Modelo multimodal para pronóstico de producción de pozos petroleros

dc.contributor.advisorLeón Guzmán, Elizabethspa
dc.contributor.authorBello Angulo, David Esneyderspa
dc.contributor.orcidBello Angulo, David Esneyder [https://orcid.org/0009-0007-4142-1441]spa
dc.contributor.researchgroupMidas: Grupo de Investigación en Minería de Datosspa
dc.date.accessioned2024-07-17T19:44:49Z
dc.date.available2024-07-17T19:44:49Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl presente trabajo de investigación presenta un aporte en dos áreas de estudio de series de tiempo en el contexto de la producción de pozos petroleros, siendo estas la clasificación para identificar fallas en los pozos, y los pronósticos de producción. El conjunto de datos utilizado corresponde a la producción de pozos petroleros, incluyendo información multimodal como datos numéricos, imágenes y texto para cada punto temporal. En la clasificación de series de tiempo, se aborda la predicción de fallas en el siguiente paso temporal, logrando una exactitud del 61.3% con un modelo multimodal conectado a una capa LSTM. En pronósticos de series de tiempo, los modelos multimodales con capas LSTM destacan, superando a modelos no multimodales y a implementaciones ARIMA en predicciones trimestrales y bi-anuales, presentando un error porcentual absoluto medio de 8% llegando a 2% en casos específicos. Este trabajo contribuye significativamente a los campos de clasificación y predicción de series de tiempo multimodales, proponiendo una arquitectura de encoder multimodal distribuido en el tiempo que puede ser implementada para series de tiempo multimodales de cualquier área de la industria. (Texto tomado de la fuente).spa
dc.description.abstractThis research presents a contribution to two areas of time series study, in the context of oil well production, these are the classification to identify possible failures and the production forecasting. The dataset utilized corresponds to the production of oil wells, consisting in multimodal information such as numerical data, images, and text for each temporal point. In time series classification, the prediction of failures in the subsequent time step is addressed, achieving an accuracy of 61.3% with a multimodal model connected to an LSTM layer. In time series forecasting, multimodal models with LSTM layers excel, outperforming non-multimodal models and ARIMA implementations in quarterly and bi-annual predictions, presenting a mean absolute percentage error of 8%, reaching 2% in specific cases. This work significantly contributes to the fields of multimodal time series classification and prediction, proposing a temporally distributed multimodal encoder architecture that can be implemented for multimodal time series across various industry domains.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaMinería de Datos - Clasificación y pronóstico de series de tiempo multimodalesspa
dc.format.extentxvii, 116 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86543
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAbadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael; Jia, Yangqing; Jozefowicz, Rafal; Kaiser, Lukasz; Kudlur, Manjunath; Levenberg, Josh; Mané, Dandelion; Monga, Rajat; Moore, Sherry; Murray, Derek; Olah, Chris; Schuster, Mike; Shlens, Jonathon; Steiner, Benoit; Sutskever, Ilya; Talwar, Kunal; Tucker, Paul; Vanhoucke, Vincent; Vasudevan, Vijay; Viégas, Fernanda; Vinyals, Oriol; Warden, Pete; Wattenberg, Martin; Wicke, Martin; Yu, Yuan; Zheng, Xiaoqiang: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. – Software available from tensorflow.orgspa
dc.relation.referencesAizenberg, Igor; Sheremetov, Leonid; Villa-Vargas, Luis; Martinez-Muñoz, Jorge: Multilayer Neural Network with Multi-Valued Neurons in time series forecasting of oil production. En: Neurocomputing 175 (2016), jan, p. 980–989. – ISSN 0925–2312spa
dc.relation.referencesAnderson, Roger N.; Xie, Boyi; Wu, Leon; Kressner, Arthur A.; Frantz Jr., Joseph H.; Ockree, Matthew A.; Brown, Kenneth G.: Petroleum Analytics Learning Machine to Forecast Production in the Wet Gas Marcellus Shale. En: Proceedings of the 4th Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, aug 2016. – ISBN 978–0–9912144–3–3spa
dc.relation.referencesArps, J.J.: Analysis of Decline Curves, Society of Petroleum Engineers, dec 2013. – ISBN 0081–1696–01spa
dc.relation.referencesBello-Angulo, David; León-Guzmán, Elizabeth: Multi-Modal Recurrent Model for Timeseries Classification: A Use Case on Failure Prediction in Oil Wells with Rod Lift System. En: 10th International conference on Time Series and Forecasting (2023), 12. – ISSN in pressspa
dc.relation.referencesBello-Angulo, David ; Mantilla-Duarte, Carlos ; Montes-Paez, Erik ; Guerrero-Martin, Camilo: Box–Jenkins Methodology Application to Improve Crude Oil Production Forecasting: Case Study in a Colombian Field. En: Arabian Journal for Science and Engineering 47 (2022), 9, p. 11269–11278. – ISSN 21914281spa
dc.relation.referencesChen, Chaohui; Gao, Guohua; Honorio, Jean; Gelderblom, Paul; Jimenez, Eduardo; Jaakkola, Tommi, en "Integration of Principal-Component-Analysis and Streamline Information for the History Matching of Channelized Reservoirs" presentado en la SPE Annual Technical Conference and Exhibition de octubre de 2014, proponen métodos para la calibración histórica de yacimientos canalizados utilizando análisis de componentes principales y información de líneas de flujo.spa
dc.relation.referencesCao, Q. ; Banerjee, R. ; Gupta, S. ; Li, J. ; Zhou, W. ; Jeyachandra, B.: Data Driven Production Forecasting Using Machine Learning. En: SPE Argentina Exploration and Production of Unconventional Resources Symposium, Society of Petroleum Engineers, jun 2016. – ISBN 978–1–61399–474–0spa
dc.relation.referencesChen, Chaohui ; Gao, Guohua ; Honorio, Jean ; Gelderblom, Paul ; Jimenez, Eduardo ; Jaakkola, Tommi: Integration of Principal-Component-Analysis and Streamline Information for the History Matching of Channelized Reservoirs. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2014spa
dc.relation.referencesCollins, Patrick ; Ilk, Dilhan ; Blasingame, Thomas A.: Practical Considerations for Forecasting Production Data in Unconventional Reservoirs — Variable Pressure Drop Case. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2014spa
dc.relation.referencesDana Lahat, Christian J.: Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects, Institute of Electrical and Electronics Engineers, jul 2015spa
dc.relation.referencesDeng, Houtao ; Runger, George ; Tuv, Eugene ; Vladimir, Martyanov: A Time Series Forest for Classification and Feature Extraction. En: Information Sciences 239 (2013), 2, p. 142–153. – ISSN 00200255spa
dc.relation.referencesDufter, Philipp ; Schmitt, Martin ; Schütze, Hinrich: Position Information in Transformers: An Overview. En: Computational Linguistics 48 (2022), 9, p. 733–763. – ISSN 15309312spa
dc.relation.referencesDursun, Serkan ; Rangarajan, Keshava ; Singh, Amit: A Framework-Oriented Approach for Determining Attribute Importance When Building Effective Predictive Models for Oil and Gas Data Analytics. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, sep 2013. – ISBN 978–1–61399–240–1spa
dc.relation.referencesDzurman, Peter J. ; Leung, Juliana Yuk W. ; Zanon, Stefan David J. ; Amirian, Ehsan: Data-Driven Modeling Approach for Recovery Performance Prediction in SAGD Operations. En: SPE Heavy Oil Conference-Canada, Society of Petroleum Engineers, jun 2013. – ISBN 978–1–61399–262–3spa
dc.relation.referencesEchometer. Total Well Management (TWM). 2012spa
dc.relation.referencesEchometer. Total Asset Monitor (TAM). 2022spa
dc.relation.referencesFawaz, Hassan I. ; Lucas, Benjamin ; Forestier, Germain ; Pelletier, Charlotte ; Schmidt, Daniel F. ; Weber, Jonathan ; Webb, Geoffrey I. ; Idoumghar, Lhassane ; Muller, Pierre A. ; Petitjean, François: InceptionTime: Finding AlexNet for Time Series Classification. En: Data Mining and Knowledge Discovery 34 (2019), 9, p. 1936–1962. – ISBN 1061802000710spa
dc.relation.referencesFetkovich, M.J.: Decline Curve Analysis Using Type Curves, Society of Petroleum Engineers, jun 1980spa
dc.relation.referencesFoumani, Navid M. ; Miller, Lynn ; Tan, Chang W. ; Webb, Geoffrey I. ; Forestier, Germain ; Salehi, Mahsa: Deep Learning for Time Series Classification and Extrinsic Regression: A Current Survey. (2023), 2spa
dc.relation.referencesFoumani, Navid M. ; Tan, Chang W. ; Webb, Geoffrey I. ; Salehi, Mahsa: Improving position encoding of transformers for multivariate time series classification. En: Data Mining and Knowledge Discovery (2023), 9, p. 1–27. – ISSN 1573756Xspa
dc.relation.referencesGoldsmith, Jeff ; Scheipl, Fabian: Estimator selection and combination in scalar-on-function regression. En: Computational Statistics and Data Analysis 70 (2014), 2, p. 362–372. – ISSN 0167–9473spa
dc.relation.referencesGupta, Siddhartha ; Fuehrer, Franz ; Jeyachandra, Benin C.: Production Forecasting in Unconventional Resources using Data Mining and Time Series Analysis. En: SPE/CSUR Unconventional Resources Conference – Canada, Society of Petroleum Engineers, sep 2014. – ISBN 978–1–61399–363–7spa
dc.relation.referencesHuang, Zhiheng ; Liang, Davis ; Xu, Peng ; Xiang, Bing: Improve Transformer Models with Better Relative Position Embeddings. En: Findings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020 (2020), 9, p. 3327–3335. ISBN 9781952148903spa
dc.relation.referencesJia, Xinli ; Zhang, Feifei: Applying Data-Driven Method to Production Decline Analysis and Forecasting. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, sep 2016. – ISBN 978–1–61399–463–4spa
dc.relation.referencesJiang, Hao ; Liu, Lianguang ; Lian, Cheng: Multi-Modal Fusion Transformer for Multivariate Time Series Classification. En: 2022 14th International Conference on Advanced Computational Intelligence, ICACI 2022 (2022), p. 284–288. ISBN 9781665470452spa
dc.relation.referencesKingma, Diederik P. ; Ba, Jimmy L.: Adam: A Method for Stochastic Optimization. En: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2014), 12spa
dc.relation.referencesKostas, Demetres ; Aroca-Ouellette, Stéphane ; Rudzicz, Frank: BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data. En: Frontiers in Human Neuroscience 15 (2021), 1. – ISSN 16625161spa
dc.relation.referencesLi, X. ; Chan, C.W. ; Nguyen, H.H.: Application of the Neural Decision Tree approach for prediction of petroleum production. En: Journal of Petroleum Science and Engineering 104 (2013), apr, p. 11–16. – ISSN 0920–4105spa
dc.relation.referencesLi, Yunan ; Han, Yifu: Decline Curve Analysis for Production Forecasting Based on Machine Learning. En: SPE Symposium: Production Enhancement and Cost Optimisation, Society of Petroleum Engineers, nov 2017. – ISBN 978–1–61399–561–7spa
dc.relation.referencesLin, Jessica ; Khade, Rohan ; Li, Yuan: Rotation-invariant similarity in time series using bag-of-patterns representation. En: Journal of Intelligent Information Systems 39 (2012), 10, p. 287–315. – ISSN 09259902spa
dc.relation.referencesLiu, Jeremy ; Jaiswal, Ayush ; Yao, Ke-Thia ; Raghavendra, Cauligi S.: Autoencoder-derived Features as Inputs to Classification Algorithms for Predicting Well Failures. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2015. – ISBN 978–1–61399–404–7spa
dc.relation.referencesLiu, Y. ; Yao, Ke-Thia ; Liu, Shuping ; Raghavendra, Cauligi S. ; Lenz, Tracy L. ; Olabinjo, Lanre ; Seren, F. B. ; Seddighrad, Sanaz ; Dinesh Babu, C.G.: Failure Prediction for Artificial Lift Systems. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2010. – ISBN 978–1–55563–294–6spa
dc.relation.referencesLolon, E. ; Hamidieh, K. ; Weijers, L. ; Mayerhofer, M. ; Melcher, H. ; Oduba, O.: Evaluating the Relationship Between Well Parameters and Production Using Multivariate Statistical Models: A Middle Bakken and Three Forks Case History. En: SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, feb 2016. – ISBN 978–1–61399–438–2spa
dc.relation.referencesMa, Zhiwei ; Liu, Yaqi ; Leung, Juliana Y. ; Zanon, Stefan: Practical Data Mining and Artificial Neural Network Modeling for SAGD Production Analysis. En: SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers, jun 2015. – ISBN 978–1–61399–402–3spa
dc.relation.referencesMalhotra, Pankaj ; Vishnu, T. V. ; Vig, Lovekesh ; Agarwal, Puneet ; Shroff, Gautam: TimeNet: Pre-trained deep recurrent neural network for time series classification. En: ESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2017), 6, p. 607–612. ISBN 9782875870391spa
dc.relation.referencesMartin, Eileen ; Wills, Peter ; Hohl, Detlef ; Lopez, Jorge L.: Using Machine Learning to Predict Production at a Peace River Thermal EOR Site. En: SPE Reservoir Simulation Conference, Society of Petroleum Engineers, feb 2017. – ISBN 978–1–61399–483–2spa
dc.relation.referencesMontes, Erik G. ; Delgadillo, Claudia L. ; Calvete, Fernando E.: APLICACIÓN DE LA SIMULACIÓN NUMÉRICA DE YACIMIENTOS EN EL ANÁLISIS DE LOS FACTORES QUE AFECTAN LOS PRONÓSTICOS DE PRODUCCIÓN DE PETRÓLEO, 2015. – ISSN 2346–0466spa
dc.relation.referencesMontes, Erik G. ; Mantilla, Carlos A. ; Bello, David E.: Herramienta software DeclineR para la elaboración automatizada de pronósticos de producción, mediante análisis de series de tiempo, Ingepet, oct 2018spa
dc.relation.referencesMontes Páez, Erik G. ; Calvete González, Fernando E. ; Mantilla Duarte, Carlos A.: APLICACIÓN DE SERIES DE TIEMPO EN LA REALIZACIÓN DE PRONÓSTICOS DE PRODUCCIÓN, 2016. – ISSN 16576527, p. 79–88spa
dc.relation.referencesMutegeki, Ronald ; Han, Dong S.: A CNN-LSTM Approach to Human Activity Recognition. En: 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 (2020), 2, p. 362–366. ISBN 9781728149851spa
dc.relation.referencesOlominu, Oluwafemi ; Sulaimon, Aliyu A.: Application of Time Series Analysis to Predict Reservoir Production Performance. En: SPE Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, aug 2014. – ISBN 978–1–61399–358–3spa
dc.relation.referencesPennington, Jeffrey ; Socher, Richard ; Manning, Christopher D.: GloVe: Global Vectors for Word Representation. En: Conference on Empirical Methods in Natural Language Processing, 2014spa
dc.relation.referencesPopa, Andrei S. ; Patel, Anil N.: Neural Networks for Production Curve Pattern Recognition Applied to Cyclic Steam Optimization in Diatomite Reservoirs. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2012spa
dc.relation.referencesRaghavenda, Cauligi S. ; Liu, Yintao ; Wu, Anqi ; Olabinjo, Lanre ; Balogun, Oluwafemi ; Ershaghi, Iraj ; Zheng, Jingwen ; Guo, Dong ; Yao, Ke-Thia: Global Model for Failure Prediction for Rod Pump Artificial Lift Systems. En: SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference, Society of Petroleum Engineers, apr 2013. – ISBN 978–1–61399–264–7spa
dc.relation.referencesRebeschini, J. ; Querales, M. ; Carvajal, G. A. ; Villamizar, M. ; Md Adnan, F. ; Rodriguez, J. ; Knabe, S. ; Rivas, F. ; Saputelli, L. ; Al-Jasmi, A. ; Nasr, H. ; Goel, H. K.: Building Neural-Network-Based Models Using Nodal and Time-Series Analysis for Short-Term Production Forecasting. En: SPE Middle East Intelligent Energy Conference and Exhibition, Society of Petroleum Engineers, oct 2013. – ISBN 978–1–61399–276–0spa
dc.relation.referencesSchuetter, Jared ; Mishra, Srikanta ; Zhong, Ming ; LaFollette, Randy: A Data-Analytics Tutorial: Building Predictive Models for Oil Production in an Unconventional Shale Reservoir. En: SPE Journal (2018), mar. – ISSN 1086–055Xspa
dc.relation.referencesSmith, Taylor G. [u. a.]: pmdarima: ARIMA estimators for Python. 2017–. – [Online; accessed 2023-12-13]spa
dc.relation.referencesSuhag, Anuj ; Ranjith, Rahul ; Aminzadeh, Fred: Comparison of Shale Oil Production Forecasting using Empirical Methods and Artificial Neural Networks. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2017. – ISBN 978–1–61399–542–6spa
dc.relation.referencesTan, Chang W. ; Bergmeir, Christoph ; Petitjean, Francois ; Webb, Geoffrey I.: Time Series Extrinsic Regression. En: Data Mining and Knowledge Discovery 35 (2020), 6, p. 1032–1060. – ISSN 1384–5810spa
dc.relation.referencesTang, Yujin ; Xu, Jianfeng ; Matsumoto, Kazunori ; Ono, Chihiro: Sequence-To-Sequence Model with Attention for Time Series Classification. En: IEEE International Conference on Data Mining Workshops, ICDMW 0 (2016), 7, p. 503–510. – ISBN 9781509054725spa
dc.relation.referencesValko, Peter P. ; Lee, W. J.: A Better Way To Forecast Production From Unconventional Gas Wells. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, apr 2010spa
dc.relation.referencesVaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones, Llion ; Gomez, Aidan N. ; Łukasz Kaiser ; Polosukhin, Illia: Attention Is All You Need. En: Advances in Neural Information Processing Systems 2017-December (2017), 6, p. 5999–6009. – ISBN 1706.03762v7spa
dc.relation.referencesVyas, Aditya ; Datta-Gupta, Akhil ; Mishra, Srikanta: Modeling Early Time Rate Decline in Unconventional Reservoirs Using Machine Learning Techniques. En: Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers, nov 2017. – ISBN 978–1–61399–563–1spa
dc.relation.referencesWang, Zhiguang ; Yan, Weizhong ; Oates, Tim: Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. En: Proceedings of the International Joint Conference on Neural Networks 2017-May (2016), 11, p. 1578–1585. ISBN 9781509061815spa
dc.relation.referencesWu, Kan ; Peng, Houwen ; Chen, Minghao ; Fu, Jianlong ; Chao, Hongyang: Rethinking and Improving Relative Position Encoding for Vision Transformer. En: Proceedings of the IEEE International Conference on Computer Vision (2021), 7, p. 10013–10021. – ISBN 9781665428125spa
dc.relation.referencesXian, Qingyu ; Liang, Wenxuan: A Multi-modal Time Series Intelligent Prediction Model. En: Lecture Notes in Electrical Engineering 942 LNEE (2022), p. 1150–1157. – ISBN 9789811924552spa
dc.relation.referencesXue, Wang ; Zhou, Tian ; Wen, Qingsong ; Gao, Jinyang ; Ding, Bolin ; Jin, Rong: Make Transformer Great Again for Time Series Forecasting: Channel Aligned Robust Dual Transformer. (2023), 5spa
dc.relation.referencesZerveas, George ; Jayaraman, Srideepika ; Patel, Dhaval ; Bhamidipaty, Anuradha ; Eickhoff, Carsten: A Transformer-based Framework for Multivariate Time Series Representation Learning. En: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 11 (2021), 8, p. 2114–2124. ISBN 9781450383325spa
dc.relation.referencesZheng, Jingwen ; Leung, Juliana Y. ; Sawatzky, Ronald P. ; Alvarez, Jose M.: A Proxy Model for Predicting SAGD Production from Reservoirs Containing Shale Barriers. En: SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers, jun 2016. – ISBN 978–1–61399–471–9spa
dc.relation.referencesZhou, Peng ; Sang, Huiyan ; Jin, Liuyi ; Lee, W. J.: Application of Statistical Methods to Predict Production From Liquid-Rich Shale Reservoirs. En: Proceedings of the 5th Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, jul 2017. – ISBN 978–0–9912144–4–0spa
dc.relation.referencesZhu, Qiding ; Zhang, Shukui ; Zhang, Yang ; Yu, Chunqing ; Dang, Mengli ; Zhang, Li: Multimodal time series data fusion based on SSAE and LSTM. En: IEEE Wireless Communications and Networking Conference, WCNC 2021-March (2021). – ISBN 9781728195056spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalClasificación de series de tiempospa
dc.subject.proposalPronósticos de series de tiempospa
dc.subject.proposalMultimodalspa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalTimeseries classificationeng
dc.subject.proposalTimeseries forecastingeng
dc.subject.proposalMultimodaleng
dc.subject.proposalNeural networkseng
dc.subject.proposalMachine learningeng
dc.subject.proposalDeep learningeng
dc.subject.unescoIndustria petroleraspa
dc.subject.unescoPetroleum industryeng
dc.subject.unescoAnálisis de datosspa
dc.subject.unescoData analysiseng
dc.subject.wikidatapronósticospa
dc.subject.wikidataforecastingeng
dc.subject.wikidatainteligencia artificialspa
dc.subject.wikidataartificial intelligenceeng
dc.titleModelo multimodal para pronóstico de producción de pozos petrolerosspa
dc.title.translatedMulti-modal model for production forecasting in oil wellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1099213032.2024.pdf
Tamaño:
5.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: