penicillium oxalicum prolongs biocontrol of fusarium wilt of tomato plants. European journal of plant pathology. 2001;107(8):805-11.spa
dc.relation.referencesDubey SC, Tripathi A, Tak R, Devi SI. Evaluation of bio-formulations of fungal and bacterial biological control agents in combination with fungicide in different mode of application for integrated management of tomato wilt. Indian Phytopathology. 2020.spa
dc.relation.referencesZhang J, Chen J, Jia R, Ma Q, Zong Z, Wang Y. Suppression of plant wilt diseases by nonpathogenic Fusarium oxysporum Fo47 combined with actinomycete strains. Biocontrol Science and Technology. 2018;28(6):562-73.spa
dc.relation.referencesMwangi MW, Muiru WM, Narla RD, Kimenju JW, Kariuki GM. Management of Fusarium oxysporum f. sp. lycopersici and root-knot nematode disease complex in tomato by use of antagonistic fungi, plant resistance and neem. Biocontrol Science and Technology. 2019;29(3):229-38.spa
dc.relation.referencesMazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. The ISME Journal. 2009;3(8):977-91.spa
dc.relation.referencesKinkel LL, Schlatter DC, Bakker MG, Arenz BE. Streptomyces competition and co-evolution in relation to plant disease suppression. Research in microbiology. 2012;163(8):490-9.spa
dc.relation.referencesZhao M, Yuan J, Zhang R, Dong M, Deng X, Zhu C, et al. Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil. Applied Soil Ecology. 2018;132:83-90.spa
dc.relation.referencesFrederiks C, Wesseler JHH. A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Management Science. 2019;75(1):87-103spa
dc.relation.referencesICA. Productos y bioinsumos registrados. Diciembre 2019. In: Agricultura Md, editor. Bogotá, Colombia: Intituto Colombiano Agropecuario; 2019.spa
dc.relation.referencesWeert Sd, Bloemberg GV. Rhizosphere competence and the role of root colonization in biocontrol. . In: Gnanamanickam SS, editor. Plant-Associated Bacteria Dordrecht: Springer; 2007.spa
dc.relation.referencesHu HQ, Li XS, He H. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control. 2010;54(3):359-65.spa
dc.relation.referencesRadovanović N, Milutinović M, Mihajlovski K, Jović J, Nastasijević B, Rajilić-Stojanović M, et al. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Microbial Pathogenesis. 2018;120:71-8.spa
dc.relation.referencesPatel KB, Thakker JN. Growth promotion and biocontrol activity of Nocardiopsis dassonvillei strain YM12: an isolate from coastal agricultural land of Khambhat. Vegetos. 2019;32(4):571-82.spa
dc.relation.referencesRaymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA. Screening for novel biocontrol agents applicable in plant disease management – A review. Biol Control. 2020;144:104240.spa
dc.relation.referencesDeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, et al. Community genomics among stratified microbial assemblages in the ocean's interior. Science. 2006;311(5760):496-503.spa
dc.relation.referencesSimon C, Daniel R. Metagenomic analyses: past and future trends. Applied and environmental microbiology. 2011;77(4):1153-61.spa
dc.relation.referencesFenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria. Nature chemical biology. 2006;2(12):666-73.spa
dc.relation.referencesPenesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Marine drugs. 2010;8(3):438-59.spa
dc.relation.referencesEgan S, Thomas T, Kjelleberg S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current opinion in microbiology. 2008;11(3):219-25.spa
dc.relation.referencesSmith DC, Simon M, Alldredge AL, Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 1992;359(6391):139-42.spa
dc.relation.referencesPeixoto RS, Rosado PM, de Assis Leite DC, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Frontiers in Microbiology. 2017;8.spa
dc.relation.referencesRosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology. 2007;5(5):355-62spa
dc.relation.referencesHarder T. Marine epibiosis: concepts, ecological consequences and host defence. 2008.spa
dc.relation.referencesSharp KH, Eam B, Faulkner DJ, Haygood MG. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and Environmental Microbiology. 2007;73(2):622-9.spa
dc.relation.referencesOrtega-Morales BO, Chan-Bacab MJ, De la Rosa SdC, Camacho-Chab JC. Valuable processes and products from marine intertidal microbial communities. Current opinion in biotechnology. 2010;21(3):346-52.spa
dc.relation.referencesCarroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Natural Product Reports. 2020;37(2):175-223spa
dc.relation.referencesEl-Hossary EM, Cheng C, Hamed MM, Hamed ANE-S, Ohlsen K, Hentschel U, et al. Antifungal potential of marine natural products. European Journal of Medicinal Chemistry. 2016.spa
dc.relation.referencesLara-Capistran L, Zulueta-Rodriguez R, Castellanos-Cervantes T, Reyes-Perez JJ, Preciado-Rangel P, Hernandez-Montiel LG. Efficiency of Marine Bacteria and Yeasts on the Biocontrol Activity of Pythium ultimum in Ancho-Type Pepper Seedlings. Agronomy. 2020;10(3):408.spa
dc.relation.referencesTareq FS, Hasan CM, Lee H-S, Lee Y-J, Lee JS, Surovy MZ, et al. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsici from a marine-derived bacterium Bacillus sp. 109GGC020. Bioorganic & medicinal chemistry letters. 2015;25(16):3325-9.spa
dc.relation.referencesTareq FS, Kim JH, Lee MA, Lee H-S, Lee J-S, Lee Y-J, et al. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions. Journal of agricultural and food chemistry. 2013;61(14):3428-34.spa
dc.relation.referencesXue C, Tian L, Xu M, Deng Z, Lin W. A New 24-membered Lactone and a New Polyene [delta]-Lactone from the Marine Bacterium Bacillus marinus. Journal of antibiotics. 2008;61(11):668.spa
dc.relation.referencesElkahoui S, Djébali N, Tabbene O, Hadjbrahim A, Mnasri B, Mhamdi R, et al. Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. African Journal of Biotechnology. 2012;11(18):4196-201.spa
dc.relation.referencesKong Q, Shan S, Liu Q, Wang X, Yu F. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International journal of food microbiology. 2010;139(1):31-5.spa
dc.relation.referencesDhinakaran A, Rajasekaran R, Jayalakshmi S. Antiphytopathogenic activity of bacterial protein of a marine Corynebacterium sp. isolated from Mandapam, Gulf of Mannar. Journal of Biopesticides. 2012;5(17):2012.spa
dc.relation.referencesEl-Gendy MM, Hawas UW, Jaspars M. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. Journal of Antibiotics. 2008;61(6):379.spa
dc.relation.referencesKathiresan K, Balagurunathan R, Selvam MM. Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Indian journal of Biotechnology. 2005;4(2):271-6.spa
dc.relation.referencesJianyou L, Jianrong X, Yongheng C. Isolation and identification of two marine-derived Streptomyces from marine mud of coast and offshore Zhuhai, and bioactive potential for plant pathogenic fungi. African Journal of Biotechnology. 2011;10(56):11855-60.spa
dc.relation.referencesRivas-Garcia T, Murillo-Amador B, Nieto-Garibay A, Rincon-Enriquez G, Chiquito-Contreras RG, Hernandez-Montiel LG. Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryomyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Biology and Technology. 2019;151:61-7.spa
dc.relation.referencesManwar A, Khandelwal S, Chaudhari B, Meyer J, Chincholkar S. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied biochemistry and biotechnology. 2004;118(1-3):243-51.spa
dc.relation.referencesJayaprakashvel M, Sharmika N, Vinothini S, Muthezhilan MVR, Hussain AJ. Biological Control of Sheath Blight of Rice using Marine Associated Fluorescent pseudomonads. 2014.spa
dc.relation.referencesHuang C-Y, Ho C-H, Lin C-J, Lo C-C. Exposure effect of fungicide kasugamycin on bacterial community in natural river sediment. Journal of Environmental Science and Health, Part B. 2010;45(5):485-91.spa
dc.relation.referencesLeal MC, Sheridan C, Osinga R, Dionísio G, Rocha RJM, Silva B, et al. Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Marine drugs. 2014;12(7):3929-52.spa
dc.relation.referencesPiel J. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Current medicinal chemistry. 2006;13(1):39-50.spa
dc.relation.referencesPiel J. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annual review of microbiology. 2011;65:431-53.spa
dc.relation.referencesRadjasa OK, Vaske YM, Navarro G, Vervoort HC, Tenney K, Linington RG, et al. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorganic & medicinal chemistry. 2011;19(22):6658-74.spa
dc.relation.referencesMayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, et al. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in pharmacological sciences. 2010;31(6):255-65.spa
dc.relation.referencesWilkinson B, Micklefield J. Mining and engineering natural-product biosynthetic pathways. Nature chemical biology. 2007;3(7):379-86.spa
dc.relation.referencesDevi N, Balakrishnan K, Gopal R, Padmavathy S. Bacillus clausii MB9 from the east coast regions of India: Isolation, biochemical characterization and antimicrobial potentials. Current Science (00113891). 2008;95(5).spa
dc.relation.referencesAllwood JW, Ellis DI, Goodacre R. Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant. 2008;132(2):117-35.spa
dc.relation.referencesYandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol. 2015;31(8):1217-25.spa
dc.relation.referencesTabares P, Pimentel-Elardo SM, Schirmeister T, Hunig T, Hentschel U. Anti-protease and immunomodulatory activities of bacteria associated with Caribbean sponges. Mar Biotechnol (NY). 2011;13(5):883-92.spa
dc.relation.referencesQuintero M, Velásquez A, Jutinico LM, Jiménez-Vergara E, Blandón LM, Martinez K, et al. Bioprospecting from marine coastal sediments of Colombian Caribbean: screening and study of antimicrobial activity. Journal of Applied Microbiology. 2018;125(3):753-65.spa
dc.relation.referencesBlandón L, Alvarado-Campo KL, Patiño AD, Jiménez-Vergara E, Quintero M, Montoya-Giraldo M, et al. Polyhydroxyalkanoate Production from Two Species of Marine Bacteria: A Comparative Study. Journal of Polymers and the Environment. 2020;28(9):2324-34.spa
dc.relation.referencesMartínez-Buitrago PA, Ramos FA, Castellanos L. Binary co-culture selection from marine-derived microorganisms for differential production of specialized metabolites. J Química Nova. 2019;42(7):713-9.spa
dc.relation.referencesRomero-Otero A. Búsqueda de compuestos con actividad antimicrobiana a partir de hongos aislados de ambientes marinos. Fase I. Bogotá, Colombia: Universidad Nacional de Colombia 2016.spa
dc.relation.referencesCárdenas-Martinez JD. Evaluación de la producción metabolica de un aislamiento bacteriano obtenido de ambientes marinos para el control de fitopatógenos. Bogotá D.C, Colombia: Universidad Nacional de Colombia; 2019.spa
dc.relation.referencesBetancur LA, Forero AM, Vinchira-Villarraga DM, Cárdenas-Martinez JD, Romero-Otero A, Chagas FO, et al. NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiological research. 2020;239:126507.spa
dc.relation.referencesDeketelaere S, Tyvaert L, Franca SC, Hofte M. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt. Front Microbiol. 2017;8:1186.spa
dc.relation.referencesKarthika S, Varghese S, Jisha MS. Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech. 2020;10(7):320spa
dc.relation.referencesMahenthiralingam E, Baldwin A, Dowson CG. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. Journal of Applied Microbiology. 2008;104(6):1539-51.spa
dc.relation.referencesHandelsman J. Future trends in biocontrol. In: Gnanamanickam SS, editor. Biological control of crop diseases. New York: Marcel Dekker; 2002. p. 443-8.spa
dc.relation.referencesDeising HB, Gase I, Kubo Y. The unpredictable risk imposed by microbial secondary metabolites: how safe is biological control of plant diseases? Journal of Plant Diseases and Protection. 2017;124(5):413-9.spa
dc.relation.referencesBalouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9.spa
dc.relation.referencesDas P, Chatterjee S, Behera BK, Dangar TK, Das BK, Mohapatra T. Isolation and characterization of marine bacteria from East Coast of India: functional screening for salt stress tolerance. Heliyon. 2019;5(6):e01869.spa
dc.relation.referencesRöthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Molecular Ecology. 2016;25(6):1308-23.spa
dc.relation.referencesChiquito-Contreras RG, Murillo-Amador B, Carmona-Hernandez S, Chiquito-Contreras CJ, Hernandez-Montiel LG. Effect of Marine Bacteria and Ulvan on the Activity of Antioxidant Defense Enzymes and the Bio-Protection of Papaya Fruit against Colletotrichum gloeosporioides. Antioxidants (Basel). 2019;8(12).spa
dc.relation.referencesWu S, Liu G, Zhou S, Sha Z, Sun C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar Drugs. 2019;17(4).spa
dc.relation.referencesZhang L, Sun C. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Applied and Environmental Microbiology. 2018;84(18):e00445-18.spa
dc.relation.referencesChakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T. Inhibitory Effects of Linear Lipopeptides From a Marine Bacillus subtilis on the Wheat Blast Fungus Magnaporthe oryzae Triticum. Front Microbiol. 2020;11(665).spa
dc.relation.referencesGurjar G, Barve M, Giri A, Gupta V. Identification of Indian pathogenic races of Fusarium oxysporum f. sp. ciceris with gene specific, ITS and random markers. Mycologia. 2009;101(4):484-95.spa
dc.relation.referencesCowan ST, Steel KJ. Cowan and Steel's Manual for the Identification of Medical Bacteria. 3 ed. Cambridge: Cambridge University Press; 1993.spa
dc.relation.referencesPierce CG, Uppuluri P, Tristan AR, Wormley FL, Jr., Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494-500.spa
dc.relation.referencesGoswami D, Parmar S, Vaghela H, Dhandhukia P, Thakker JN. Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). J Cogent Food Agriculture. 2015;1(1):1000714.spa
dc.relation.referencesBudi S, Van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. J Applied Soil Ecology. 2000;15(2):191-9.spa
dc.relation.referencesSingh A, Mehta G, Chhatpar H. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Letters in applied microbiology. 2009;49(6):708-14.spa
dc.relation.referencesClarke JD. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. 2009;2009(3):pdb prot5177.spa
dc.relation.referencesAw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM. Newly Isolated Paenibacillus tyrfis sp. nov., from Malaysian Tropical Peat Swamp Soil with Broad Spectrum Antimicrobial Activity. Front Microbiol. 2016;7:219.spa
dc.relation.referencesCole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(Database issue):D633-42.spa
dc.relation.referencesKim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62(Pt 3):716-21.spa
dc.relation.referencesKumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870-4.spa
dc.relation.referencesBuijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, et al. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep. 2019;36(9):1333-50.spa
dc.relation.referencesCarroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2019;36(1):122-73.spa
dc.relation.referencesPetersen L-E, Kellermann MY, Schupp PJ. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In: Jungblut S, Liebich V, Bode-Dalby M, editors. YOUMARES 9 - The Oceans: Our Research, Our Future: Proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Cham: Springer International Publishing; 2020. p. 159-80.spa
dc.relation.referencesXue Q-Y, Ding G-C, Li S-M, Yang Y, Lan C-Z, Guo J-H, et al. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains – an improved strategy for selecting biocontrol agents. Applied Microbiology and Biotechnology. 2013;97(3):1361-71.spa
dc.relation.referencesYu Y-Y, Jiang C-H, Wang C, Chen L-J, Li H-Y, Xu Q, et al. An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiological Research. 2017;203:1-9spa
dc.relation.referencesAlgam SAE, Xie G, Li B, Yu S, Su T, Larsen J. Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology. 2010;92(3):593-600.spa
dc.relation.referencesSon SH, Khan Z, Kim SG, Kim YH. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J Appl Microbiol. 2009;107(2):524-32.spa
dc.relation.referencesXu SJ, Kim BS. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology. 2014;42(2):158-66.spa
dc.relation.referencesJeon SW, Naing KW, Lee YS, Nguyen XH, Kim SJ, Kim KY. Promotion of growth and biocontrol of brown patch disease by inoculation of Paenibacillus ehimensis KWN38 in bentgrass. Horticulture, Environment, and Biotechnology. 2015;56(2):263-71.spa
dc.relation.referencesJeong H, Choi SK, Ryu CM, Park SH. Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health. Front Microbiol. 2019;10:467.spa
dc.relation.referencesShi L, Du N, Shu S, Sun J, Li S, Guo S. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci Rep. 2017;7:41234.spa
dc.relation.referencesDas SN, Dutta S, Kondreddy A, Chilukoti N, Pullabhotla SVSRN, Vadlamudi S, et al. Plant Growth-Promoting Chitinolytic Paenibacillus elgii Responds Positively to Tobacco Root Exudates. Journal of Plant Growth Regulation. 2010;29(4):409-18.spa
dc.relation.referencesAktuganov G, Jokela J, Kivela H, Khalikova E, Melentjev A, Galimzianova N, et al. Isolation and identification of cyclic lipopeptides from Paenibacillus ehimensis, strain IB-X-b. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;973C:9-16.spa
dc.relation.referencesWu XC, Shen XB, Ding R, Qian CD, Fang HH, Li O. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol Lett. 2010;310(1):32-8.spa
dc.relation.referencesAktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production. Can J Microbiol. 2008;54(7):577-87.spa
dc.relation.referencesSeo DJ, Lee YS, Kim KY, Jung WJ. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb Pathog. 2016;96:10-4.spa
dc.relation.referencesKim D-S, Rae C-Y, Chun S-J, Kim D-H, Choi S-W, Choi K-H. Paenibacillus elgii SD17 as a biocontrol agent against soil-borne turf diseases. J The Plant Pathology Journal. 2005;21(4):328-33.spa
dc.relation.referencesKim J, Le KD, Yu NH, Kim JI, Kim JC, Lee CW. Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi. Pestic Biochem Physiol. 2020;163:154-63.spa
dc.relation.referencesVater J, Herfort S, Doellinger J, Weydmann M, Dietel K, Faetkeb S, et al. Fusaricidins from Paenibacillus polymyxa M-1, a family of lipohexapeptides of unusual complexity—a mass spectrometric study. J Mass Spectrom. 2017;52:7-15.spa
dc.relation.referencesHollensteiner J, Wemheuer F, Harting R, Kolarzyk AM, Diaz Valerio SM, Poehlein A, et al. Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species. Front Microbiol. 2016;7:2171.spa
dc.relation.referencesMorris JJ. What is the hologenome concept of evolution? F1000Res. 2018;7:F1000 Faculty Rev-664.spa
dc.relation.referencesCarrier TJ, Reitzel AM. The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Front Microbiol. 2017;8:802.spa
dc.relation.referencesOffret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs. 2016;14(7).spa
dc.relation.referencesEngel S, Jensen PR, Fenical W. Chemical ecology of marine microbial defense. J Chem Ecol. 2002;28(10):1971-85.spa
dc.relation.referencesTianero MD, Balaich JN, Donia MS. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat Microbiol. 2019;4(7):1149-59.spa
dc.relation.referencesRojas EC, Jensen B, Jørgensen HJL, Latz MAC, Esteban P, Ding Y, et al. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control. 2020;144:104222.spa
dc.relation.referencesWeng J, Wang Y, Li J, Shen Q, Zhang R. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl Microbiol Biotechnol. 2013;97(19):8823-30.spa
dc.relation.referencesBarret M, Morrissey JP, O’Gara F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils. 2011;47(7):729.spa
dc.relation.referencesKravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tikhonovich IA. Root Exudates of Tomato Plants and Their Effect on the Growth and Antifungal Activity of Pseudomonas Strains. Microbiology. 2003;72(1):37-41.spa
dc.relation.referencesCanarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front Plant Sci. 2019;10:157.spa
dc.relation.referencesVenturi V, Keel C. Signaling in the Rhizosphere. Trends Plant Sci. 2016;21(3):187-98.spa
dc.relation.referencesRaguso RA, Agrawal AA, Douglas AE, Jander G, Kessler A, Poveda K, et al. The raison d'etre of chemical ecology. Ecology. 2015;96(3):617-30.spa
dc.relation.referencesRudrappa T, Czymmek KJ, Pare PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 2008;148(3):1547-56.spa
dc.relation.referencesTan S, Yang C, Mei X, Shen S, Raza W, Shen Q, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology. 2013;64:15-22.spa
dc.relation.referencesBi S, Sourjik V. Stimulus sensing and signal processing in bacterial chemotaxis. Current opinion in microbiology. 2018;45:22-9spa
dc.relation.referencesScharf BE, Hynes MF, Alexandre GM. Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Mol Biol. 2016;90(6):549-59.spa
dc.relation.referencesChen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15(3):848-64.spa
dc.relation.referencesAydi Ben Abdallah R, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control. 2016;97:80-8.spa
dc.relation.referencesDebbi A, Boureghda H, Monte E, Hermosa R. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp. Front Microbiol. 2018;9(282).spa
dc.relation.referencesAkhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016;406(1):425-40.spa
dc.relation.referencesJelinski NA, Broz K, Jonkers W, Ma L-J, Kistler HC. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato. Phytopathology®. 2017;107(7):842-51.spa
dc.relation.referencesRocha FYO, Oliveira CMd, da Silva PRA, Melo LHVd, Carmo MGFd, Baldani JI. Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici. Applied Soil Ecology. 2017;120:8-19.spa
dc.relation.referencesManikandan R, Harish S, Karthikeyan G, Raguchander T. Comparative Proteomic Analysis of Different Isolates of Fusarium oxysporum f.sp. lycopersici to Exploit the Differentially Expressed Proteins Responsible for Virulence on Tomato Plants. Front Microbiol. 2018;9(420).spa
dc.relation.referencesTimmusk S, Grantcharova N, Wagner EG. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol. 2005;71(11):7292-300.spa
dc.relation.referencesPark SY, Kim R, Ryu CM, Choi SK, Lee CH, Kim JG, et al. Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa. FEMS Microbiol Ecol. 2008;65(2):229-37.spa
dc.relation.referencesTan S, Yang C, Mei X, Shen S, Raza W, Shen Q, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. J Applied Soil Ecology. 2013;64:15-22.spa
dc.relation.referencesYang G, Zhou B, Zhang X, Zhang Z, Wu Y, Zhang Y, et al. Effects of Tomato Root Exudates on Meloidogyne incognita. PLoS One. 2016;11(4):e0154675.spa
dc.relation.referencesGrattidge R, O'Brien R. Occurrence of a third race of Fusarium wilt of tomatoes in Queensland. J Plant Disease. 1982;66(2):165-6.spa
dc.relation.referencesMadden LV, A Hughes G, A van den Bosch F. The Study of Plant Disease Epidemics. Minnesota, USA: The American Phytopathological Society; 2007.spa
dc.relation.referencesQiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 2017;17(1):131.spa
dc.relation.referencesHassen A, Labuschagne N. Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World Journal of Microbiology and Biotechnology. 2010;26:1837-46.spa
dc.relation.referencesLi P, Ma L, Feng YL, Mo MH, Yang FX, Dai HF, et al. Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. J Ind Microbiol Biotechnol. 2012;39(10):1495-505.spa
dc.relation.referencesChin AWTF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact. 2000;13(12):1340-5.spa
dc.relation.referencesZheng XY, Sinclair JB. The effects of traits of Bacillus megaterium onseed and root colonization and their correlation withthe suppression of Rhizoctonia root rot of soybean. BioControl. 2000;45(2):223-43.spa
dc.relation.referencesSalvatierra‐Martinez R, Arancibia W, Araya M, Aguilera S, Olalde V, Bravo J, et al. Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. J Journal of Phytopathology. 2018;166(9):601-12.spa
dc.relation.referencesBarahona E, Navazo A, Martinez-Granero F, Zea-Bonilla T, Perez-Jimenez RM, Martin M, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol. 2011;77(15):5412-9.spa
dc.relation.referencesAkköprü A, Demir S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Journal of Phytopathology. 2005;153(9):544-50.spa
dc.relation.referencesRaza W, Yuan J, Wu YC, Rajer FU, Huang Q, Qirong S. Biocontrol traits of two Paenibacillus polymyxa strains SQR-21 and WR-2 in response to fusaric acid, a phytotoxin produced by Fusarium species. Plant Pathol. 2015;64(5):1041-52.spa
dc.relation.referencesRybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G. Aerial Warfare: A Volatile Dialogue between the Plant Pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa. 2017;8(1294).spa
dc.relation.referencesOppong-Danquah E, Parrot D, Blumel M, Labes A, Tasdemir D. Molecular Networking-Based Metabolome and Bioactivity Analyses of Marine-Adapted Fungi Co-cultivated With Phytopathogens. Front Microbiol. 2018;9:2072.spa
dc.relation.referencesRybakova D, Cernava T, Koberl M, Liebminger S, Etemadi M, Berg G. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil. 2016;405(1-2):125-40.spa
dc.relation.referencesKim B, Song GC, Ryu CM. Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility. J Microbiol Biotechn. 2016;26(3):549-57.spa
dc.relation.referencesLing N, Huang QW, Guo SW, Shen QR. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp niveum. Plant Soil. 2011;341(1-2):485-93.spa
dc.relation.referencesLing N, Raza W, Ma JH, Huang QW, Shen QR. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol. 2011;47(6):374-9.spa
dc.relation.referencesDu N, Shi L, Yuan Y, Li B, Shu S, Sun J, et al. Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp. cucumerinum Inoculation. Front Plant Sci. 2016;7:1859spa
dc.relation.referencesKwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, et al. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics. 2016;16(1):122-35.spa
dc.relation.referencesScherling C, Ulrich K, Ewald D, Weckwerth W. A Metabolic Signature of the Beneficial Interaction of the Endophyte Paenibacillus sp Isolate and In Vitro-Grown Poplar Plants Revealed by Metabolomics. Mol Plant Microbe In. 2009;22(8):1032-7.spa
dc.relation.referencesKim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol. 2011;29(6):267-75.spa
dc.relation.referencesFiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1-2):155-71.spa
dc.relation.referencesKumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. Front Plant Sci. 2017;8:1302spa
dc.relation.referencesTohge T, Fernie AR. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc. 2010;5(6):1210-27.spa
dc.relation.referencesCamanes G, Scalschi L, Vicedo B, Gonzalez-Bosch C, Garcia-Agustin P. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Plant J. 2015;84(1):125-39.spa
dc.relation.referencesLopez-Gresa MP, Maltese F, Belles JM, Conejero V, Kim HK, Choi YH, et al. Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochem Anal. 2010;21(1):89-94.spa
dc.relation.referencesZeiss DR, Mhlongo MI, Tugizimana F, Steenkamp PA, Dubery IA. Comparative Metabolic Phenotyping of Tomato (Solanum lycopersicum) for the Identification of Metabolic Signatures in Cultivars Differing in Resistance to Ralstonia solanacearum. Int J Mol Sci. 2018;19(9).spa
dc.relation.referencesZeiss DR, Mhlongo MI, Tugizimana F, Steenkamp PA, Dubery IA. Metabolomic Profiling of the Host Response of Tomato (Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci. 2019;20(16).spa
dc.relation.referencesWojciechowska E, Weinert CH, Egert B, Trierweiler B, Schmidt-Heydt M, Horneburg B, et al. Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. European Journal of Plant Pathology. 2014;139(4):735-47.spa
dc.relation.referencesShinde BA, Dholakia BB, Hussain K, Panda S, Meir S, Rogachev I, et al. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta). Plant Mol Biol. 2017;95(4-5):411-23.spa
dc.relation.referencesGaleano Garcia P, Neves Dos Santos F, Zanotta S, Eberlin MN, Carazzone C. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules. 2018;23(12).spa
dc.relation.referencesAkram W, Anjum T, Ali B. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt. Front Plant Sci. 2016;7:498.spa
dc.relation.referencesAnjum T, Akram W, Shafique S, Shafique S, Ahmad A. Metabolomic Analysis Identifies Synergistic Role of Hormones Biosynthesis and Phenylpropenoid Pathways during Fusarium Wilt Resistance in Tomato Plants. Int J Agric Biol. 2017;19(5):1073-8spa
dc.relation.referencesNebbioso A, De Martino A, Eltlbany N, Smalla K, Piccolo A. Phytochemical profiling of tomato roots following treatments with different microbial inoculants as revealed by IT-TOF mass spectrometry. Chem Biol Technol Ag. 2016;3.spa
dc.relation.referencesKamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact. 2006;19(10):1121-6spa
dc.relation.referencesRivero J, Gamir J, Aroca R, Pozo MJ, Flors V. Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology. 2015;6.spa
dc.relation.referencesManganiello G, Sacco A, Ercolano MR, Vinale F, Lanzuise S, Pascale A, et al. Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Front Microbiol. 2018;9(1966).spa
dc.relation.referencesFatima S, Anjum T. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato. Front Plant Sci. 2017;8:848.spa
dc.relation.referencesDebois D, Ongena M, Cawoy H, De Pauw E. MALDI-FTICR MS Imaging as a Powerful Tool to Identify Paenibacillus Antibiotics Involved in the Inhibition of Plant Pathogens. J Am Soc Mass Spectr. 2013;24(8):1202-13.spa
dc.relation.referencesDu X, Smirnov A, Pluskal T, Jia W, Sumner S. Metabolomics Data Preprocessing Using ADAP and MZmine 2. Methods Mol Biol. 2020;2104:25-48.spa
dc.relation.referencesOlivon F, Grelier G, Roussi F, Litaudon M, Touboul D. MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability. Anal Chem. 2017;89(15):7836-40.spa
dc.relation.referencesPluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395.spa
dc.relation.referencesWorley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability. Current Metabolomics. 2016;4(2):97-103.spa
dc.relation.referencesIijima Y, Watanabe B, Sasaki R, Takenaka M, Ono H, Sakurai N, et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochemistry. 2013;95:145-57.spa
dc.relation.referencesFernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, et al. Recommendations for reporting metabolite data. Plant Cell. 2011;23(7):2477-82.spa
dc.relation.referencesGhosh S, Narula K, Sinha A, Ghosh R, Jawa P, Chakraborty N, et al. Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia. J Proteomics. 2016;143:242-53.spa
dc.relation.referencesMhlongo MI, Piater LA, Steenkamp PA, Labuschagne N, Dubery IA. Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites. 2020;10(5).spa
dc.relation.referencesOburger E, Jones DL. Sampling root exudates – Mission impossible? Rhizosphere. 2018;6:116-33.spa
dc.relation.referencesPetriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J. Metabolite profiling of non-sterile rhizosphere soil. Plant J. 2017;92(1):147-62.spa
dc.relation.referencesMimmo T, Hann S, Jaitz L, Cesco S, Gessa CE, Puschenreiter M. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L. Plant Physiology and Biochemistry. 2011;49(11):1272-8.spa
dc.relation.referencesTavakkoli E, Rengasamy P, McDonald GK. The response of barley to salinity stress differs between hydroponic and soil systems. J Functional Plant Biology. 2010;37(7):621-33.spa
dc.relation.referencesFischer H, Ingwersen J, Kuzyakov Y. Microbial uptake of low‐molecular‐weight organic substances out‐competes sorption in soil. J European Journal of Soil Science. 2010;61(4):504-13.spa
dc.relation.referencesItkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell. 2011;23(12):4507-25.spa
dc.relation.referencesSchwahn K, de Souza LP, Fernie AR, Tohge T. Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. J Integr Plant Biol. 2014;56(9):864-75.spa
dc.relation.referencesMilner SE, Brunton NP, Jones PW, O'Brien NM, Collins SG, Maguire AR. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J Agric Food Chem. 2011;59(8):3454-84.spa
dc.relation.referencesFriedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem. 2002;50(21):5751-80.spa
dc.relation.referencesCardenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S, Abebie B, et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat Commun. 2019;10(1):5169.spa
dc.relation.referencesDzakovich MP, Hartman JL, Cooperstone JL. A High-Throughput Extraction and Analysis Method for Steroidal Glycoalkaloids in Tomato. J bioRxiv. 2019.spa
dc.relation.referencesZhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell. 2018;172(1):249-61.e12.spa
dc.relation.referencesSandrock RW, Vanetten HD. Fungal Sensitivity to and Enzymatic Degradation of the Phytoanticipin alpha-Tomatine. Phytopathology. 1998;88(2):137-43.spa
dc.relation.referencesIto S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, et al. alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett. 2007;581(17):3217-22.spa
dc.relation.referencesOka K, Okubo A, Kodama M, Otani H. Detoxification of α-tomatine by tomato pathogens Alternaria alternata tomato pathotype and Corynespora cassiicola and its role in infection. J Journal of general plant pathology. 2006;72(3):152-8.spa
dc.relation.referencesOsbourn A. Saponins and plant defence; a soap story. Trends in Plant Science. 1996;1(1):4-9.spa
dc.relation.referencesÖkmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH, Collemare J, et al. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytologist. 2013;198(4):1203-14.spa
dc.relation.referencesPareja-Jaime Y, Roncero MIG, Ruiz-Roldán MC. Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. J Molecular plant-microbe interactions. 2008;21(6):728-36.spa
dc.relation.referencesMajumdar S, Pal S. Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal. 2018;12(2):491-502.spa
dc.relation.referencesHennessy RC, Glaring MA, Olsson S, Stougaard P. Transcriptomic profiling of microbe–microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani. BMC Research Notes. 2017;10(1):376.spa
dc.relation.referencesTomada S, Sonego P, Moretto M, Engelen K, Pertot I, Perazzolli M, et al. Dual RNA-Seq of Lysobacter capsici AZ78 – Phytophthora infestans interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses. Environ Microbiol. 2017;19(10):4113-25.spa
dc.relation.referencesBarret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, et al. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol. 2009;181(2):435-47.spa
dc.relation.referencesBenoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, et al. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol. 2015;17(6):2099-113.spa
dc.relation.referencesFeussner I, Polle A. What the transcriptome does not tell—Proteomics and metabolomics are closer to the plants’ patho-phenotype. Current Opinion in Plant Biology. 2015;26.spa
dc.relation.referencesArora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. Biotechnology Advances. 2020;40:107521.spa
dc.relation.referencesMarmann A, Aly AH, Lin W, Wang B, Proksch P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs. 2014;12(2):1043-65.spa
dc.relation.referencesWu Q, Ni M, Dou K, Tang J, Ren J, Yu C, et al. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microbial Cell Factories. 2018;17(1):155.spa
dc.relation.referencesKombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, et al. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. The ISME Journal. 2019;13(3):588-602.spa
dc.relation.referencesVinale F, Nicoletti R, Borrelli F, Mangoni A, Parisi OA, Marra R, et al. Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites. Scientific Reports. 2017;7(1):14330.spa
dc.relation.referencesWakefield J, Hassan HM, Jaspars M, Ebel R, Rateb ME. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation. Front Microbiol. 2017;8(1284).spa
dc.relation.referencesShank EA. Using coculture to detect chemically mediated interspecies interactions. J Vis Exp. 2013(80):e50863-e.spa
dc.relation.referencesShin D, Byun WS, Moon K, Kwon Y, Bae M, Um S, et al. Coculture of Marine Streptomyces sp. With Bacillus sp. Produces a New Piperazic Acid-Bearing Cyclic Peptide. Front Chemistry. 2018;6(498).spa
dc.relation.referencesHuang S, Ding W, Li C, Cox DG. Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacogn Mag. 2014;10(40):410-4.spa
dc.relation.referencesOppong-Danquah E, Budnicka P, Blumel M, Tasdemir D. Design of Fungal Co-Cultivation Based on Comparative Metabolomics and Bioactivity for Discovery of Marine Fungal Agrochemicals. Mar Drugs. 2020;18(2).spa
dc.relation.referencesWang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828-37.spa
dc.relation.referencesGuthals A, Watrous JD, Dorrestein PC, Bandeira N. The spectral networks paradigm in high throughput mass spectrometry. Mol Biosyst. 2012;8(10):2535-44.spa
dc.relation.referencesDa Silva RR, Wang M, Nothias L-F, van der Hooft JJ, Caraballo-Rodríguez AM, Fox E, et al. Propagating annotations of molecular networks using in silico fragmentation. J PLoS computational biology. 2018;14(4):e1006089.spa
dc.relation.referencesErnst M, Kang KB, Caraballo-Rodriguez AM, Nothias LF, Wandy J, Chen C, et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites. 2019;9(7).spa
dc.relation.referencesGarg N, Kapono CA, Lim YW, Koyama N, Vermeij MJ, Conrad D, et al. Mass spectral similarity for untargeted metabolomics data analysis of complex mixtures. J International Journal of Mass Spectrometry. 2015;377:719-27.spa
dc.relation.referencesvan Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, et al. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent Sci. 2019;5(11):1824-33.spa
dc.relation.referencesNothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based Molecular Networking in the GNPS Analysis Environment. bioRxiv. 2019:812404spa
dc.relation.referencesShannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.spa
dc.relation.referencesYun Y, Zhou X, Yang S, Wen Y, You H, Zheng Y, et al. Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Current Genetics. 2019;65(3):773-83.spa
dc.relation.referencesSondergaard TE, Fredborg M, Oppenhagen Christensen A-M, Damsgaard SK, Kramer NF, Giese H, et al. Fast Screening of Antibacterial Compounds from Fusaria. Toxins. 2016;8(12).spa
dc.relation.referencesSon SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, et al. Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. Journal of Applied Microbiology. 2008;104(3):692-8.spa
dc.relation.referencesBohni N, Hofstetter V, Gindro K, Buyck B, Schumpp O, Bertrand S, et al. Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures. Molecules. 2016;21(3):370.spa
dc.relation.referencesWang X, Gong X, Li P, Lai D, Zhou L. Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules. 2018;23(1).spa
dc.relation.referencesPaciolla C, Dipierro N, Mule G, Logrieco A, Dipierro S. The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. J Physiological Molecular Plant Pathology. 2004;65(1):49-56.spa
dc.relation.referencesPaciolla C, Ippolito MP, Logrieco A, Dipierro N, Mule G, Dipierro SJP, et al. A different trend of antioxidant defence responses makes tomato plants less susceptible to beauvericin than to T-2 mycotoxin phytotoxicity. 2008;72(1-3):3-9.spa
dc.relation.referencesWang Q, Xu L. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules. 2012;17(3):2367-77.spa
dc.relation.referencesBarenstrauch M, Mann S, Jacquemin C, Bibi S, Sylla OK, Baudouin E, et al. Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum - Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol. 2020;139:103383.spa
dc.relation.referencesWang Q-X, Li S-F, Zhao F, Dai H-Q, Bao L, Ding R, et al. Chemical constituents from endophytic fungus Fusarium oxysporum. J Fitoterapia. 2011;82(5):777-81.spa
dc.relation.referencesBreinhold J, Ludvigsen S, Rassing BR, Rosendahl CN, Nielsen SE, Olsen CE. Oxysporidinone: a novel, antifungal N-methyl-4-hydroxy-2-pyridone from Fusarium oxysporum. J Nat Prod. 1997;60(1):33-5.spa
dc.relation.referencesMoon SH, Zhang X, Zheng G, Meeker DG, Smeltzer MS, Huang E. Novel Linear Lipopeptide Paenipeptins with Potential for Eradicating Biofilms and Sensitizing Gram-Negative Bacteria to Rifampicin and Clarithromycin. Journal of Medicinal Chemistry. 2017;60(23):9630-40.spa
dc.relation.referencesTakeuchi Y, Murai A, Takahara Y, Kainosho M. The structure of permetin A, a new polypeptin type antibiotic produced by Bacillus circulans. J Antibiot (Tokyo). 1979;32(2):121-9.spa
dc.relation.referencesHuang E, Yang X, Zhang L, Moon SH, Yousef AE. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity. FEMS Microbiol Lett. 2017;364(8).spa
dc.relation.referencesDing R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, et al. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49(6):942-9.spa
dc.relation.referencesMoon SH, Huang E. Lipopeptide Paenipeptin Analogues Potentiate Clarithromycin and Rifampin against Carbapenem-Resistant Pathogens. Antimicrob Agents Chemother. 2018;62(8).spa
dc.relation.referencesMoon SH, Huang E. Novel linear lipopeptide paenipeptin C' binds to lipopolysaccharides and lipoteichoic acid and exerts bactericidal activity by the disruption of cytoplasmic membrane. BMC Microbiol. 2019;19(1):6.spa
dc.relation.referencesMoon SH, Kaufmann Y, Huang E. Paenipeptin Analogues Potentiate Clarithromycin and Rifampin against mcr-1-Mediated Polymyxin-Resistant Escherichia coli In Vivo. Antimicrob Agents Chemother. 2020;64(4).spa
dc.relation.referencesCarmona SL, Burbano-David D, Gomez MR, Lopez W, Ceballos N, Castano-Zapata J, et al. Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens. 2020;9(1).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.proposalVascular wilteng
dc.subject.proposalMarchitez vascularspa
dc.subject.proposalcontrol biológicospa
dc.subject.proposalbiological controleng
dc.subject.proposalPaenibacilluseng
dc.subject.proposalPaenibacillusspa
dc.subject.proposalmarine-derived bacteriaeng
dc.subject.proposalbacterias derivadas de ambientes marinosspa
dc.subject.proposalantibiosisspa
dc.subject.proposalantibiosiseng
dc.subject.proposalmetabolómicaspa
dc.subject.proposalmetabolomicseng
dc.titleBioprospection of marine-derived bacteria with biocontrol activity against Fusarium oxysporum f. sp. lycopersicispa
dc.title.alternativeBioprospección de bacterias aisladas de ambientes marinos con actividad biocontroladora frente a Fusarium oxysporum f. sp. lycopersicispa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS FINAL_REPOSITORIO.pdf
Tamaño:
6.47 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: