Genetic structure and connectivity of Thalassia testudinum in oceanic and continental environments of the Colombian Caribbean
dc.contributor.advisor | Vargas Ramírez, Mario Alfonso (Thesis advisor) | |
dc.contributor.advisor | Barrios Gardelis, Lina María | |
dc.contributor.author | Barrios Amaya, Miguel David | |
dc.contributor.financer | National Geographic Society | |
dc.contributor.financer | United Nations Educational, Scientific and Cultural Organization - UNESCO | |
dc.contributor.financer | Rufford Foundation | |
dc.contributor.researchgroup | Biodiversidad y Conservación Genética | spa |
dc.date.accessioned | 2025-07-03T16:36:47Z | |
dc.date.available | 2025-07-03T16:36:47Z | |
dc.date.issued | 2024-08-24 | |
dc.description.abstract | Thalassia testudinum, a critical ecosystem engineer in the Caribbean, provides essential habitat and supports vital ecosystem services. However, likewise other seagrass species globally, its populations face increasing anthropogenic pressures, leading to significant declines in coverage and functionality. Understanding the historical and contemporary population dynamics of this species, which exhibits both sexual and clonal reproduction, is crucial for effective conservation and management strategies. This study investigated the genetic diversity and connectivity of T. testudinum populations across oceanic and continental environments in the Colombian Caribbean, integrating data across the species' range and considering potential anthropogenic impacts. Microsatellite analysis of 240 samples from eight Colombian populations, compared with a previously developed regional dataset encompassing 32 additional populations, revealed a complex interplay of geological, oceanographic, biological, and anthropogenic factors shaping population structure. While relatively high genetic diversity and gene flow were observed at national and regional scales, distinct patterns emerged between oceanic and continental environments. These findings highlight (i) the identifiable population structure of the species comprising five genetic clusters in Colombia (ii) the remarkable (re)colonisation capacity of T. testudinum facilitated by long-distance dispersal, clonality, and inbreeding avoidance; (iii) the role of stochastic processes in dispersal and the lack of strong isolation-by-distance at certain scales; and (iv) the vulnerability of populations to short-term anthropogenic disturbances. This study identifies five Independent Management Units and underscores the need for area-specific conservation strategies to safeguard the long-term resilience of T. testudinum and the invaluable ecosystems it supports. | eng |
dc.description.abstract | Thalassia testudinum, una especie clave para la ingeniería del ecosistema de pastos marinos en el Caribe, proporciona un hábitat esencial y sustenta servicios ecosistémicos vitales. Sin embargo, al igual que otras especies de pastos marinos a nivel mundial, sus poblaciones se enfrentan a crecientes presiones antropogénicas, lo que ha conducido a disminuciones significativas en su cobertura y funcionalidad. Comprender la dinámica poblacional histórica y contemporánea de esta especie, que exhibe tanto reproducción sexual como clonal, es crucial su efectiva conservación. Este estudio investigó la diversidad genética y la conectividad de las poblaciones de T. testudinum en entornos oceánicos y continentales del Caribe colombiano, integrando datos a lo largo del rango de distribución de la especie y considerando los posibles impactos antropogénicos. El análisis de microsatélites de 240 muestras de ocho poblaciones colombianas, en comparación con un conjunto de datos regional previamente desarrollado que abarca 32 poblaciones adicionales, reveló una compleja interacción de factores geológicos, oceanográficos, biológicos y antropogénicos que dan forma a la estructura poblacional. Si bien se observó una diversidad genética y un flujo génico relativamente altos a escala nacional y regional, surgieron patrones diferenciados entre los entornos oceánicos y continentales. Estos hallazgos resaltan (i) la identificable estructura poblacional de la especie, que comprende cinco clusters genéticos en Colombia; (ii) la remarcable capacidad de (re)colonización de T. testudinum, facilitada por la dispersión de larga distancia, clonalidad y la prevención de la endogamia; (iii) el papel de la estocasticidad en la dispersión y la falta de significancia del aislamiento por distancia en ciertas escalas; y (iv) la vulnerabilidad de las poblaciones a las perturbaciones antropogénicas de corto plazo. Este estudio subraya la necesidad de estrategias de conservación específicas para cada área, a fin de salvaguardar la resiliencia a largo plazo de esta especie y el invaluable ecosistema que soporta (Texto tomado de la fuente). | spa |
dc.description.curriculararea | Otra. Sede Caribe | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biología | spa |
dc.description.methods | Conservación genética; microsatélites | spa |
dc.description.researcharea | Conservación genética | spa |
dc.description.sponsorship | This endeavour would not have been possible without the generous funding and engagement of the National Geographic Society and its Early Career Grants Programme, Grant EC-396R-18; the UNESCO MAB Programme and its Young Scientists Awards, Contract Number 4500409564; and the Rufford Foundation and its Small Grants Programme, Grant 25077-1. | spa |
dc.format.extent | VIII, 63 paginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88284 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Caribe | spa |
dc.publisher.department | Centro de estudios en Ciencias del mar-CECIMAR | spa |
dc.publisher.faculty | Facultad Caribe | spa |
dc.publisher.place | San Andrés Islas | spa |
dc.publisher.program | Caribe - Caribe - Maestría en Ciencias - Biología | spa |
dc.relation.references | Alberto, F., Arnaud-Haond, S., Duarte, C., & Serrão, E. (2006). Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. Marine Ecology Progress Series, 309, 117–129. https://doi.org/10.3354/meps309117 | spa |
dc.relation.references | Andrade, C. A. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, XXV(96). https://www.raccefyn.co/index.php/raccefyn | spa |
dc.relation.references | Andrade, C. A. (2015). Oceanografía dinámica de la cuenca de Colombia (Alpha Edit, Issue January 2015). | spa |
dc.relation.references | Angel, R. (2002). Genetic diversity of Halodule wrightii using random amplified polymorphic DNA. Aquatic Botany, 74(2), 165–174. https://doi.org/10.1016/S0304-3770(02)00079-7 | spa |
dc.relation.references | Apostoloumi, C., Malea, P., & Kevrekidis, T. (2021). Principles and concepts about seagrasses: Towards a sustainable future for seagrass ecosystems. Marine Pollution Bulletin, 173(PA), 112936. https://doi.org/10.1016/j.marpolbul.2021.112936 | spa |
dc.relation.references | Arnaud-Haond, S., Alberto, F., Teixeira, S., Procaccini, G., Serrão, E. A., & Duarte, C. M. (2005). Assessing Genetic Diversity in Clonal Organisms: Low Diversity or Low Resolution? Combining Power and Cost Efficiency in Selecting Markers. Journal of Heredity, 96(4), 434–440. https://doi.org/10.1093/jhered/esi043 | spa |
dc.relation.references | Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16(24), 5115–5139. https://doi.org/10.1111/j.1365-294X.2007.03535.x | spa |
dc.relation.references | Arnaud-Haond, S., & Belkhir, K. (2007). GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes, 7(1), 15–17. https://doi.org/10.1111/j.1471-8286.2006.01522.x | spa |
dc.relation.references | Arnaud-Haond, S., Moalic, Y., Hernández-García, E., Eguiluz, V. M., Alberto, F., Serrão, E. A., & Duarte, C. M. (2014). Disentangling the influence of mutation and migration in clonal seagrasses using the genetic diversity spectrum for microsatellites. Journal of Heredity, 105(4), 532–541. https://doi.org/10.1093/jhered/esu015 | spa |
dc.relation.references | Arnaud‐Haond, S., Stoeckel, S., & Bailleul, D. (2020). New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Molecular Ecology, 29(17), 3248–3260. https://doi.org/10.1111/mec.15532 | spa |
dc.relation.references | Ballesteros-Contreras, D. C., Barrios, L. M., & Preziosi, R. (2022). Population structure of the shallow coral Madracis auretenra in the Caribbean Sea. Frontiers in Marine Science, 9(October), 1–15. https://doi.org/10.3389/fmars.2022.840730 | spa |
dc.relation.references | Balloux, F. (2004). Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution, 58(9), 1891–1900. https://doi.org/10.1111/j.0014-3820.2004.tb00477.x | spa |
dc.relation.references | Barrios, L. M., & Gómez, D. I. (2001). Estado de las praderas de pastos marinos. In informe del estado de los ambientes marinos y costeros en Colombia (Issue Tabla 2). | spa |
dc.relation.references | Benavides, M. (2020). Connectivity between natural populations of the sea urchin Echinometra lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region. Universidad Nacional de Colombia - Sede Caribe. | spa |
dc.relation.references | Bijak, A. L., van Dijk, K., & Waycott, M. (2018). Population structure and gene flow of the tropical seagrass, Syringodium filiforme, in the Florida Keys and subtropical Atlantic region. PLoS ONE, 13(9), 1–18. https://doi.org/10.1371/journal.pone.0203644 | spa |
dc.relation.references | Bijak, A. L., van Dijk, K., & Waycott, M. (2014). Development of Microsatellite Markers for a Tropical Seagrass, Syringodium filiforme (Cymodoceaceae). Applications in Plant Sciences, 2(10), 1400082. https://doi.org/10.3732/apps.1400082 | spa |
dc.relation.references | Bonin, A., Bellemain, E., Bronken Eidesen, P., Pompanon, F., Brochmann, C., & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13(11), 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x | spa |
dc.relation.references | Bricker, E., Waycott, M., Calladine, A., & Zieman, J. (2011). High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Marine Ecology Progress Series, 423, 57–67. https://doi.org/10.3354/meps08962 | spa |
dc.relation.references | Campanella, J. J., Bologna, P. A. X., Carvalho, M., Smalley, J. V., Elakhrass, M., Meredith, R. W., & Zaben, N. (2015). Clonal diversity and connectedness of turtle grass (Thalassia testudinum) populations in a UNESCO Biosphere Reserve. Aquatic Botany, 123, 76–82. https://doi.org/10.1016/j.aquabot.2015.01.008 | spa |
dc.relation.references | Carvajal-Arenas, L. C., & Mann, P. (2018). Western Caribbean intraplate deformation: Defining a continuous and active microplate boundary along the San Andres rift and Hess Escarpment fault zone, Colombian Caribbean Sea. AAPG Bulletin, 102(08), 1523–1563. https://doi.org/10.1306/12081717221 | spa |
dc.relation.references | CCO. (2015). Aportes al conocimiento de la Reserva de Biósfera Seaflower (I. Murillo (ed.)). Comisión Colombiana del Océano. | spa |
dc.relation.references | Cendales, M. H., Zea, S., & Díaz, J. M. (2002). Geomorfología y unidades ecológicas del complejo de arrecifes de las Islas del Rosario e Isla Barú (Mar Caribe, Colombia). Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 26(101), 497–510. https://www.accefyn.com/revista/Vol_26/101/497-510.pdf | spa |
dc.relation.references | Centurioni, L. R., & Niiler, P. P. (2003). On the surface currents of the Caribbean Sea. Geophysical Research Letters, 30(6), 10–13. https://doi.org/10.1029/2002GL016231 | spa |
dc.relation.references | Chapuis, M.-P., & Estoup, A. (2007). Microsatellite Null Alleles and Estimation of Population Differentiation. Molecular Biology and Evolution, 24(3), 621–631. https://doi.org/10.1093/molbev/msl191 | spa |
dc.relation.references | CORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de S. In Serie de publicaciones especiales, Invema, No. 28, p. 180 (Vol. 28). http://www.invemar.org.co/redcostera1/invemar/docs/10447AtlasSAISeaflower.pdf | spa |
dc.relation.references | Costanza, R., D’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0 | spa |
dc.relation.references | Cox, P. A., & Tomlinson, P. B. (1988). Pollination Ecology of a Seagrass, Thalassia testudinum (Hydrocharitaceae), in St. Croix. American Journal of Botany, 75(7), 958. https://doi.org/10.2307/2443761 | spa |
dc.relation.references | Cullen-Unsworth, L. C., Nordlund, L. M., Paddock, J., Baker, S., McKenzie, L. J., & Unsworth, R. K. F. (2014). Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Marine Pollution Bulletin, 83(2), 387–397. https://doi.org/10.1016/j.marpolbul.2013.06.001 | spa |
dc.relation.references | D’Esposito, D., Dattolo, E., Badalamenti, F., Orsini, L., & Procaccini, G. (2012). Comparative Analysis of Genetic Diversity of Posidonia Oceanica Along a Depth Gradient Using Neutral and Selective/Non Neutral Microsatellites Markers. Biol. Mar. Mediterr, 19(1), 45–48. http://www.sibm.it/PDF ATTI/PDF CAMEROTA/Pagine 45-48.pdf | spa |
dc.relation.references | Díaz, Juan M., Sánchez, J. A., & Díaz Pulido, G. (1996). Geomorfologia y formaciones arrecifales recientes de Isla Fuerte y Bajo Bushnell, plataforma continental del Caribe colombiano. Bulletin of Marine and Coastal Research, 25(1), 87–105. https://doi.org/10.25268/bimc.invemar.1996.25.0.372 | spa |
dc.relation.references | Díaz, Juan M., Barrios, L., Cendales, M. H., Garzón-Ferreira, J., Geister, J., López-Victoria, M., Ospina, G., Parra-Velandia, F., Pinzón, J., Vargas-Angel, B., Zapata, F., & Zea, S. (2000). Áreas coralinas de Colombia. (Juan Manuel Díaz (ed.)). INVEMAR. http://biologiatropical.ucr.ac.cr/attachments/volumes/vol50-1/42-Reseñas Libros.pdf | spa |
dc.relation.references | Díaz, Juan M., Barrios, L., & Gomez-López, D. (2003). Las praderas de pastos marinos en Colombia: Estructura y dsitribución de un ecosistema estratégico. (Issue July 2015). https://doi.org/10.13140/2.1.4073.6322 | spa |
dc.relation.references | Dray, S., & Dufour, A.-B. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04 | spa |
dc.relation.references | Earl, D. A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 | spa |
dc.relation.references | Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008a). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 17(5), 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x | spa |
dc.relation.references | Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008b). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. In Molecular Ecology (Vol. 17, Issue 5, pp. 1170–1188). https://doi.org/10.1111/j.1365-294X.2007.03659.x | spa |
dc.relation.references | Edgeloe, J. M., Severn-Ellis, A. A., Bayer, P. E., Mehravi, S., Breed, M. F., Krauss, S. L., Batley, J., Kendrick, G. A., & Sinclair, E. A. (2022). Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences, 289(1976). https://doi.org/10.1098/rspb.2022.0538 | spa |
dc.relation.references | Emerson, B. C. (2002). Evolution on oceanic islands: Molecular phylogenetic approaches to understanding pattern and process. Molecular Ecology, 11(6), 951–966. https://doi.org/10.1046/j.1365-294X.2002.01507.x | spa |
dc.relation.references | Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x | spa |
dc.relation.references | Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x | spa |
dc.relation.references | Galeano, Elizabeh, Gomez-Lopez, D. I., Navas, R., Alonso, D., Zarza- González, E., Cano-Correa, M., Ward Bolivar, V., Posada-Osorio, L., Bolaños, N., Payan, L. ., & Aponte, C. (2016). Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2014-2015) (86th ed.). INVEMAR. | spa |
dc.relation.references | Galeano, Elizabeth. (2012). Fenología reproductiva y diversidad genética de Thalassia testudinum Banks ex König (Hydrocharitaceae) en la isla de San Andrés. Universidad Nacional de Colombia. | spa |
dc.relation.references | Gallego-García, N., Vargas-Ramírez, M., Forero-Medina, G., & Caballero, S. (2018). Genetic evidence of fragmented populations and inbreeding in the Colombian endemic Dahl’s toad-headed turtle (Mesoclemmys dahli). Conservation Genetics, 19(1), 221–233. https://doi.org/10.1007/s10592-017-1021-z | spa |
dc.relation.references | Geister, J., & Díaz, J. (2007). Ambientes arrecifales y geología de un archipiélago oceánico: San Andrés, Providencia y Santa Catalina. Ingeominas, 114. | spa |
dc.relation.references | Geister, Jörn. (1972). Nota sobre la edad de las calizas coralinas del Pleistoceno marino en las Islas de San Andrés y Providencia (Mar Caribe Occidental, Colombia). Bulletin of Marine and Coastal Research, 6, 135–140. https://doi.org/10.25268/bimc.invemar.1972.6.0.564 | spa |
dc.relation.references | Geister, J. (1992). Modern reef development and cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Caribbean sea, Colombia). Facies, 27(1), 1–69. https://doi.org/10.1007/BF02536804 | spa |
dc.relation.references | Gómez-Cubillos, C., Licero, L., Perdomo, L., Rodríguez, A., Romero, D., Ballesteros-Contreras, D., Gómez-López, D., Melo, A., Chasqui, L., Ocampo, M. A., Alonso, D., García, J., Peña, C., Bastidas, M., & Ricaurte, C. (2015). Portafolio: Áreas de arrecifes de coral, pastos marinos, playas de arena y manglares con potencial de restauración en Colombia (Serie de P). INVEMAR. | spa |
dc.relation.references | Gómez-López, D. I., Acosta, A., González, J. D., Sánchez, L., Navas-Camacho, R., & Alonso, D. (2020). Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2018-2019). INVEMAR. https://doi.org/https://n2t.net/ark:/81239/m95h5z | spa |
dc.relation.references | Gómez-López, D. I., & Alonso, D. (2016). Levantamiento de información para la caracterización y diagnóstico de las praderas de pastos marinos con fines de elaborar una propuesta de zonificación de la zona marino-costera del departamento de La Guajira y Chocó Caribe. FaseII: época climática seca. In Levantamiento de información ambiental de sistemas marinos y costeros sobre el Caribe colombiano Fase II. Convenio 167 ANH- INVEMAR. INVEMAR. http://www.invemar.org.co | spa |
dc.relation.references | Guerra-Vargas, L. A., Gillis, L. G., & Mancera-Pineda, J. E. (2020). Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Frontiers in Marine Science, 7(July), 1–15. https://doi.org/10.3389/fmars.2020.00628 | spa |
dc.relation.references | Hernawan, U. E., van Dijk, K. J., Kendrick, G. A., Feng, M., Biffin, E., Lavery, P. S., & McMahon, K. (2017). Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Molecular Ecology, 26(4), 1008–1021. https://doi.org/10.1111/mec.13966 | spa |
dc.relation.references | Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9(5), 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x | spa |
dc.relation.references | Hudson, J., Viard, F., Roby, C., & Rius, M. (2016). Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biology Letters, 12(10), 20160620. https://doi.org/10.1098/rsbl.2016.0620 | spa |
dc.relation.references | Hughes, A. R., & Stachowicz, J. J. (2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 8998–9002. https://doi.org/10.1073/pnas.0402642101 | spa |
dc.relation.references | Hughes, A. R., & Stachowicz, J. J. (2009). Ecological impacts of genotypic diversity in the clonal seagrass Zostera marina. Ecology, 90(5), 1412–1419. https://doi.org/10.1890/07-2030.1 | spa |
dc.relation.references | Idárraga-García, J., García-Varón, J., & León, H. (2021). Submarine geomorphology, tectonic features and mass wasting processes in the archipelago of San Andres, Providencia and Santa Catalina (western Caribbean). Marine Geology, 435. https://doi.org/10.1016/j.margeo.2021.106458 | spa |
dc.relation.references | Jahnke, M., Olsen, J. L., & Procaccini, G. (2015). A meta‐analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long‐lived seagrass Posidonia oceanica. Molecular Ecology, 24(10), 2336–2348. https://doi.org/10.1111/mec.13174 | spa |
dc.relation.references | James, R. (2007). Routes for Roots: Entering the 21St Century in San Andrés Island, Colombia. Caribbean Studies, 35(1), 3–36. https://www.redalyc.org/articulo.oa?id=39211831001 | spa |
dc.relation.references | Jombart, A. T., Kamvar, Z. N., Collins, C., Lustrik, R., Beugin, P., Knaus, B. J., Soly-, P., Mikryukov, V., Schliep, K., Maié, T., Morkovsky, L., Cori, A., Calboli, F., Ewing, R. J., & Jombart, M. T. (2017). R-Package ‘ adegenet .’ | spa |
dc.relation.references | Kaldy, J. E., & Dunton, K. H. (1999). Ontogenetic photosynthetic changes, dispersal and survival of Thalassia testudinum (turtle grass) seedlings in a sub-tropical lagoon. Journal of Experimental Marine Biology and Ecology, 240(2), 193–212. https://doi.org/10.1016/S0022-0981(99)00058-1 | spa |
dc.relation.references | Kalinowski, S. T. (2004). Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conservation Genetics, 5(4), 539–543. https://doi.org/10.1023/B:COGE.0000041021.91777.1a | spa |
dc.relation.references | Kalinowski, S. T. (2005). HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x | spa |
dc.relation.references | Kendrick, G. A., Waycott, M., Carruthers, T. J. B., Cambridge, M. L., Hovey, R., Krauss, S. L., Lavery, P. S., Les, D. H., Lowe, R. J., Vidal, O. M. I., Ooi, J. L. S., Orth, R. J., Rivers, D. O., Ruiz-Montoya, L., Sinclair, E. A., Statton, J., Van Dijk, J. K., & Verduin, J. J. (2012). The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience, 62(1), 56–65. https://doi.org/10.1525/bio.2012.62.1.10 | spa |
dc.relation.references | Kershaw, F., McClintock, W., Andrews, K. R., Riet-Sapriza, F. G., Caballero, S., Tetley, M. J., Notarbartolo di Sciara, G., Hoyt, E., Goldberg, G., Chou, E., Kane-Ritsch, K., & Rosenbaum, H. C. (2021). Geospatial genetics: Integrating genetics into marine protection and spatial planning. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(9), 2440–2458. https://doi.org/10.1002/aqc.3622 | spa |
dc.relation.references | Konefal, A., Kirkland, A., Gilpin, R., Wyssmann, K., Anthony, N. M., Cebrian, J., & Cox, T. E. (2024). The relationship between genetic diversity, function, and stability in marine foundation species. BioScience, 74(3), 187–206. https://doi.org/10.1093/biosci/biad123 | spa |
dc.relation.references | Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387 | spa |
dc.relation.references | Larkin, P., Quevedo, E., Salinas, S., Parker, J., Storey, K., & Hardegree, B. (2006). Genetic structure of two Thalassia testudinum populations from the south Texas Gulf coast. Aquatic Botany, 85(3), 198–202. https://doi.org/10.1016/j.aquabot.2006.03.012 | spa |
dc.relation.references | Larkum, A. W. D., Orth, R. J., & Duarte, C. M. (2006). SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION. Springer Netherlands. https://doi.org/10.1007/978-1-4020-2983-7 | spa |
dc.relation.references | Lopera, L., Cardona, Y., & Zapata-Ramírez, P. A. (2020). Circulation in the Seaflower Reserve and Its Potential Impact on Biological Connectivity. Frontiers in Marine Science, 7(June), 1–17. https://doi.org/10.3389/fmars.2020.00385 | spa |
dc.relation.references | López-Victoria, M., Díaz, J. M., & Márquez, J. C. (2000). Las Formaciones Coralinas De Isla Tortuguilla (Caribe Colombiano). Bulletin of Marine and Coastal Research, 29, 51–58. https://doi.org/10.25268/bimc.invemar.2000.29.0.312 | spa |
dc.relation.references | Mantilla Valbuena, S. C., Chacón Herrera, C., & Román Romero, R. (2016). Toward Building a Cross-Border Integration Region among F ive Caribbean Countries * Hacia una región transfronteriza de integración. Frontera Norte, 28(56), 5–33. https://doi.org/https://doi.org/10.17428/rfn.v29i56.285 | spa |
dc.relation.references | McMahon, K., van Dijk, K., Ruiz-Montoya, L., Kendrick, G. A., Krauss, S. L., Waycott, M., Verduin, J., Lowe, R., Statton, J., Brown, E., & Duarte, C. (2014). The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences, 281(1795), 20140878. https://doi.org/10.1098/rspb.2014.0878 | spa |
dc.relation.references | Migliaccio, M., De Martino, F., Silvestre, F., & Procaccini, G. (2005). Meadow-scale genetic structure in Posidonia oceanica. Marine Ecology Progress Series, 304, 55–65. https://doi.org/10.3354/meps304055 | spa |
dc.relation.references | Mortiz, C. (1994). Defining ‘ Evolutionarily Significant Units .’ 100ht Issue Essayss, 9, 373–375. | spa |
dc.relation.references | Nakajima, Y., Matsuki, Y., Fortes, M. D., Uy, W. H., Campos, W. L., Nadaoka, K., & Lian, C. (2023). Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines. Journal of Marine Science and Engineering, 11(2). https://doi.org/10.3390/jmse11020356 | spa |
dc.relation.references | Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals INDIVIDUALS. Genetics, 89(3), 583–590. https://doi.org/10.1093/genetics/89.3.583 | spa |
dc.relation.references | O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), 1–11. https://doi.org/10.1126/sciadv.1600883 | spa |
dc.relation.references | Orth, R. J., Harwell, M. C., & Inglis, G. J. (2006). Ecology of seagrass seeds and seagrass dispersal processes. Seagrasses: Biology, Ecology and Conservation, 111–133. https://doi.org/10.1007/978-1-4020-2983-7_5 | spa |
dc.relation.references | Parques Nacionales Naturales de Colombia. (2023, February 1). Mapa - SINAP. Https://Www.Parquesnacionales.Gov.Co/Portal/Es/Sistema-Nacional-de-Areas-Protegidas-Sinap/Mapa-Sinap/. https://www.parquesnacionales.gov.co/portal/es/sistema-nacional-de-areas-protegidas-sinap/mapa-sinap/ | spa |
dc.relation.references | Pazzaglia, J., Nguyen, H. M., Santillán-Sarmiento, A., Ruocco, M., Dattolo, E., Marín-Guirao, L., & Procaccini, G. (2021). Review the genetic component of seagrass restoration: What we know and the way forwards. Water (Switzerland), 13(6), 1–24. https://doi.org/10.3390/w13060829 | spa |
dc.relation.references | Peakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 | spa |
dc.relation.references | Piry, S., Luikart, G., & Cornuet, J. M. (1999). BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90(4), 502–503. https://doi.org/10.1093/jhered/90.4.502 | spa |
dc.relation.references | Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: Causes, consequences and solutions. Nature Reviews Genetics, 6(11), 847–859. https://doi.org/10.1038/nrg1707 | spa |
dc.relation.references | Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945 | spa |
dc.relation.references | Procaccini, G., Olsen, J. L., & Reusch, T. B. H. (2007). Contribution of genetics and genomics to seagrass biology and conservation. Journal of Experimental Marine Biology and Ecology, 350(1–2), 234–259. https://doi.org/10.1016/j.jembe.2007.05.035 | spa |
dc.relation.references | Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512 | spa |
dc.relation.references | R Core Team. (2022). R Core Team 2021 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing, 2. | spa |
dc.relation.references | Raymond, M., & Rousset, F. (1995). Genpop 1.2 Population genetics software for exact test and ecumenicism. Computer Notes, 248–249. | spa |
dc.relation.references | Reem, E., Douek, J., & Rinkevich, B. (2023). Historical navigation routes in European waters leave their footprint on the contemporary seascape genetics of a colonial urochordate. Scientific Reports, 13(1), 19076. https://doi.org/10.1038/s41598-023-46174-0 | spa |
dc.relation.references | Reusch, T. B. H. (2006). Does disturbance enhance genotypic diversity in clonal organisms? A field test in the marine angiosperm Zostera marina. Molecular Ecology, 15(1), 277–286. https://doi.org/10.1111/j.1365-294X.2005.02779.x | spa |
dc.relation.references | Riginos, C., & Beger, M. (2022). Incorporating Genetic Measures of Connectivity and Adaptation in Marine Spatial Planning for Corals. In Coral Reefs of the World (Vol. 15, pp. 7–33). Springer, Cham. https://doi.org/10.1007/978-3-031-07055-6_2 | spa |
dc.relation.references | Roig-munar, F. X., Batista, O. O., Martín-prieto, J. Á., Huguet, P. B., Rodríguez-Perea, A., Ferre, B. G., & Toro-Piñero, P. (2021). Cuantificación de la pérdida de sedimento por la retirada de depósitos de Thalassia testudinum en las playas del Caribe : efectos geomorfológicos. Nemus, 11, 28–37. | spa |
dc.relation.references | Rose, C. D., & Dawes, C. J. (1999). Effects of community structure on the seagrass Thalassia testudinum. Marine Ecology Progress Series, 184, 83–95. https://doi.org/10.3354/meps184083 | spa |
dc.relation.references | Ruiz-Montoya, L., Lowe, R. J., Van Niel, K. P., & Kendrick, G. A. (2012). The role of hydrodynamics on seed dispersal in seagrasses. Limnology and Oceanography, 57(5), 1257–1265. https://doi.org/10.4319/lo.2012.57.5.1257 | spa |
dc.relation.references | Samarasin, P., Shuter, B. J., Wright, S. I., & Rodd, F. H. (2017). The problem of estimating recent genetic connectivity in a changing world. Conservation Biology, 31(1), 126–135. https://doi.org/10.1111/cobi.12765 | spa |
dc.relation.references | Serra, I. A., Innocenti, A. M., Di Maida, G., Calvo, S., Migliaccio, M., Zambianchi, E., Pizzigalli, C., Arnaud-Haond, S., Duarte, C. M., Serrao, E. A., & Procaccini, G. (2010). Genetic structure in the Mediterranean seagrass Posidonia oceanica: Disentangling past vicariance events from contemporary patterns of gene flow. Molecular Ecology, 19(3), 557–568. https://doi.org/10.1111/j.1365-294X.2009.04462.x | spa |
dc.relation.references | Serrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021). Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 11(1), 11067. https://doi.org/10.1038/s41598-021-90544-5 | spa |
dc.relation.references | Sinclair, E. A., Hovey, R. K., Krauss, S. L., Anthony, J. M., Waycott, M., & Kendrick, G. A. (2023). Historic and contemporary biogeographic perspectives on range-wide spatial genetic structure in a widespread seagrass. Ecology and Evolution, 13(3), 1–17. https://doi.org/10.1002/ece3.9900 | spa |
dc.relation.references | Stankiewicz, K. H., Vasquez Kuntz, K. L., Baums, I. B., Ledoux, J. B., Aurelle, D., Garrabou, J., Nakajima, Y., Dahl, M., Zayasu, Y., Jaziri, S., & Costantini, F. (2022). The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets. Molecular Ecology Resources, 22(3), 1135–1148. https://doi.org/10.1111/1755-0998.13522 | spa |
dc.relation.references | Tavares, A. I., Assis, J., Larkin, P. D., Creed, J. C., Magalhães, K., Horta, P., Engelen, A., Cardoso, N., Barbosa, C., Pontes, S., Regalla, A., Almada, C., Ferreira, R., Abdoul, B. M., Ebaye, S., Bourweiss, M., dos Santos, C. V. D., Patrício, A. R., Teodósio, A., … Serrao, E. A. (2023). Long range gene flow beyond predictions from oceanographic transport in a tropical marine foundation species. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-36367-y | spa |
dc.relation.references | Truelove, N. K., Box, S. J., Aiken, K. A., Blythe‐Mallett, A., Boman, E. M., Booker, C. J., Byfield, T. T., Cox, C. E., Davis, M. H., Delgado, G. A., Glazer, B. A., Griffiths, S. M., Kitson‐Walters, K., Kough, A. S., Pérez Enríquez, R., Preziosi, R. F., Roy, M. E., Segura‐García, I., Webber, M. K., & Stoner, A. W. (2017). Isolation by oceanic distance and spatial genetic structure in an overharvested international fishery. Diversity and Distributions, 23(11), 1292–1300. https://doi.org/10.1111/ddi.12626 | spa |
dc.relation.references | Tussenbroek, B. I. V., Vonk, J. A., Stapel, J., Erftemeijer, P. L. A., Middelburg, J. J., & Zieman, J. C. (2006). The biology of thalassia: Paradigms and recent advances in research. Seagrasses: Biology, Ecology and Conservation, 1980, 409–439. https://doi.org/10.1007/978-1-4020-2983-7_18 | spa |
dc.relation.references | van Dijk, J. K., & van Tussenbroek, B. I. (2010). Clonal diversity and structure related to habitat of the marine angiosperm Thalassia testudinum along the Atlantic coast of Mexico. Aquatic Botany, 92(1), 63–69. https://doi.org/10.1016/j.aquabot.2009.10.005 | spa |
dc.relation.references | van Dijk, J. K., van Tussenbroek, B. I., Jiménez-Durán, K., Márquez-Guzman, G. J., & Ouborg, J. (2009). High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Marine Ecology Progress Series, 390(August), 67–77. https://doi.org/10.3354/meps08190 | spa |
dc.relation.references | van Dijk, J. K., Waycott, M., van Tussenbroek, B. I., & Ouborg, J. (2007). Polymorphic microsatellite markers for the Caribbean seagrass Thalassia testudinum Banks ex König. Molecular Ecology Notes, 7(1), 89–91. https://doi.org/10.1111/j.1471-8286.2006.01539.x | spa |
dc.relation.references | van Dijk, J. K., Bricker, E., van Tussenbroek, B. I., & Waycott, M. (2018). Range-wide population genetic structure of the Caribbean marine angiosperm Thalassia testudinum. Ecology and Evolution, 8(18), 9478–9490. https://doi.org/10.1002/ece3.4443 | spa |
dc.relation.references | van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x | spa |
dc.relation.references | van Tussenbroek, B. I., Valdivia-Carrillo, T., Rodríguez-Virgen, I. T., Sanabria-Alcaraz, S. N. M., Jiménez-Durán, K., Van Dijk, K. J., & Marquez-Guzmán, G. J. (2016). Coping with potential bi-parental inbreeding: limited pollen and seed dispersal and large genets in the dioecious marine angiosperm Thalassia testudinum. Ecology and Evolution, 6(15), 5542–5556. https://doi.org/10.1002/ece3.2309 | spa |
dc.relation.references | Vargas, G. (2004). Geología y Aspectos Geográficos de la Isla de San Andrés, Colombia. Geología Colombiana, 29, 73–89. | spa |
dc.relation.references | Veettil, B. K., Ward, R. D., Lima, M. D. A. C., Stankovic, M., Hoai, P. N., & Quang, N. X. (2020). Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecological Indicators, 117(May), 106560. https://doi.org/10.1016/j.ecolind.2020.106560 | spa |
dc.relation.references | Vides, M., D. Alonso, E. Castro, N. B. (2016). Biodiversidad del Mar de los Siete Colores. In Angewandte Chemie International Edition, 6(11), 951–952. (84th ed., Vol. 119, Issue 4). Instituto de Investigaciones Marinas y Costeras – INVEMAR y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina - CORALINA. | spa |
dc.relation.references | Waycott, M. (1998). Genetic variation, its assessment and implications to the conservation of seagrasses. Molecular Ecology, 7(7), 793–800. https://doi.org/10.1046/j.1365-294x.1998.00375.x | spa |
dc.relation.references | Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., & Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106 | spa |
dc.relation.references | Waycott, M., Procaccini, G., Les, D. H., & Reusch, T. B. H. (2006). Seagrass Evolution, Ecology and Conservation: A Genetic Perspective. In SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION (pp. 25–50). Springer Netherlands. https://doi.org/10.1007/978-1-4020-2983-7_2 | spa |
dc.relation.references | Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191. https://doi.org/10.1093/genetics/163.3.1177 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.ddc | 580 - Plantas::581 - Temas específicos en historia natural de las plantas | spa |
dc.subject.proposal | Conservation genetics | eng |
dc.subject.proposal | seagrasses | eng |
dc.subject.proposal | anthropogenic impact | eng |
dc.subject.proposal | connectivity | eng |
dc.subject.proposal | oceanic islands | eng |
dc.subject.proposal | continental environments | eng |
dc.subject.proposal | Caribbean | eng |
dc.subject.proposal | Conservación genética | spa |
dc.subject.proposal | pastos marinos | spa |
dc.subject.proposal | impactos antrópicos | spa |
dc.subject.proposal | conectividad | spa |
dc.subject.proposal | islas oceánicas | spa |
dc.subject.proposal | ambientes continentales | spa |
dc.subject.proposal | Caribe | spa |
dc.title | Genetic structure and connectivity of Thalassia testudinum in oceanic and continental environments of the Colombian Caribbean | eng |
dc.title.translated | Estructura genética y conectividad de Thalassia testudinum en ambientes oceánicos y continentales del Caribe colombiano | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Genetic structure and connectivity of Thalassia testudinum in oceanic and continental environments of the Colombian Caribbean | spa |
oaire.fundername | National Geographic Society | spa |
oaire.fundername | UNESCO | spa |
oaire.fundername | Rufford Foundation | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 1019073150.2024.pdf
- Tamaño:
- 1.74 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de maestría en genética de poblaciones de pastos marinos
Cargando...
- Nombre:
- Supplementary_material_ThesisDBA .xlsx
- Tamaño:
- 2.41 MB
- Formato:
- Microsoft Excel XML
- Descripción:
- Material suplementario Tesis 1019073150
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: