Genetic structure and connectivity of Thalassia testudinum in oceanic and continental environments of the Colombian Caribbean

dc.contributor.advisorVargas Ramírez, Mario Alfonso (Thesis advisor)
dc.contributor.advisorBarrios Gardelis, Lina María
dc.contributor.authorBarrios Amaya, Miguel David
dc.contributor.financerNational Geographic Society
dc.contributor.financerUnited Nations Educational, Scientific and Cultural Organization - UNESCO
dc.contributor.financerRufford Foundation
dc.contributor.researchgroupBiodiversidad y Conservación Genéticaspa
dc.date.accessioned2025-07-03T16:36:47Z
dc.date.available2025-07-03T16:36:47Z
dc.date.issued2024-08-24
dc.description.abstractThalassia testudinum, a critical ecosystem engineer in the Caribbean, provides essential habitat and supports vital ecosystem services. However, likewise other seagrass species globally, its populations face increasing anthropogenic pressures, leading to significant declines in coverage and functionality. Understanding the historical and contemporary population dynamics of this species, which exhibits both sexual and clonal reproduction, is crucial for effective conservation and management strategies. This study investigated the genetic diversity and connectivity of T. testudinum populations across oceanic and continental environments in the Colombian Caribbean, integrating data across the species' range and considering potential anthropogenic impacts. Microsatellite analysis of 240 samples from eight Colombian populations, compared with a previously developed regional dataset encompassing 32 additional populations, revealed a complex interplay of geological, oceanographic, biological, and anthropogenic factors shaping population structure. While relatively high genetic diversity and gene flow were observed at national and regional scales, distinct patterns emerged between oceanic and continental environments. These findings highlight (i) the identifiable population structure of the species comprising five genetic clusters in Colombia (ii) the remarkable (re)colonisation capacity of T. testudinum facilitated by long-distance dispersal, clonality, and inbreeding avoidance; (iii) the role of stochastic processes in dispersal and the lack of strong isolation-by-distance at certain scales; and (iv) the vulnerability of populations to short-term anthropogenic disturbances. This study identifies five Independent Management Units and underscores the need for area-specific conservation strategies to safeguard the long-term resilience of T. testudinum and the invaluable ecosystems it supports.eng
dc.description.abstractThalassia testudinum, una especie clave para la ingeniería del ecosistema de pastos marinos en el Caribe, proporciona un hábitat esencial y sustenta servicios ecosistémicos vitales. Sin embargo, al igual que otras especies de pastos marinos a nivel mundial, sus poblaciones se enfrentan a crecientes presiones antropogénicas, lo que ha conducido a disminuciones significativas en su cobertura y funcionalidad. Comprender la dinámica poblacional histórica y contemporánea de esta especie, que exhibe tanto reproducción sexual como clonal, es crucial su efectiva conservación. Este estudio investigó la diversidad genética y la conectividad de las poblaciones de T. testudinum en entornos oceánicos y continentales del Caribe colombiano, integrando datos a lo largo del rango de distribución de la especie y considerando los posibles impactos antropogénicos. El análisis de microsatélites de 240 muestras de ocho poblaciones colombianas, en comparación con un conjunto de datos regional previamente desarrollado que abarca 32 poblaciones adicionales, reveló una compleja interacción de factores geológicos, oceanográficos, biológicos y antropogénicos que dan forma a la estructura poblacional. Si bien se observó una diversidad genética y un flujo génico relativamente altos a escala nacional y regional, surgieron patrones diferenciados entre los entornos oceánicos y continentales. Estos hallazgos resaltan (i) la identificable estructura poblacional de la especie, que comprende cinco clusters genéticos en Colombia; (ii) la remarcable capacidad de (re)colonización de T. testudinum, facilitada por la dispersión de larga distancia, clonalidad y la prevención de la endogamia; (iii) el papel de la estocasticidad en la dispersión y la falta de significancia del aislamiento por distancia en ciertas escalas; y (iv) la vulnerabilidad de las poblaciones a las perturbaciones antropogénicas de corto plazo. Este estudio subraya la necesidad de estrategias de conservación específicas para cada área, a fin de salvaguardar la resiliencia a largo plazo de esta especie y el invaluable ecosistema que soporta (Texto tomado de la fuente).spa
dc.description.curricularareaOtra. Sede Caribespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.methodsConservación genética; microsatélitesspa
dc.description.researchareaConservación genéticaspa
dc.description.sponsorshipThis endeavour would not have been possible without the generous funding and engagement of the National Geographic Society and its Early Career Grants Programme, Grant EC-396R-18; the UNESCO MAB Programme and its Young Scientists Awards, Contract Number 4500409564; and the Rufford Foundation and its Small Grants Programme, Grant 25077-1.spa
dc.format.extentVIII, 63 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88284
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribespa
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad Caribespa
dc.publisher.placeSan Andrés Islasspa
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAlberto, F., Arnaud-Haond, S., Duarte, C., & Serrão, E. (2006). Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. Marine Ecology Progress Series, 309, 117–129. https://doi.org/10.3354/meps309117spa
dc.relation.referencesAndrade, C. A. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, XXV(96). https://www.raccefyn.co/index.php/raccefynspa
dc.relation.referencesAndrade, C. A. (2015). Oceanografía dinámica de la cuenca de Colombia (Alpha Edit, Issue January 2015).spa
dc.relation.referencesAngel, R. (2002). Genetic diversity of Halodule wrightii using random amplified polymorphic DNA. Aquatic Botany, 74(2), 165–174. https://doi.org/10.1016/S0304-3770(02)00079-7spa
dc.relation.referencesApostoloumi, C., Malea, P., & Kevrekidis, T. (2021). Principles and concepts about seagrasses: Towards a sustainable future for seagrass ecosystems. Marine Pollution Bulletin, 173(PA), 112936. https://doi.org/10.1016/j.marpolbul.2021.112936spa
dc.relation.referencesArnaud-Haond, S., Alberto, F., Teixeira, S., Procaccini, G., Serrão, E. A., & Duarte, C. M. (2005). Assessing Genetic Diversity in Clonal Organisms: Low Diversity or Low Resolution? Combining Power and Cost Efficiency in Selecting Markers. Journal of Heredity, 96(4), 434–440. https://doi.org/10.1093/jhered/esi043spa
dc.relation.referencesArnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16(24), 5115–5139. https://doi.org/10.1111/j.1365-294X.2007.03535.xspa
dc.relation.referencesArnaud-Haond, S., & Belkhir, K. (2007). GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes, 7(1), 15–17. https://doi.org/10.1111/j.1471-8286.2006.01522.xspa
dc.relation.referencesArnaud-Haond, S., Moalic, Y., Hernández-García, E., Eguiluz, V. M., Alberto, F., Serrão, E. A., & Duarte, C. M. (2014). Disentangling the influence of mutation and migration in clonal seagrasses using the genetic diversity spectrum for microsatellites. Journal of Heredity, 105(4), 532–541. https://doi.org/10.1093/jhered/esu015spa
dc.relation.referencesArnaud‐Haond, S., Stoeckel, S., & Bailleul, D. (2020). New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Molecular Ecology, 29(17), 3248–3260. https://doi.org/10.1111/mec.15532spa
dc.relation.referencesBallesteros-Contreras, D. C., Barrios, L. M., & Preziosi, R. (2022). Population structure of the shallow coral Madracis auretenra in the Caribbean Sea. Frontiers in Marine Science, 9(October), 1–15. https://doi.org/10.3389/fmars.2022.840730spa
dc.relation.referencesBalloux, F. (2004). Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution, 58(9), 1891–1900. https://doi.org/10.1111/j.0014-3820.2004.tb00477.xspa
dc.relation.referencesBarrios, L. M., & Gómez, D. I. (2001). Estado de las praderas de pastos marinos. In informe del estado de los ambientes marinos y costeros en Colombia (Issue Tabla 2).spa
dc.relation.referencesBenavides, M. (2020). Connectivity between natural populations of the sea urchin Echinometra lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region. Universidad Nacional de Colombia - Sede Caribe.spa
dc.relation.referencesBijak, A. L., van Dijk, K., & Waycott, M. (2018). Population structure and gene flow of the tropical seagrass, Syringodium filiforme, in the Florida Keys and subtropical Atlantic region. PLoS ONE, 13(9), 1–18. https://doi.org/10.1371/journal.pone.0203644spa
dc.relation.referencesBijak, A. L., van Dijk, K., & Waycott, M. (2014). Development of Microsatellite Markers for a Tropical Seagrass, Syringodium filiforme (Cymodoceaceae). Applications in Plant Sciences, 2(10), 1400082. https://doi.org/10.3732/apps.1400082spa
dc.relation.referencesBonin, A., Bellemain, E., Bronken Eidesen, P., Pompanon, F., Brochmann, C., & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13(11), 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.xspa
dc.relation.referencesBricker, E., Waycott, M., Calladine, A., & Zieman, J. (2011). High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Marine Ecology Progress Series, 423, 57–67. https://doi.org/10.3354/meps08962spa
dc.relation.referencesCampanella, J. J., Bologna, P. A. X., Carvalho, M., Smalley, J. V., Elakhrass, M., Meredith, R. W., & Zaben, N. (2015). Clonal diversity and connectedness of turtle grass (Thalassia testudinum) populations in a UNESCO Biosphere Reserve. Aquatic Botany, 123, 76–82. https://doi.org/10.1016/j.aquabot.2015.01.008spa
dc.relation.referencesCarvajal-Arenas, L. C., & Mann, P. (2018). Western Caribbean intraplate deformation: Defining a continuous and active microplate boundary along the San Andres rift and Hess Escarpment fault zone, Colombian Caribbean Sea. AAPG Bulletin, 102(08), 1523–1563. https://doi.org/10.1306/12081717221spa
dc.relation.referencesCCO. (2015). Aportes al conocimiento de la Reserva de Biósfera Seaflower (I. Murillo (ed.)). Comisión Colombiana del Océano.spa
dc.relation.referencesCendales, M. H., Zea, S., & Díaz, J. M. (2002). Geomorfología y unidades ecológicas del complejo de arrecifes de las Islas del Rosario e Isla Barú (Mar Caribe, Colombia). Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 26(101), 497–510. https://www.accefyn.com/revista/Vol_26/101/497-510.pdfspa
dc.relation.referencesCenturioni, L. R., & Niiler, P. P. (2003). On the surface currents of the Caribbean Sea. Geophysical Research Letters, 30(6), 10–13. https://doi.org/10.1029/2002GL016231spa
dc.relation.referencesChapuis, M.-P., & Estoup, A. (2007). Microsatellite Null Alleles and Estimation of Population Differentiation. Molecular Biology and Evolution, 24(3), 621–631. https://doi.org/10.1093/molbev/msl191spa
dc.relation.referencesCORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de S. In Serie de publicaciones especiales, Invema, No. 28, p. 180 (Vol. 28). http://www.invemar.org.co/redcostera1/invemar/docs/10447AtlasSAISeaflower.pdfspa
dc.relation.referencesCostanza, R., D’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0spa
dc.relation.referencesCox, P. A., & Tomlinson, P. B. (1988). Pollination Ecology of a Seagrass, Thalassia testudinum (Hydrocharitaceae), in St. Croix. American Journal of Botany, 75(7), 958. https://doi.org/10.2307/2443761spa
dc.relation.referencesCullen-Unsworth, L. C., Nordlund, L. M., Paddock, J., Baker, S., McKenzie, L. J., & Unsworth, R. K. F. (2014). Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Marine Pollution Bulletin, 83(2), 387–397. https://doi.org/10.1016/j.marpolbul.2013.06.001spa
dc.relation.referencesD’Esposito, D., Dattolo, E., Badalamenti, F., Orsini, L., & Procaccini, G. (2012). Comparative Analysis of Genetic Diversity of Posidonia Oceanica Along a Depth Gradient Using Neutral and Selective/Non Neutral Microsatellites Markers. Biol. Mar. Mediterr, 19(1), 45–48. http://www.sibm.it/PDF ATTI/PDF CAMEROTA/Pagine 45-48.pdfspa
dc.relation.referencesDíaz, Juan M., Sánchez, J. A., & Díaz Pulido, G. (1996). Geomorfologia y formaciones arrecifales recientes de Isla Fuerte y Bajo Bushnell, plataforma continental del Caribe colombiano. Bulletin of Marine and Coastal Research, 25(1), 87–105. https://doi.org/10.25268/bimc.invemar.1996.25.0.372spa
dc.relation.referencesDíaz, Juan M., Barrios, L., Cendales, M. H., Garzón-Ferreira, J., Geister, J., López-Victoria, M., Ospina, G., Parra-Velandia, F., Pinzón, J., Vargas-Angel, B., Zapata, F., & Zea, S. (2000). Áreas coralinas de Colombia. (Juan Manuel Díaz (ed.)). INVEMAR. http://biologiatropical.ucr.ac.cr/attachments/volumes/vol50-1/42-Reseñas Libros.pdfspa
dc.relation.referencesDíaz, Juan M., Barrios, L., & Gomez-López, D. (2003). Las praderas de pastos marinos en Colombia: Estructura y dsitribución de un ecosistema estratégico. (Issue July 2015). https://doi.org/10.13140/2.1.4073.6322spa
dc.relation.referencesDray, S., & Dufour, A.-B. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04spa
dc.relation.referencesEarl, D. A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7spa
dc.relation.referencesEckert, C. G., Samis, K. E., & Lougheed, S. C. (2008a). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 17(5), 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.xspa
dc.relation.referencesEckert, C. G., Samis, K. E., & Lougheed, S. C. (2008b). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. In Molecular Ecology (Vol. 17, Issue 5, pp. 1170–1188). https://doi.org/10.1111/j.1365-294X.2007.03659.xspa
dc.relation.referencesEdgeloe, J. M., Severn-Ellis, A. A., Bayer, P. E., Mehravi, S., Breed, M. F., Krauss, S. L., Batley, J., Kendrick, G. A., & Sinclair, E. A. (2022). Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences, 289(1976). https://doi.org/10.1098/rspb.2022.0538spa
dc.relation.referencesEmerson, B. C. (2002). Evolution on oceanic islands: Molecular phylogenetic approaches to understanding pattern and process. Molecular Ecology, 11(6), 951–966. https://doi.org/10.1046/j.1365-294X.2002.01507.xspa
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xspa
dc.relation.referencesExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.xspa
dc.relation.referencesGaleano, Elizabeh, Gomez-Lopez, D. I., Navas, R., Alonso, D., Zarza- González, E., Cano-Correa, M., Ward Bolivar, V., Posada-Osorio, L., Bolaños, N., Payan, L. ., & Aponte, C. (2016). Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2014-2015) (86th ed.). INVEMAR.spa
dc.relation.referencesGaleano, Elizabeth. (2012). Fenología reproductiva y diversidad genética de Thalassia testudinum Banks ex König (Hydrocharitaceae) en la isla de San Andrés. Universidad Nacional de Colombia.spa
dc.relation.referencesGallego-García, N., Vargas-Ramírez, M., Forero-Medina, G., & Caballero, S. (2018). Genetic evidence of fragmented populations and inbreeding in the Colombian endemic Dahl’s toad-headed turtle (Mesoclemmys dahli). Conservation Genetics, 19(1), 221–233. https://doi.org/10.1007/s10592-017-1021-zspa
dc.relation.referencesGeister, J., & Díaz, J. (2007). Ambientes arrecifales y geología de un archipiélago oceánico: San Andrés, Providencia y Santa Catalina. Ingeominas, 114.spa
dc.relation.referencesGeister, Jörn. (1972). Nota sobre la edad de las calizas coralinas del Pleistoceno marino en las Islas de San Andrés y Providencia (Mar Caribe Occidental, Colombia). Bulletin of Marine and Coastal Research, 6, 135–140. https://doi.org/10.25268/bimc.invemar.1972.6.0.564spa
dc.relation.referencesGeister, J. (1992). Modern reef development and cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Caribbean sea, Colombia). Facies, 27(1), 1–69. https://doi.org/10.1007/BF02536804spa
dc.relation.referencesGómez-Cubillos, C., Licero, L., Perdomo, L., Rodríguez, A., Romero, D., Ballesteros-Contreras, D., Gómez-López, D., Melo, A., Chasqui, L., Ocampo, M. A., Alonso, D., García, J., Peña, C., Bastidas, M., & Ricaurte, C. (2015). Portafolio: Áreas de arrecifes de coral, pastos marinos, playas de arena y manglares con potencial de restauración en Colombia (Serie de P). INVEMAR.spa
dc.relation.referencesGómez-López, D. I., Acosta, A., González, J. D., Sánchez, L., Navas-Camacho, R., & Alonso, D. (2020). Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2018-2019). INVEMAR. https://doi.org/https://n2t.net/ark:/81239/m95h5zspa
dc.relation.referencesGómez-López, D. I., & Alonso, D. (2016). Levantamiento de información para la caracterización y diagnóstico de las praderas de pastos marinos con fines de elaborar una propuesta de zonificación de la zona marino-costera del departamento de La Guajira y Chocó Caribe. FaseII: época climática seca. In Levantamiento de información ambiental de sistemas marinos y costeros sobre el Caribe colombiano Fase II. Convenio 167 ANH- INVEMAR. INVEMAR. http://www.invemar.org.cospa
dc.relation.referencesGuerra-Vargas, L. A., Gillis, L. G., & Mancera-Pineda, J. E. (2020). Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Frontiers in Marine Science, 7(July), 1–15. https://doi.org/10.3389/fmars.2020.00628spa
dc.relation.referencesHernawan, U. E., van Dijk, K. J., Kendrick, G. A., Feng, M., Biffin, E., Lavery, P. S., & McMahon, K. (2017). Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Molecular Ecology, 26(4), 1008–1021. https://doi.org/10.1111/mec.13966spa
dc.relation.referencesHubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9(5), 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.xspa
dc.relation.referencesHudson, J., Viard, F., Roby, C., & Rius, M. (2016). Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biology Letters, 12(10), 20160620. https://doi.org/10.1098/rsbl.2016.0620spa
dc.relation.referencesHughes, A. R., & Stachowicz, J. J. (2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 8998–9002. https://doi.org/10.1073/pnas.0402642101spa
dc.relation.referencesHughes, A. R., & Stachowicz, J. J. (2009). Ecological impacts of genotypic diversity in the clonal seagrass Zostera marina. Ecology, 90(5), 1412–1419. https://doi.org/10.1890/07-2030.1spa
dc.relation.referencesIdárraga-García, J., García-Varón, J., & León, H. (2021). Submarine geomorphology, tectonic features and mass wasting processes in the archipelago of San Andres, Providencia and Santa Catalina (western Caribbean). Marine Geology, 435. https://doi.org/10.1016/j.margeo.2021.106458spa
dc.relation.referencesJahnke, M., Olsen, J. L., & Procaccini, G. (2015). A meta‐analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long‐lived seagrass Posidonia oceanica. Molecular Ecology, 24(10), 2336–2348. https://doi.org/10.1111/mec.13174spa
dc.relation.referencesJames, R. (2007). Routes for Roots: Entering the 21St Century in San Andrés Island, Colombia. Caribbean Studies, 35(1), 3–36. https://www.redalyc.org/articulo.oa?id=39211831001spa
dc.relation.referencesJombart, A. T., Kamvar, Z. N., Collins, C., Lustrik, R., Beugin, P., Knaus, B. J., Soly-, P., Mikryukov, V., Schliep, K., Maié, T., Morkovsky, L., Cori, A., Calboli, F., Ewing, R. J., & Jombart, M. T. (2017). R-Package ‘ adegenet .’spa
dc.relation.referencesKaldy, J. E., & Dunton, K. H. (1999). Ontogenetic photosynthetic changes, dispersal and survival of Thalassia testudinum (turtle grass) seedlings in a sub-tropical lagoon. Journal of Experimental Marine Biology and Ecology, 240(2), 193–212. https://doi.org/10.1016/S0022-0981(99)00058-1spa
dc.relation.referencesKalinowski, S. T. (2004). Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conservation Genetics, 5(4), 539–543. https://doi.org/10.1023/B:COGE.0000041021.91777.1aspa
dc.relation.referencesKalinowski, S. T. (2005). HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.xspa
dc.relation.referencesKendrick, G. A., Waycott, M., Carruthers, T. J. B., Cambridge, M. L., Hovey, R., Krauss, S. L., Lavery, P. S., Les, D. H., Lowe, R. J., Vidal, O. M. I., Ooi, J. L. S., Orth, R. J., Rivers, D. O., Ruiz-Montoya, L., Sinclair, E. A., Statton, J., Van Dijk, J. K., & Verduin, J. J. (2012). The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience, 62(1), 56–65. https://doi.org/10.1525/bio.2012.62.1.10spa
dc.relation.referencesKershaw, F., McClintock, W., Andrews, K. R., Riet-Sapriza, F. G., Caballero, S., Tetley, M. J., Notarbartolo di Sciara, G., Hoyt, E., Goldberg, G., Chou, E., Kane-Ritsch, K., & Rosenbaum, H. C. (2021). Geospatial genetics: Integrating genetics into marine protection and spatial planning. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(9), 2440–2458. https://doi.org/10.1002/aqc.3622spa
dc.relation.referencesKonefal, A., Kirkland, A., Gilpin, R., Wyssmann, K., Anthony, N. M., Cebrian, J., & Cox, T. E. (2024). The relationship between genetic diversity, function, and stability in marine foundation species. BioScience, 74(3), 187–206. https://doi.org/10.1093/biosci/biad123spa
dc.relation.referencesKopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387spa
dc.relation.referencesLarkin, P., Quevedo, E., Salinas, S., Parker, J., Storey, K., & Hardegree, B. (2006). Genetic structure of two Thalassia testudinum populations from the south Texas Gulf coast. Aquatic Botany, 85(3), 198–202. https://doi.org/10.1016/j.aquabot.2006.03.012spa
dc.relation.referencesLarkum, A. W. D., Orth, R. J., & Duarte, C. M. (2006). SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION. Springer Netherlands. https://doi.org/10.1007/978-1-4020-2983-7spa
dc.relation.referencesLopera, L., Cardona, Y., & Zapata-Ramírez, P. A. (2020). Circulation in the Seaflower Reserve and Its Potential Impact on Biological Connectivity. Frontiers in Marine Science, 7(June), 1–17. https://doi.org/10.3389/fmars.2020.00385spa
dc.relation.referencesLópez-Victoria, M., Díaz, J. M., & Márquez, J. C. (2000). Las Formaciones Coralinas De Isla Tortuguilla (Caribe Colombiano). Bulletin of Marine and Coastal Research, 29, 51–58. https://doi.org/10.25268/bimc.invemar.2000.29.0.312spa
dc.relation.referencesMantilla Valbuena, S. C., Chacón Herrera, C., & Román Romero, R. (2016). Toward Building a Cross-Border Integration Region among F ive Caribbean Countries * Hacia una región transfronteriza de integración. Frontera Norte, 28(56), 5–33. https://doi.org/https://doi.org/10.17428/rfn.v29i56.285spa
dc.relation.referencesMcMahon, K., van Dijk, K., Ruiz-Montoya, L., Kendrick, G. A., Krauss, S. L., Waycott, M., Verduin, J., Lowe, R., Statton, J., Brown, E., & Duarte, C. (2014). The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences, 281(1795), 20140878. https://doi.org/10.1098/rspb.2014.0878spa
dc.relation.referencesMigliaccio, M., De Martino, F., Silvestre, F., & Procaccini, G. (2005). Meadow-scale genetic structure in Posidonia oceanica. Marine Ecology Progress Series, 304, 55–65. https://doi.org/10.3354/meps304055spa
dc.relation.referencesMortiz, C. (1994). Defining ‘ Evolutionarily Significant Units .’ 100ht Issue Essayss, 9, 373–375.spa
dc.relation.referencesNakajima, Y., Matsuki, Y., Fortes, M. D., Uy, W. H., Campos, W. L., Nadaoka, K., & Lian, C. (2023). Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines. Journal of Marine Science and Engineering, 11(2). https://doi.org/10.3390/jmse11020356spa
dc.relation.referencesNei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals INDIVIDUALS. Genetics, 89(3), 583–590. https://doi.org/10.1093/genetics/89.3.583spa
dc.relation.referencesO’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), 1–11. https://doi.org/10.1126/sciadv.1600883spa
dc.relation.referencesOrth, R. J., Harwell, M. C., & Inglis, G. J. (2006). Ecology of seagrass seeds and seagrass dispersal processes. Seagrasses: Biology, Ecology and Conservation, 111–133. https://doi.org/10.1007/978-1-4020-2983-7_5spa
dc.relation.referencesParques Nacionales Naturales de Colombia. (2023, February 1). Mapa - SINAP. Https://Www.Parquesnacionales.Gov.Co/Portal/Es/Sistema-Nacional-de-Areas-Protegidas-Sinap/Mapa-Sinap/. https://www.parquesnacionales.gov.co/portal/es/sistema-nacional-de-areas-protegidas-sinap/mapa-sinap/spa
dc.relation.referencesPazzaglia, J., Nguyen, H. M., Santillán-Sarmiento, A., Ruocco, M., Dattolo, E., Marín-Guirao, L., & Procaccini, G. (2021). Review the genetic component of seagrass restoration: What we know and the way forwards. Water (Switzerland), 13(6), 1–24. https://doi.org/10.3390/w13060829spa
dc.relation.referencesPeakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460spa
dc.relation.referencesPiry, S., Luikart, G., & Cornuet, J. M. (1999). BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90(4), 502–503. https://doi.org/10.1093/jhered/90.4.502spa
dc.relation.referencesPompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: Causes, consequences and solutions. Nature Reviews Genetics, 6(11), 847–859. https://doi.org/10.1038/nrg1707spa
dc.relation.referencesPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945spa
dc.relation.referencesProcaccini, G., Olsen, J. L., & Reusch, T. B. H. (2007). Contribution of genetics and genomics to seagrass biology and conservation. Journal of Experimental Marine Biology and Ecology, 350(1–2), 234–259. https://doi.org/10.1016/j.jembe.2007.05.035spa
dc.relation.referencesPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512spa
dc.relation.referencesR Core Team. (2022). R Core Team 2021 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing, 2.spa
dc.relation.referencesRaymond, M., & Rousset, F. (1995). Genpop 1.2 Population genetics software for exact test and ecumenicism. Computer Notes, 248–249.spa
dc.relation.referencesReem, E., Douek, J., & Rinkevich, B. (2023). Historical navigation routes in European waters leave their footprint on the contemporary seascape genetics of a colonial urochordate. Scientific Reports, 13(1), 19076. https://doi.org/10.1038/s41598-023-46174-0spa
dc.relation.referencesReusch, T. B. H. (2006). Does disturbance enhance genotypic diversity in clonal organisms? A field test in the marine angiosperm Zostera marina. Molecular Ecology, 15(1), 277–286. https://doi.org/10.1111/j.1365-294X.2005.02779.xspa
dc.relation.referencesRiginos, C., & Beger, M. (2022). Incorporating Genetic Measures of Connectivity and Adaptation in Marine Spatial Planning for Corals. In Coral Reefs of the World (Vol. 15, pp. 7–33). Springer, Cham. https://doi.org/10.1007/978-3-031-07055-6_2spa
dc.relation.referencesRoig-munar, F. X., Batista, O. O., Martín-prieto, J. Á., Huguet, P. B., Rodríguez-Perea, A., Ferre, B. G., & Toro-Piñero, P. (2021). Cuantificación de la pérdida de sedimento por la retirada de depósitos de Thalassia testudinum en las playas del Caribe : efectos geomorfológicos. Nemus, 11, 28–37.spa
dc.relation.referencesRose, C. D., & Dawes, C. J. (1999). Effects of community structure on the seagrass Thalassia testudinum. Marine Ecology Progress Series, 184, 83–95. https://doi.org/10.3354/meps184083spa
dc.relation.referencesRuiz-Montoya, L., Lowe, R. J., Van Niel, K. P., & Kendrick, G. A. (2012). The role of hydrodynamics on seed dispersal in seagrasses. Limnology and Oceanography, 57(5), 1257–1265. https://doi.org/10.4319/lo.2012.57.5.1257spa
dc.relation.referencesSamarasin, P., Shuter, B. J., Wright, S. I., & Rodd, F. H. (2017). The problem of estimating recent genetic connectivity in a changing world. Conservation Biology, 31(1), 126–135. https://doi.org/10.1111/cobi.12765spa
dc.relation.referencesSerra, I. A., Innocenti, A. M., Di Maida, G., Calvo, S., Migliaccio, M., Zambianchi, E., Pizzigalli, C., Arnaud-Haond, S., Duarte, C. M., Serrao, E. A., & Procaccini, G. (2010). Genetic structure in the Mediterranean seagrass Posidonia oceanica: Disentangling past vicariance events from contemporary patterns of gene flow. Molecular Ecology, 19(3), 557–568. https://doi.org/10.1111/j.1365-294X.2009.04462.xspa
dc.relation.referencesSerrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021). Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 11(1), 11067. https://doi.org/10.1038/s41598-021-90544-5spa
dc.relation.referencesSinclair, E. A., Hovey, R. K., Krauss, S. L., Anthony, J. M., Waycott, M., & Kendrick, G. A. (2023). Historic and contemporary biogeographic perspectives on range-wide spatial genetic structure in a widespread seagrass. Ecology and Evolution, 13(3), 1–17. https://doi.org/10.1002/ece3.9900spa
dc.relation.referencesStankiewicz, K. H., Vasquez Kuntz, K. L., Baums, I. B., Ledoux, J. B., Aurelle, D., Garrabou, J., Nakajima, Y., Dahl, M., Zayasu, Y., Jaziri, S., & Costantini, F. (2022). The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets. Molecular Ecology Resources, 22(3), 1135–1148. https://doi.org/10.1111/1755-0998.13522spa
dc.relation.referencesTavares, A. I., Assis, J., Larkin, P. D., Creed, J. C., Magalhães, K., Horta, P., Engelen, A., Cardoso, N., Barbosa, C., Pontes, S., Regalla, A., Almada, C., Ferreira, R., Abdoul, B. M., Ebaye, S., Bourweiss, M., dos Santos, C. V. D., Patrício, A. R., Teodósio, A., … Serrao, E. A. (2023). Long range gene flow beyond predictions from oceanographic transport in a tropical marine foundation species. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-36367-yspa
dc.relation.referencesTruelove, N. K., Box, S. J., Aiken, K. A., Blythe‐Mallett, A., Boman, E. M., Booker, C. J., Byfield, T. T., Cox, C. E., Davis, M. H., Delgado, G. A., Glazer, B. A., Griffiths, S. M., Kitson‐Walters, K., Kough, A. S., Pérez Enríquez, R., Preziosi, R. F., Roy, M. E., Segura‐García, I., Webber, M. K., & Stoner, A. W. (2017). Isolation by oceanic distance and spatial genetic structure in an overharvested international fishery. Diversity and Distributions, 23(11), 1292–1300. https://doi.org/10.1111/ddi.12626spa
dc.relation.referencesTussenbroek, B. I. V., Vonk, J. A., Stapel, J., Erftemeijer, P. L. A., Middelburg, J. J., & Zieman, J. C. (2006). The biology of thalassia: Paradigms and recent advances in research. Seagrasses: Biology, Ecology and Conservation, 1980, 409–439. https://doi.org/10.1007/978-1-4020-2983-7_18spa
dc.relation.referencesvan Dijk, J. K., & van Tussenbroek, B. I. (2010). Clonal diversity and structure related to habitat of the marine angiosperm Thalassia testudinum along the Atlantic coast of Mexico. Aquatic Botany, 92(1), 63–69. https://doi.org/10.1016/j.aquabot.2009.10.005spa
dc.relation.referencesvan Dijk, J. K., van Tussenbroek, B. I., Jiménez-Durán, K., Márquez-Guzman, G. J., & Ouborg, J. (2009). High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Marine Ecology Progress Series, 390(August), 67–77. https://doi.org/10.3354/meps08190spa
dc.relation.referencesvan Dijk, J. K., Waycott, M., van Tussenbroek, B. I., & Ouborg, J. (2007). Polymorphic microsatellite markers for the Caribbean seagrass Thalassia testudinum Banks ex König. Molecular Ecology Notes, 7(1), 89–91. https://doi.org/10.1111/j.1471-8286.2006.01539.xspa
dc.relation.referencesvan Dijk, J. K., Bricker, E., van Tussenbroek, B. I., & Waycott, M. (2018). Range-wide population genetic structure of the Caribbean marine angiosperm Thalassia testudinum. Ecology and Evolution, 8(18), 9478–9490. https://doi.org/10.1002/ece3.4443spa
dc.relation.referencesvan Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.xspa
dc.relation.referencesvan Tussenbroek, B. I., Valdivia-Carrillo, T., Rodríguez-Virgen, I. T., Sanabria-Alcaraz, S. N. M., Jiménez-Durán, K., Van Dijk, K. J., & Marquez-Guzmán, G. J. (2016). Coping with potential bi-parental inbreeding: limited pollen and seed dispersal and large genets in the dioecious marine angiosperm Thalassia testudinum. Ecology and Evolution, 6(15), 5542–5556. https://doi.org/10.1002/ece3.2309spa
dc.relation.referencesVargas, G. (2004). Geología y Aspectos Geográficos de la Isla de San Andrés, Colombia. Geología Colombiana, 29, 73–89.spa
dc.relation.referencesVeettil, B. K., Ward, R. D., Lima, M. D. A. C., Stankovic, M., Hoai, P. N., & Quang, N. X. (2020). Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecological Indicators, 117(May), 106560. https://doi.org/10.1016/j.ecolind.2020.106560spa
dc.relation.referencesVides, M., D. Alonso, E. Castro, N. B. (2016). Biodiversidad del Mar de los Siete Colores. In Angewandte Chemie International Edition, 6(11), 951–952. (84th ed., Vol. 119, Issue 4). Instituto de Investigaciones Marinas y Costeras – INVEMAR y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina - CORALINA.spa
dc.relation.referencesWaycott, M. (1998). Genetic variation, its assessment and implications to the conservation of seagrasses. Molecular Ecology, 7(7), 793–800. https://doi.org/10.1046/j.1365-294x.1998.00375.xspa
dc.relation.referencesWaycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., & Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106spa
dc.relation.referencesWaycott, M., Procaccini, G., Les, D. H., & Reusch, T. B. H. (2006). Seagrass Evolution, Ecology and Conservation: A Genetic Perspective. In SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION (pp. 25–50). Springer Netherlands. https://doi.org/10.1007/978-1-4020-2983-7_2spa
dc.relation.referencesWilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191. https://doi.org/10.1093/genetics/163.3.1177spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc580 - Plantas::581 - Temas específicos en historia natural de las plantasspa
dc.subject.proposalConservation geneticseng
dc.subject.proposalseagrasseseng
dc.subject.proposalanthropogenic impacteng
dc.subject.proposalconnectivityeng
dc.subject.proposaloceanic islandseng
dc.subject.proposalcontinental environmentseng
dc.subject.proposalCaribbeaneng
dc.subject.proposalConservación genéticaspa
dc.subject.proposalpastos marinosspa
dc.subject.proposalimpactos antrópicosspa
dc.subject.proposalconectividadspa
dc.subject.proposalislas oceánicasspa
dc.subject.proposalambientes continentalesspa
dc.subject.proposalCaribespa
dc.titleGenetic structure and connectivity of Thalassia testudinum in oceanic and continental environments of the Colombian Caribbeaneng
dc.title.translatedEstructura genética y conectividad de Thalassia testudinum en ambientes oceánicos y continentales del Caribe colombianospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleGenetic structure and connectivity of Thalassia testudinum in oceanic and continental environments of the Colombian Caribbeanspa
oaire.fundernameNational Geographic Societyspa
oaire.fundernameUNESCOspa
oaire.fundernameRufford Foundationspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1019073150.2024.pdf
Tamaño:
1.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en genética de poblaciones de pastos marinos
Cargando...
Miniatura
Nombre:
Supplementary_material_ThesisDBA .xlsx
Tamaño:
2.41 MB
Formato:
Microsoft Excel XML
Descripción:
Material suplementario Tesis 1019073150

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: