32° Simposio Internacional de estadística 2023 : bioestadística y datos funcionales
dc.contributor.corporatename | Universidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Estadística | spa |
dc.date.accessioned | 2025-02-21T20:26:54Z | |
dc.date.available | 2025-02-21T20:26:54Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | El Simposio de Estadística de la Universidad Nacional de Colombia nace en 1990 como un encuentro que tenía como tema central el análisis de regresión y con el pasar de los años, diversas áreas de investigación estadística, tanto teórica como aplicada y temas afines fueron integrándose de manera paulatina, convirtiendo al Simposio en un espacio de interacción, dialogo, discusión, actualización, revisión y divulgación de los tópicos y saberes que se encuentran en tendencia, haciendo de este evento, un referente a nivel nacional y regional. De esta forma, el departamento de Estadística de la Universidad Nacional ha dispuesto desde el inicio, un comité organizador, el cual, cada año ha propuesto uno o varios temas de interés y ha invitado a varios expertos nacionales e internacionales, que han impartido cursillos y conferencias y socializado sus conocimientos con estudiantes, profesores e investigadores de distintas áreas del saber. Es importante destacar que, a lo largo de estos 30 años, el simposio se ha realizado en distintas ciudades y municipios de Colombia, como lo son: Bogotá, Santa Marta, Cartagena, Rionegro, San Andrés, Armenia, Paipa, Bucaramanga, Cali, Medellín, Sincelejo y Barranquilla, realizándose en algunas versiones en conjunto con otras instituciones y convirtiéndose en 2012, en un evento de carácter internacional. Con perseverancia, dedicación, calidad y trabajo, hemos llegado en el año 2023, a la versión número 32 de este evento en la ciudad de Ibagué, Tolima. Los temas que se convocaron este año fueron Bioestadística y Datos Funcionales, motivados principalmente por ser temas de reciente y marcada importancia que se da en un contexto global, regional y nacional en la que los datos cada vez tienen mayor volumen y que las herramientas que se necesitan para su análisis tienen un fuerte y relevante sustento estadístico, con un creciente interés por parte de la comunidad estadística nacional. Agradecemos a cada uno de los participantes por ser parte de este evento, esto muestra la acogida que cada año tiene este simposio a lo largo y ancho del territorio nacional, en distintas instituciones académicas y de investigación, mostrando los distintos resultados y perspectivas que ofrecen cada una de las ramas de la estadística en la solución de problemas de interés local, regional, nacional e internacional y como se hace necesaria la comprensión de las temáticas propuestas y la continuidad de la realización de nuestro Simposio. Gracias a estos encuentros se ha llegado a tener un fortalecimiento dinámico y sostenido en el quehacer estadístico nacional, con lo cual los pioneros de esta idea pueden sentirse satisfechos, pues los diferentes comités organizadores le han cumplido al país y a la Universidad con el objetivo propuesto en la primera versión. Les esperamos en el 33 Simposio Internacional de Estadística 2024 (Texto tomado de la fuente) | spa |
dc.description.edition | 32 edición | |
dc.description.tableofcontents | SIMULATION, ESTIMATION, AND GOODNESS FIT FOK THE STOCHASTIC BRIDGE -- CARTA DE CONTROL MULTIVARIADA SIN DISTRIBUCION PARA DATOS HIBRIDOS FUNCIONALES Y VECTORIALES -- ESTUDIO EXPLORATORIO PARA DETERMINAR LA CANTIDAD DE REZAGOS SIGNIE CATIVOS EN SERIES DE TIEMPO MEDIANTE EL USO DE DIFERENTES COEFICIENTES -- OPINIONES EN TWITTER SOBRE LA DEFORESTACIÓN EN ELAMAZONAS DEL 2010 AL 2022: UN ANALISIS DE SENTIMIENTOS CON REDES NEURONALES -- APLICACION SHINY - INTERVALOS DE VEROSIMILITUD -- APLICACIÓN SHINY - PERFILES DE VEROSIMILITUD -- MDA (MONOTONE DATA AUGMENTATION) APLICADO A DATOS DE DESNU- TRICIÓN AGUDA EN MENORES DE 5 AÑOS EN LA CIUDAD DE MEDELLIN -- MODELOS GARCH MULTIVARIADOS PARA EL CALCULO DE VALOR EN RIESGO DE ACTIVOS FINANCIEROS UTILIZANDO RY PYTHON -- ECUACTONES ESTRUCTURALES: UNA HERRAMIENTA PODEROSA PARA ANALIZAR LA SALUD MENTAL EN ESTUDIANTES DE BASICA SECUNDARIA Y MEDIA -- DATOS DE GEORREFERENCIACIÓN GPS EN EL COMPORTAMIENTO DE BOVINOS -- MODELO ESTADISTICO ESPACIAL USANDO EL ENFOQUE BAYESIANO SPDE ALIMENTADO DE UNA RED NEURONAL ARTIFICIAL PARA EL ANALISIS DELA RENTA URBANA -- AN OPTIMAL RUNS TEST FOR ONE SAMPLE LOCATION PROBLEM -- ANALISIS DE LA CRIMINALIDAD EN COLOMBIA: IDENTIFICACION DE PA- TRONES Y TENDENCIAS EN LA FRECUENCIA DE VICTIMAS -- CONEIDENCE SETS BOOTSTRAP ON CONTEXT OF TOPOLOGICAL DATA ANALYSIS -- A UMAP TECHNIQUE APPLICATION TO ANALYZE TRAFFIC IMAGES FROM GOOGE MAPS -- APLICACION DEL MODELO FAY-HERRIOT EN LA GRAN ENCUESTA INTEGRADA DE HOGARES (GEIH) DICIEMBRE 2022 -- ANALISIS DE DIVERSOS MODELOS GEOESTADISTICOS DE DISTRIBUCION ESPACIAL DE LA PRECIPITACIÓN -- CARACTERIZACIÓN DEL DISCURSO DE POSESION PRESIDENCIAL E IDENTIFICACIÓN DE COMUNIDADES POLITICAS EN COLOMBIA: APROXIMACION EMPIRICA DESDE EL ANALISIS DE REDES SOCIALES -- CONDICIONES DE CALIDAD DE VIDA DE SAN ANDRES ISLA: UNA BREVE DESCRIPCIÓN MULTIVARIADA -- MODELAMIENTO DE LA CALIDAD DEL AIRE EN LA CIUDAD DE BOGOTA UTILIZANDO CADENAS DE MARKOV -- COMPARACIÓN DEL USO DE HERRAMIENTAS TECNOLÓGICAS PARA EL APRENDIZAJE SIGNIFICATIVO DE LAS MATEMÁTICAS BÁSICAS EN PREGRADO, MEDIANTE MODELOS DE ECUACTONES ESTRUCTURALES LINEALES -- ANALISIS ESPACIAL DE LA PUDRICION BASAL DEL ESTIPITE EN PALMA DE ACEITE CAUSADA POK GANODERMA ZONATUM EN LA ZONA NORTE COLOMBIANA -- DISTRIBUCIÓN ESPACIAL DE LAS POBLACIONES DE L. GIBBICARINA EN UN LOEDE PALMA ACEITE -- EVALUACIÓN COMPARATIVA DELA EFECTIVIDAD DE DOS MÉTODOS RESTAURADORES EN EL MANEJO DE CARIES EN NIÑOS DE ESCASOS RECURSOS EN CALIFORNIA - EE.UU -- MODELOS CONJUGADOS DISCRETOS; UNA APLICACION SHINY PARA LA ENSENANZA DE ESTADISTICA BAYESIANA -- MODELIZACION, ANALISIS Y ESTIMACION EN UN MODELO EPIDEMIOLOGICO CON PERTURBACIONES ALEATORIAS: UNA APLICACIÓN A LAS INFEC- CIONES RESPITARORIAS AGUDAS EN BOGOTA -- EXPOSING RACIAL DISPARITIES OF AL-BASED IMAGING CLASSIFIERS FOR PIGMENTED SKIN LESIONS DAGNOSIS -- ANALISIS DESCRIPTIVO INTERSECCIONAL DEL MERCADO LABORAL EN LA RURALIDAD COLOMBIANA -- COMPORTAMIENTO FISIOLÓGICO DE LA CURUBA UTILIZANDO ANALISIS LONGITUDINAL BASADO EN DISTANCIAS -- COMPARACIÓN DE MODELOS DE DATOS FUNCIONALES Y REDES NEU- RONALES PARA LA CLASIFICACIÓN DE IMÁGENES DE DIAGNÓSTICO DE TUMORES CEREBRALES -- UNA MANERA DE OBTENEK DISTR BUCIONES DE PROBABILIDAD BIVARIADA A PARTIR DE UN CIERTO TIPO DE SUBCOPULA BIVARIADA -- ANALISIS DESCRIPTIVO MULTIVARIADO DE LA SITUACIÓN LABORAL DE LA MUJER EN LA URBANIDAD COLOMBIANA ENFOCADO ENLA POBLACIÓN CON DISCAPACIDAD -- ESTIMACIÓN DE NITRÓGENO FOLIAR EN PALMA DE ACEITE ADULTA POR ESPECTRORRADIOMETRIA: REGRESION ESCALAR- FUNCIONAL EMPLEANDO MINIMOS CUADRADOS FUNCIONALES -- DESAFIOS Y OPORTUNIDADES EN LA COMPRENSIÓN DE LAS DINAMICAS UNIVERSITARIAS EN COLOMBIA: UN ENFOQUE ESTADISTICO -- MODELADO DE CUANTILES EN UN ENTORNO DE REGRESIÓN CON RESPUESTA POSITIVA ASIMÉTRICA Y SU APLICACIÓN EN LA CONSTRUCCIÓN DE CURVAS DE CRECIMIENTO -- ANALISIS DE COMPONENTES PRINCIPALES (ACP) PARA RANQUEAR PAISES CON RESPECTO A SU CALIDAD DE VIDA -- MEDICIÓN DE RIESGO DE INCUMPLIMIENTO DE CONTRATOS DE CAFE EN EL MODELAMIENTO DE ASIGNACION DE CREDITOS -- CROSSCARRY: ANRPACKAGE FOR THE ANALYSIS OF DATA FROMA CROSSOVER DESIGN WITH GEE -- COMPARACION DE UN ENFOQUE BAYESIANO Y DE MACHINE LEARNING PARA LA ESTIMACIÓN DE MEDIDAS CRANEOFACIALES EN NIÑOS -- ENHANCED CONTROL CHARTFORTHE MONITORING OESKEWED-NORMAL SAMPLES -- TAMAÑO DE MUESTRA EN ENSAYOS CLÍNICOS ALEATORIZADOS EN PARALELO CON AJUSTE POR ANALISIS INTERINOS -- CARACTERIZACION DE LAS MATRICES ESTOCASTICAS PARA LA EXISTENCIA DE RAICES MATRICIALES -- A PHASE I FUNCTIONAL CONTROL CHART BASED ON MODIFIED EP- GRAPH INDEX AND MODIFIED BAND DETH -- NUEVAS DISTRIBUCIONES ASIMETRICAS QUE PERMITEN MODELAR CUANTILES MARGINALES EN DATOS POSTTIVOS MUCTIVARIADOS -- ESTIMACION DE PERCENTILES APOYADO EN EL PAQUETE PROBSAMPLINGI DEL SOFTWARE R-PROJECT -- R VS PYTHON VS EXCEL PARA SEMILLEROS. UN EJEMPLO DE SUAVIZAMIENTO EXPONENCIAL Y MEDIAS MÓVILES CON LA OCUPACIÓN DE CAMAS UCI EN BOGOTÁ DURANTE LA EMERGENCIA SANITARIA POR COVID-19 -- MODELO DE REGRESIÓN DINAMICO CON DISTRIBUCIÓN HYPER-POISSON PARA SERIES DE TIEMPO DE CONTEO -- EXAMPLES OF DATA VISUALIZATION IN R, AND QUANTITATIVE METHODS FROM A SOCIAL SURVEY IN COLOMBIA -- MONITOREO DE PROCESOS NO LINEALES DE ALTA DIMENSIÓN USANDO APRENDIZAJE PROFUNDO -- CLASIFICACIÓN YANALISIS DE DATOS PROFESORALES EN UNIVERSIDADES COLOMBIANAS: UN ESTUDIO BASADO EN MINERÍA DE DATOS -- COMPARACIÓN DE ALGUNOS METODOS DE REGULARIZACION Y SELECCION, ESTUDIO DE UN CASO EN MODELOS DE REGRESION CON DISTRIBUCIÓN DE ERROR NO NORMAL -- AJUSTE DE MODELOS AUTORREGRESIVOS POISSON USANDO DESCENSO GRADIENTE -- METODO DE CLUSTER JERARQUICOS PARA DATOS FUNCIONALES MULTIVARIADOS -- ESTUDIO SOCLOECONOMICO DE LOS HABITANTES DE MEDELLIN: USANDO MODELOS DE REGRESIÓN LOGISTICOS BAYESIANOS -- ANALISIS ESPACIO-TEMPORAL PARA EL MODELAMIENTO PREDICTIVO DE LA TEMPERATURA EN COLOMBIA (2010-2022) -- MONITOREO DEL SISTEMA DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA DE ENLAZA GRUPO ENERGIA BOGOTA SAS ESP, MEDIANTE CONTROL ESTADISTICO DE PROCESOS MULTIVARIADOS -- MODELOS DE REGRESIÓN ESPACIAL CON COEFICIENTES ESPACIALES VARIABLES USANDO FILTRADO DE MOKAN -- MODELO DE REGRESIÓN UNITARIO HAZARD PROPORCIONAL DOBLEMENTE CENSURADO -- MODELO DE REGRESIÓN LOGISTICO HAZARD PROPORCIONAL -- EL MODELO POWER-SKEW-NORMAL/LOGIT PARA A.JUSTAR DATOS DE PROPORCIÓN CON INFLACIÓN -- IMPLEMENTACIÓN DE LA DISTRIBUCION BURR HATKE PARA EVALUAR EL PROCESO DE ESTIMACIÓN DE PARAMETROS EN DATOS SOBRE DISPERSION -- MODELAMIENTO DE LA INCIDENCIA DE COVID-19 EN TERMINOS DE VARIABLES SOCIOECONOMICAS, DEMOGRAFICAS Y DE SALUD, USANDO REGRESIÓN SPACIAL Y MACHINE LEARNING -- CLASSIFICATION TECHNIQUES FOR IMAGINARY SPEECH BRAIN SIGNAL THROUGH SPATIAL FUNCTIONAL DATA -- PREDICCION DEL TIEMPO DE VIDA Y FRECUENCIA DE COMPRA DE CLIENTES ENLA MODALIDAD NO CONTRACTUAL -- RANDOM SPECIFIC PROJECTION DIRECTIONS FOR SKEWNESS ADJUSTED OUTLYINGNESS -- ENFOQUE INTERACTIVO Y AUTOMATIZADO DE VISUALIZACION DE DATOS PARA LA TOMA DE DECISIONES DEL ECOSISTEMA INNOVADOR EN COLOMBIA -- ANALISIS DE CORRESPONDENCIAS MULTIPLES: UNA MIRADA A LA EJECUCION DEL PLAN DE ACCION MUNDIAL SOBRE LA RESISTENCIA A LOS ANTIMICROBIANOS (RAM) -- KGBOOST CON DATOS MUCMIESPECTRALES Y ESPACIO TEMPORALES: UNA NUEVA METODOLOGIA PARA LA CLASIFICACION DE CULTIVOS DE COCA EN COLOMBIA -- COMPARACIÓN DE MODELOS DE CONTEO USANDO SIMULACIÓN PERFIL DE ACTIVIDAD FISICA CON UNA MIRADA CULTURAL DESDE UNA ESTRATEGIA STEAM PROPORCIONADA POR EL ANALISIS DE COMPONENTES PRINCIPALES (PCA), UN APRENDIZAJE AUTOMATICO DE ALGORITMO NO SUPERVISADO -- VISUALIZACIÓN DE DATOS MULTIVARIADOS EN EL SOFTWARE R PARA CARACTERIZAR VARIABLES FISICO-QUIMICAS EN FRUTAS TROPICALES CON ALGORITMOS DE AGRUPAMIIENTO -- BIOMARCADORES DE RESISTENCIA A FARMACOS EN CANCER DE OVARIO (CO): UN ESTUDIO BIBLIOMÉTRICO -- ESCALA MULTIDIMENSIONAL DE ACTITUDES ANTE EL CREDITO EDUCATIVO EN ESTUDIANTES COLOMBIANOS -- MEAN AND VARIANCE BETA REGRESSION AND BETA-BINOMIAL REGRESSION MODELS -- BINARY TWO-DIMENSIONAL IMAGE CLASSIE CATION: TENSOR REGRESSION MODEL VS TOTAL VARIATION MODEL -- TRATAMIENTO DE CLASES DESBALANCEADAS USANDO EL ALGORITMO DE DETECCIÓN DE ANOMALIAS ISOLATION FOREST -- ANALISIS DE COSTO-UTILIDAD DEL TRATAMIENTO FARMACOLÓGICO EN LAS FASES DE INDUCCION Y RECAIDA EN PACIENTES ADULTOS CON MIELOMA MÚLTIPLE EN COLOMBIA -- ANÁLISIS DE COSTO-UTILIDAD DEL TRATAMIENTO FARMACOLÓGICO EN PACIENTES CON LEUCEMIA MIEOIDE CRÓNICA EN FASE CRÓNICA -- MODELAMIENTO BAYESIANO DE LAS PREFERENCIAS POLITICAS DEL SENADO DE COLOMBIA 2006-2010: CONDUCTA ELECTORAL Y PARAPOLITICA -- METODOLOGIA ESTADISTICA ENEL DESARROLLO DEL PROYECTO: TUTOR AUTOMATICO -- MODELAMIENTO BAYESIANO DE REDES SOCIALES DE INFLUENCIA Y SU IMPACTO EN LA FORMACIÓN DE LA OPINIÓN PUBLICA -- ODELO DE REGRESIÓN BETA FUNCIONAL Y SU APLICACIÓN SOBRE LA TASA DE MORTALIDAD DEL COVID-19 -- A REVIEW OF LATENT SPACE MODELS FOR SOCIAL NETWORKS UNA REVISIÓN DE MODELOS DE ESPACIO LATENTE PARA REDES SOCIALES -- PRONOSTICO DE SERIES DE TIEMPO MULTIVARIADAS USANDO REGRESIÓN DE SOPORTE VECTORIAL -- ANALISIS BIBLIOMETRICO: TENDENCIA TEMATICA EN ESTADISTICA EN- TRE EL 200 Y 2022 -- ANALISIS DE CLASIFICACIÓN SUPERVISADA VS NO SUPERVISADA PARA DETECCIÓN TEMPRANA DE LA BACTERIA RALSTONIA EN PLANTAS DE BANANO GROS MICHEL CON BASE EN DATOS ESPECTROSCOPICOS VIS/NIR -- EXOSOMAL MICRORNA SIGNATURE FROM PLASMA-DERIVED EXTRACELTULAR VESICLES IN GASTRIC CANCER -- A SPATIAL RANDOMNESS TEST BASED ON THE BOX-COUNTING DIMENSION FOR POINT PROCESS ON LINEAK NETWORKS -- IDENTIFICACIÓN DE PATRONES TRANSCRIPCIONALES PROVOCADOS POR LA CONTAMINACION DEL AIRE Y SU ASOCIACIÓN CON ASMA GRAVER -- DETERMINANTES DE LA INNOVACIÓN EMPRESARIAL EN COLOMBIA: UNA APLICACION DE LOS MODELOS CON VARIABLE DEPENDIENTE CUALITATIVA -- APLICACIÓN DE MODELOS ESTADISTICOS PARA EL ESTUDIO DE PUPAS DEL MOSQUITO AEDES AEGYPTI EN EL DEPARTAMENTO DEL CAUCA, COLOMBIA -- POPULARIZANDO LA AGENDA 2030 Y SU RELACIÓN CON LA ESTADISTICA -- UNA ACCIÓN EXTENSIONISTA DEL PROYECTO STATUFSM -- ON THE ALMOST SURE CONVERGENCE OF THE SUCCESS PROBABILTTY ANDOTHER THEORETICAL PROPEKTIES OFA BERNOUADEBETA BAYESIAN MODEL -- CALIDAD DE DATOS, MACHINE LEARNING Y ESTADISTICA -- GEOESTADISTICA ESPACIAL NO ESTACIONARIA CON DATOS CIRCULARES -- ESTIMACION DE INDICE DE POBREZA MULTIDIMENSIONAL (IPM) EN BOGOTA D.C. Y ALGUNAS CIUDADES CERCANAS USANDO IMÁGENES SATELITALES -- DISTANCE FUNCTIONS IN THE DEFORMED EXPONENTIAL MANIFOLD INDUCED BY DIVERGENCES AND KIEMANNIAN METRICS -- ZONA DE REPORTES Y RESULTADOS DE OPINION (ZORRO) -- ANALISIS CON ENFOQUE DE GENERO DE LA DESERCION DE LOS ESTUDIANTES DE LA SEDE BOGOTA DE LA UNIVERSIDAD NACIONAL DE COLOMBIA ENTRE LOS PERIODOS 2008-3 Y 2020-1 -- AUTOEFICACIA ACADEMICA EN ESTUDIANTES UNIVERSITARIOS: UN ANALISIS SOCIOEMOCIONAL MEDIANTE TECNICAS DE MACHINE LEARNING -- LA IDENTIFICACIÓN DE LA DINAMICA DE LA TRANSFERENCIA DE CONOCIMIENTO DESDE LAS UNIVERSIDADES HACIA LAS REGIONES COLOMBIANAS -- EVOLUCIÓN DE LA CLASIFICACIÓN EN LA COMPETENCIA DE INGLES DE LAS INSTITUCIONES DE EDUCACIÓN MEDIA EN COLOMBIA: UNA APLICACIÓN DEL STATIS-ACB | spa |
dc.format.extent | 555 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.eissn | 2463-0861 | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | repositorio.unal.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87529 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.references | BLANCO, Liliana; ARUNACHALAM, Viswanathan; DHARMARAJA, Selvamuthu: Introduction to probability and stochastic processes with applications. John Wiley & Sons, 2012 | spa |
dc.relation.references | DIEKER, Ton: Simulation of fractional Brownian motion, Masters Thesis, Department of Mathematical Sciences, University of Twente..., Tesis de Grado, 2004 | spa |
dc.relation.references | FRIEDRICH, Jan; GALLON, Sebastian; PUMIR, Alain; GRAUER, Rainer: Stochastic interpolation of sparsely sampled time series via multipoint fractional Brownian bridges. En: Physical Review Letters 125 (2020), Nr.17, p.170602 | spa |
dc.relation.references | KRANSTAUBER, Bart; KAYS, Roland; LAPOINT, ScottD.; WIKELSKI, Martin; SAFI, Kamran: A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. En: Journal of Animal Ecology 81 (2012),Nr.4,p. 738–746 | spa |
dc.relation.references | YUAN, Chenggui; MAO, Xuerong: Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching. Mathematics and Computers in Simulation 64(2004),Nr.2,p.223–235 | spa |
dc.relation.references | Chen, Y., & Georgiou, T.(2015).Stochastic bridges of linear systems. IEEE Transactions on Automatic Control,61(2),526-531. | spa |
dc.relation.references | Wang, S., Ramkrishna, D.,& Narasimhan, V. Exact sampling of polymer conformations using Brownian bridges. The Journal of Chemical Physics, 153 (3), 034901, 2020 | spa |
dc.relation.references | Kranstauber, B. Modelling animal movement as Brownian bridges with covariates. | spa |
dc.relation.references | CHEN, Nan; ZI, Xuemin; ZOU, Changliang. A distribution-free multivariate control chart. En: Technometrics 58 (2016), Nr. 4,p. 448–459. | spa |
dc.relation.references | HAPP, Clara; GREVEN, Sonja. Multivariate functional principal component analysis for data observed on different (dimensional) domains. En: Journal of the American Statistical Association 113 (2018), Nr.522, p. 649–659. | spa |
dc.relation.references | HAPP-KURZ, Clara. Object-Oriented Software for Functional Data. En: Journal of Statistical Software 93 (2020), Nr.5, p. 1–38. | spa |
dc.relation.references | JANG, Jeong H. Principal component analysis of hybrid functional and vector data. En: Statistics inmedicine 40 (2021), Nr. 24, p. 5152–5173. | spa |
dc.relation.references | JIANG, Qingchao; YAN, Xuefeng; ZHAO, Weixiang. Fault detection and diagnosis in | spa |
dc.relation.references | MONTGOMERY, Douglas C. Introduction to statistical quality control. John Wiley & Sons, 2020. | spa |
dc.relation.references | RESEARCH, Eigenvector. NIR of Corn Samples for Standardization Benchmarking. (2005). | spa |
dc.relation.references | RYAN, Thomas P. Statistical methods for quality improvement. John Wiley & Sons,2011. | spa |
dc.relation.references | Dixon, M.F., Halperin,I., & Bilokon, P. (2020). Machine learning in finance (Vol.1170). Springer. | spa |
dc.relation.references | Edelmann, D.,Fokianos, K., & Pitsillou, M.(2019). An updated literature review of distance correlation and its applications to time series. International Statistical Review, 87(2),237– 262. Wiley Online Library. | spa |
dc.relation.references | Chatterjee, S.(2021). A new coefficient of correlation. Journal of the American Statistical Association, 116 (536), 2009–2022.Taylor & Francis. | spa |
dc.relation.references | HERNÁNDEZ ESQUIVIAS, PEDRO, Análisis de sentimientos en Twitter en castellano con redes neuronales recurrentes LSTM, B.S. thesis, 2022. | spa |
dc.relation.references | HOCHREITER, SEPP y SCHMIDHUBER, JÜRGEN, Long short-term memory, Neural computation, 9 (8), 1735–1780, 1997, MIT Press. | spa |
dc.relation.references | ROSENBROCK, GERMÁN, TROSSERO, SEBASTIÁN, y PASCAL, ANDRÉS, Técnicas de análisis de sentimientos aplicadas a la valoración de opinión es en el lenguaje español, en XXVII Congreso Argentino de Ciencias de la Computación (CACIC) (Modalidad virtual, 4 al 8 de octubre de 2021), 2021. | spa |
dc.relation.references | SHINY , Shiny for R Gallery. Available at: https://shiny.posit.co/r/gallery/ 2016 | spa |
dc.relation.references | CASELLA, G.,&BERGER, R.L.], Statistical Inference. Duxbury Press. 2002 | spa |
dc.relation.references | FREEDMAN, D.A. Statistical Models: Theory and Practice. Cambridge University Press. 2009 | spa |
dc.relation.references | Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82(398),528–540.Taylor& Francis. | spa |
dc.relation.references | Schafer, J. L.(1997). Analysis of incomplete multivariate data. CRC Press. | spa |
dc.relation.references | Little, R., & Rubin, D.(2019). Statistical analysis with missing data (Vol.793). John Wiley & Sons. | spa |
dc.relation.references | Liu, C.(1994). Statistical analysis using the multivariate t distribution. Harvard University. | spa |
dc.relation.references | Liu, C.(1995). Missing data imputation using the multivariate t distribution. Journal of multivariate analysis, 53(1),139–158.Elsevier. | spa |
dc.relation.references | Dempster, A. P., Laird, N. M.,& Rubin, D.B.(1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1),1–22. Wiley Online Library. | spa |
dc.relation.references | Little, R.J.A.(1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society: Series C (Applied Statistics), 37(1), 23–38. Wiley Online Library. | spa |
dc.relation.references | Li, K.-H.(1988). Imputation using Markov chains. Journal of Statistical Computation and Simulation, 30(1),57–79.Taylor & Francis | spa |
dc.relation.references | PEÑA, D, Analisis de datos multivariantes, Cambridge: McGraw-Hill España, 2002. | spa |
dc.relation.references | ALEXANDER, C, . A primer on the ortogonal GARCH model, manuscript ISMA Centre, University of Reading, UK, 2000. | spa |
dc.relation.references | BOLLERSLEV, T, . A primer on the orthogonal GARCH model, Journal of econometrics, 31(3), 307-327,1986. | spa |
dc.relation.references | MINUTTI, C, Métodos de optimización en la construcción de portafolios (Doctoral dissertation, Tesis de licenciatura), Universidad Autónoma Chapingo, 2010. | spa |
dc.relation.references | ZIVOT, E, Introduction to Computational Finance and Financial Econometrics with R, Springer,2016. | spa |
dc.relation.references | Barraza M.,A.(2008). El estrés académico en alumnos de maestría y sus variables moduladoras: un diseño de diferencia de grupos. Avances en Psicología Latinoamericana. 26(2). pp. 270-289. | spa |
dc.relation.references | Escobedo M, Hernández J, Estebané V ,Martínez G, (2016). Modelos de Ecuaciones Estructurales: Características, Fases, Construcción, Aplicación y Resultados. CiencTrab.18(55): 16-22. | spa |
dc.relation.references | Romero, R., Babativa, G(2016). Modelo de lealtad apartir de un análisis de ecuaciones estructurales. Comunicaciones en Estadística, 9 (2), 165-197. | spa |
dc.relation.references | Ruiz, M.A., Pardo, A, San Martin, R. (2010), Modelos de Ecuaciones Estructurales, papeles del Psicólogo, 31(1), 34-45, Recuperado de: http://www.redalyc.org/pdf/778/77812441004.pdf. | spa |
dc.relation.references | BAILEY, D.W., TROTTER, M.G. KNIGHT, C.W. AND THOMAS, M.G.(2018), Use of GPS tracking collars and accelerometers for rangel and livestock production research, Translational Animal Science 2:81–88. | spa |
dc.relation.references | CASTILLA, A.L., MORA-DELGADO, J., RODRÍGUEZ-MÁRQUEZ, M.A.,&LOPEZ, J.(2022), Cattle movement as a function of some biotic and abiotic factors in atropical pasture. Revista de Ciencias Agrícolas, 39 (2), 69-88. https://doi.org/10.22267/rcia.223902.184. | spa |
dc.relation.references | LI, Y.,SCHWARTZ, W.J.,&INDIC, P.(2020)., Dynamics of periodically forced finite N-oscillators, with implications for the social synchronization of animal rest–activity rhythms, Translational Animal Science 2:81–88. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(10),103106. | spa |
dc.relation.references | MUÑOZ-ESPINOZA, M.,ARTIEDA-ROJAS, J.,ESPINOZA-VACA, S.,CURAY-QUISPE, S.,PÉREZ-SALINAS, M.,NÚÑEZ-TORRES, O.,&BARROS-RODRÍGUEZ, M.(2016), Granjas sostenibles: integración de sistemas agropecuarios, Tropical and Subtropical Agroecosystems, 19(2),93-99. | spa |
dc.relation.references | MORA-DELGADO. J.M.,SERRANO. R.,VARÓN. R.P.,&DÍAZ. G.(2018), Use of GPS and GIS for monitoring of cattle’s grazing on a silvipasture of Tolima (Colombia), Investigaciones Andina.20(36).23-38. | spa |
dc.relation.references | POLANIA, Y.,DELGADO, J.M.,SERRANO, R.,&PIÑEROS, R.(2013), Movimiento de ganado en pastoreo en un sistema silvo pastoril del valle cálido del Magdalena tolimense (Colombia), Revista Colombiana de Ciencia Animal, 6(1). | spa |
dc.relation.references | RODRIGUEZ-MARQUEZ, M.A.R.,DÍAZ, H.A.G.,&DELGADO, J.M.(2022), Behavioral fractal method associated with GPS tracking to spatial activity sequences of grazing cattle, Scientia Agricola, 80. https://doi.org/10.1590/1678-992X-2022-0052. | spa |
dc.relation.references | RUSSELL, M.,BAILEY, D.,THOMAS, M.,&WITMORE, B.(2012), Grazing Distribution and Diet Quality of Angus, Brangus, and Brahman Cows in the Chihuahuan Desert, Rangeland Ecology & Management,65(4),371-381.RetrievedOctober1,2020,from http://www.jstor.org/stable/41681555. | spa |
dc.relation.references | SUN, J.,BOLLT, E.M.,PORTER, M.A.,&DAWKINS, M.S.(2011), A mathematical model for the dynamics and synchronization of cows. Physica D: Non linear Phenomena, 240(19), 1497-1509. | spa |
dc.relation.references | UNGAR, E.D.,HENKIN, Z.,GUTMAN, M.,DOLEV, A.,GENIZI, A.,&GANSKOPP, D.(2005), Inference of animal activity from GPS collar data on free-ranging cattle., Rangel and Ecology & Management, 58(3), 256-266. https://doi.org/10.2111/1551-5028(2005)58[256:IOAAFG]2.0.CO | spa |
dc.relation.references | Ticona, Regina, Joe Tekli, Irvin Dongo, Renato Guzman, y Richard Chbeir. Toward RDF Normalization. 2017. http://arxiv.org/abs/1707.03602 | spa |
dc.relation.references | Martinez, J. ANÁLISIS DE LA FORMACIÓN DEL PRECIO DE LA VIVIENDA URBANA EN BOGOTÁ: LOCALIDADES DE KENNEDY, FONTIBÓN Y ENGATIVÁ EN EL ÚLTIMO BIENIO 2015-2016. Tesis de maestría, Instituto Geográfico Agustín Codazzi, 2016. | spa |
dc.relation.references | w3c. Resource Description Framework (RDF): Concepts and Abstract Syntax. 2004. https:// www.w3.org/TR/rdf-concepts/ [Web; accedido el 06-10-2018]. | spa |
dc.relation.references | Pappas, Alexandros, Georgia Troullinou, Giannis Roussakis, Haridimos Kondy lakis B., y Dimitris Plexousakis. The Semantic Web. Volumen 10249, 2017. Páginas 387-403. ht tp:// link. springer.com/10.1007/978-3-319-58068-5. DOI: 10.1007/978-3-319-58068- | spa |
dc.relation.references | Cheng, Gong, Feng Ji, Shengmei Luo, Weiyi Ge, y Yuzhong Qu. BipRank: Ranking and summarizing RDF vocabulary descriptions. Volumen 7185 LNCS, 2012. Páginas 226-241. DOI: 10.1007/978-3-642-29923-0_15. | spa |
dc.relation.references | Kawtrakul, Asanee, Dominique Laurent, Nicolas Spyratos, y Yuzuru Tanaka. Information search, integration, and personalization. Volumen 421 CCIS, 2014. Paginas 69-87. DOI:10.1007/978-3-319-08732-0. | spa |
dc.relation.references | Manolescu, Ioana. Structural Summarization of Semantic Graphs. 2018. 181 | spa |
dc.relation.references | Zhang, Xiang, Gong Cheng, y Yuzhong Qu. Ontology summarization based on rdf sentence graph. En Proceedings of the 16th international conference on World Wide Web – WWW '07, 2007. Página 707. DOI: 10.1145/1242572.1242668. | spa |
dc.relation.references | Peroni, Silvio, Enrico Motta, y Mathieu D'Aquin. Identifying key concepts in an ontology, through the integration of cognitive principles with statistical and topological measures. Volumen 5367 LNCS, 2008. Páginas 242-256. DOI: 10. 1007/978-3-540-89704-0_17. | spa |
dc.relation.references | Fan, Zhengjie. Concise Pattern Learning for RDF Data Sets Interlinking. Tesis de doctorado, Université, 2017. | spa |
dc.relation.references | Semantic Search On Summarized RDF Triples. 2017. | spa |
dc.relation.references | Basse, Adrien, Fabien Gandon, Isabelle Mirbel, y Moussa Lo. Incremental characterization of RDF Triple Stores. Volumen 24, 2012. Páginas 691201-2. https://hal. inria.fr/ hal- 00691201v2. | spa |
dc.relation.references | Guzewicz, Pawel, y loana Manolescu. Quotient RDF summaries based on type hierarchies. En Proceedings - IEEE 34th International Conference on Data Engineering Workshops, ICDEW 2018, 2018. Páginas 66-7 1. DOI: 10.1109/ICDEW.2018.00018. | spa |
dc.relation.references | Zneika, Mussab, Claudio Lucchese, Dan Vodislav, y Dimitris Kotzinos. Summarizing Linked Data RDF Graphs Using Approximate Graph Pattern Mining. En Proc. 19th International Conference on Extending Database Technology, 2016. Páginas 684-685. DOI:10.5441/002/edbt.2016.86. | spa |
dc.relation.references | Bursztyn, Damian, François Goasdoué, y loana Manolescu. Optimizing Reformulation-based Query Answering in RDF. En 18th International Conference on Extending Database Technology (EDBT), 2014. Páginas 265-276. DOI: 10.5441/002/edbt.2015.24. | spa |
dc.relation.references | Pouriyeh, Seyedamin, Mehdi Allahyari, Qingxia Liu, Gong Cheng, Hamid Reza Arabnia, Yuzhong Qu y Krys Kochut. Graph-based Ontology Summarization: A Survey. 2018. Páginas 1-15. DOI: 10.5441/002/edbt.2015.24. http://arxiv.org/abs/1805. 06051 | spa |
dc.relation.references | Tzitzikas, Y., D. Kotzinos y Y. Theoharis. On ranking RDF schema ele-ments (and its application in visualization). En Journal of Universal Com-puter Science, volumen 13, número 12, 2007. Páginas 1854-1880. ISSN: 09486968 (ISSN). http://www.scopus.com/inward/record.url?eid=2-s2. 0- 40849134188(&} partner ID=40(&}md5=11f36c1ed93169bec179b20aaf0a2555. | spa |
dc.relation.references | Cheng, Gong, Feng Ji, Shengmei Luo, Weiyi Ge y Yuzhong Qu. BipRank: Ranking and summarizing RDF vocabulary descriptions. En Lecture Notes in Computer Science (includ-ing subseries Lecture Notes in Artificial Inteligence and Lecture Notes in Bioinformatics), volumen 7185 LNCS, 2012. Páginas 226-241. DOI: 10.1007/978-3-642-29923-0_15. | spa |
dc.relation.references | Cheng, Gong, Weiyi Ge y Yuzhong Qu. Generating summaries for ontology search. En Pro-ceedings of the 20th international conference companion on World wide web - WWW '11, 2011. Página 27. DOI: 10.1145/1963192.1963207. http://portal. acm.org/citation. ctm?doid=1963192. 1963207. | spa |
dc.relation.references | Drumond, Lucas, Steffen Rendle y Lars Schmidt-Thieme. Predicting RDF triples in incomplete knowledge bases with tensor factorization. En Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC '12, 2012. Página 326. DOI: 10.1145/2245276.2245341. http://dl.acm. org/citation. cfm?doid=22452762246341 | spa |
dc.relation.references | Sebiric, Sejla, François Goasdoué y loana Manolescu. Query-Oriented summarization of RDF graphs. En Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volumen 9147, 2015. Paginas 87-91. DOI: 10.1007/978-3-319-20424-6_9. | spa |
dc.relation.references | Zneika, Mussab, Dan Vodislav, Dimitris Kotzinos y Quality Metrics For RDF Graph Summarization. Quality Metrics For RDF Graph Summarization. 2018. | spa |
dc.relation.references | Su, Xiang, Hao Zhang, Jukka Riekki, Ari Keränen, Jukka K. Nurminen y Libin Du. Connect-ing loT sensors to knowledge-based systems by transforming SenML to RDF. En Procedia Computer Science, volumen 32, 2014. Páginas 215-222. DOI: 10.1016/j procs.2014.05.417. | spa |
dc.relation.references | Hassad, Sara El. Learning Commonalities in RDF. 2017. DOI: 10.1007/978-3-319-58068-5. | spa |
dc.relation.references | Ayvaz., Serkan y Aydar, Mehmet. Using RDF Summary Graph For Keyword-based Seman-tic Searches. 2017. DOI: 10.1109/COMPSAC.2015.107. http://arxiv. org/abs/1707. 03602 | spa |
dc.relation.references | Discipline, S T a P S, Cnu, Section, Vincent, Chaubet, Richard, Montoya y Nicolas, Forestier. Université de pau et des pays de l'adour. 2011. | spa |
dc.relation.references | Zliobaite, Indre, Leaming under Concept Brif: an Overview. 2010. DOT: 10.1002/sam. http://arxiv.org/abs/1010.4784 | spa |
dc.relation.references | Ticona-herrera, Regina, Tekli, Joe, Dongo, Irvin, Guzman, Renato y Chbeir, Richard. Toward RDF Normalization. | spa |
dc.relation.references | Manolescu, Ioana. Structural Summarization of Semantic Graphs. 2018. | spa |
dc.relation.references | Zhu, Ganggao y Iglesias, Carlos A. Sematch: Semantic similarity framework for Knowledge Graphs. 2017. DOI: 10.1016/j.knosys.2017.05.02l. UNAL https://www.simposioestadistica.unal.edu.co/ | spa |
dc.relation.references | Hees, Jörn, Bauer, Rouven, Folz, Joachim, Borth, Damian y Dengel, Andreas. An evolutionary algorithm to learn SPARQL queries for source-target-pairs finding pat-terns for human associations in DBpedia. 2016. DOI: 10.1007/978-3-319-49004-5_22. http://arxiv.org/abs/1607.07249 | spa |
dc.relation.references | De Vries, Gerben Klaas Dirk y De Rooij, Steven. Substructure counting graph kernels for machine learning from RDF data. 2015. DOI: 10.1016/j.websem.2015.08.002. | spa |
dc.relation.references | Xylogiannopoulos, Konstantinos F, Karampelas, Panagiotis y Alhajj, Reda. Dynamic Pattern Detection for Big Data Stream Analytics. | spa |
dc.relation.references | Potoniec, Jedrzej. An on-line learning to query system. 2016. | spa |
dc.relation.references | Hayes, Jonathan y Gutierrez, Claudio. Bipartite Graphs as Intermediate Model for RDF. 2004. DOI: 10.1007/978-3-540-30475-3_5. | spa |
dc.relation.references | Ayvaz, Serkan, Aydar, Mehmet y Melton, Austin. Building Summary Graphs of RDF Data in Semantic Web. 2015. DOI: 10.1109/COMPSAC.2015.107. | spa |
dc.relation.references | Amaout, Hiba y Elbassuoni, Shady. Effective searching of RDF knowledge graphs. 2018. DOI: 10.1016/j.websem.2017.12.001. | spa |
dc.relation.references | Cebiric, Sejla, Goasdoué, François y Manolescu, Ioana. A framework for eficient represen-tative summarization of RDF graphs. 2017. | spa |
dc.relation.references | Aydar, Mehmet, Ayvaz, Serkan y Melton, Austin. Automatic weight generation and class predicate stability in RDF summary graphs. 2015./ | spa |
dc.relation.references | Hettmansperger, T. (1984). Statistical Inference Based on Ranks. John Wiley & Sons, New York. | spa |
dc.relation.references | Lehmann, E. L., & D'A brera, H. J. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day. | spa |
dc.relation.references | Shuster, J. J. (2019). CRC Handbook of Sample Size Guidelines for Clinical Trials. CRC Press. | spa |
dc.relation.references | McCrum-Gardner, E. (2008). Which Is the Correct Statistical Test to Use?. British Journal of Oral and Maxillofacial Surgery, 46(1), 38-41. Elsevier. | spa |
dc.relation.references | McWilliams, T. P. (1990). A Distribution- Free Test for Symmetry Based on a Runs Statistic. | spa |
dc.relation.references | Journal of the American Statistical Association, 85(412), 1130-1133. Taylor & Francis Group. | spa |
dc.relation.references | Hall, P., & Heyde, C. C. (2014). Martingale Limit Theory and Its Application. Academic Press. | spa |
dc.relation.references | Baklizi, A. (2003). A Conditional Distribution Runs Test for Symmetry. Journal of Nonpara-metric Statistics, 15(6), 713-718. | spa |
dc.relation.references | Rocha, P. (1994). Estadística de Prueba para Problemas de Localización Basada en Rachas. Tesis de Maestría, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá. | spa |
dc.relation.references | Randles, R. H., & Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics. John Wiley. | spa |
dc.relation.references | DIRECCIÓN DE POLÍTICAS Y ESTRATEGIA, Fiscalía General de la Nación, 2023. | spa |
dc.relation.references | ARRIETA-BURGOS, E., DUQUE-PEDROZA, A. Y DíEz-RUGELES, M., Delitos sexuales en contra de menores de edad en Colombia: caracterización criminológica y políticocriminal, Revista Criminalidad, 62(2): 247-274, 2020. | spa |
dc.relation.references | NORZA-CÉSPEDES, ERVYN, Y ESPINO-DUQUE, GLORIA PATRICIA., Criminalidad y análisis espacial de los delitos en Colombia, 2010, Revista Criminalidad, 53(1), 17-43, 2011. | spa |
dc.relation.references | MEJIA, D; ORTEGA, D; ORTIz, K., Un análisis de la criminalidad urbana en Colombia, Banco de desarrollo de América Latina, 2015. | spa |
dc.relation.references | CHAZAL F., FASY, B. (2014) CONFIDENCE SETS FOR PERSISTENCE DIAGRAMS. Annals of Statistics, Vol. 42, No. 6, 2301-2339. | spa |
dc.relation.references | JIsu KIM, BRITTANY TERESE FASY AND FABRIZIO LECCI (2015) Tutorial on the R package TDA., Journal of Symbolic Computation | spa |
dc.relation.references | PETER BUBENIK (2023) Department of Mathematics. University of Florida | spa |
dc.relation.references | Jolliffe, Ian T. (2002). Principal component analysis for special types of data. Springer. | spa |
dc.relation.references | Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome H. (2009). The elements of statistical learning: data mining, inference, and prediction, Vol. 2. Springer. | spa |
dc.relation.references | Van der Maaten, Laurens, Hinton, Geoffrey. (2008). "Visualizing data using t-SNE." Journal of machine learning research, 9(11). | spa |
dc.relation.references | Mclnnes, Leland, Healy, John, Melville, James. (2018). "Umap: Uniform manifold approx-imation and projection for dimension reduction." arXiv preprint arXiv: 1802.03426. | spa |
dc.relation.references | Pramanik, Md, Rahman, Md Mahbubur, Anam, ASM, Ali, Amin Ahsan, Amin, M Ashraful, Rahman, AKM, and others. (2021). "Modeling Traffic Congestion in Developing Countries using Google Maps Data." In Future of Information and Communication Conference, pp. 513-531. Springer. | spa |
dc.relation.references | Wu, Tianlong, Chen, Feng, Wan, Yun. (2018). "Graph attention LSTM network: A new model for traffic flow forecasting." In 2018 Sth International Conference on Information Science and Control Engineering (ICISCE), pp. 241-245. TEEE. | spa |
dc.relation.references | United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. Disponible en: https://sustainabledevelopment.un.org/post2015/ transformingourworld | spa |
dc.relation.references | World Health Organization (WHO). (2021). Ambient air pollution: Health impacts. Disponible en: https://www.who.int/health-topics/ambient-air-pollution# tab=tab_ | spa |
dc.relation.references | McVean, Gil. (2009). "A genealogical interpretation of principal components analysis." PLoS genetics, 5(10), e 1000686. | spa |
dc.relation.references | Velliangiri, S, Alagumuthukrishnan, SJPCS, and others. (2019). "A review of dimensionality reduction techniques for efficient computation." Procedia Computer Science, 165, 104-111. Elsevier. | spa |
dc.relation.references | Ignacio Pérez, José Ricardo Cure, Néstor Monroy. Modelo de predicción y manejo de cultivos de rosas. Keywords: Grado - día, Cosecha, Invernadero. | spa |
dc.relation.references | Mark Everingham, Luc Van Gool, C. K. I. Williams, J. Winn, Andrew Zisserman. The PASCAL Visual Object Classes (VOC) challenge. (2010). | spa |
dc.relation.references | Andrew Engel. Feature Engineering for Time Series Data. Keywords: Feature Engineering for Time Series Data | spa |
dc.relation.references | Rubén Costas, Patricio Mac Donagh, Elizabeth Weber, Santiago Figueredo, Claudio Gómez, Pedro Irschick. Modelos predictivos de la producción de Pinus taeda empleando variables vinculadas con las podas. Bosque (Valdivia), 27(2), 2006. DOI: 10.4067/s0717-92002006000200004. | spa |
dc.relation.references | Manual de observaciones fenológicas, Servicio Nacional de Meteorología e Hidrología (Senanhi), Perú, 2011. | spa |
dc.relation.references | Francesca Lazzeri. Introduction to feature engineering for time series forecasting. (2021). | spa |
dc.relation.references | Rob J Hyndman, George Athanasopoulos. Forecasting: Principles and Practice; Classical Decomposition, 2021. | spa |
dc.relation.references | Alex Mitrani. Time Series Decomposition and Statsmodels Parameters, 2020. | spa |
dc.relation.references | Charles Potters. Variance Inflation Factor (VIF), 2021. | spa |
dc.relation.references | Benjamin Kedem, Konstantinos Fokianos. Regression Models for Time Series Analysis. Wiley- Interscience, 2002. | spa |
dc.relation.references | A lan McLeod. Time Series Analysis: Methods and Applications Volume 30. Time Series Analysis with R. Elsevier, 2012. DOI: 10.1016/B978-0-444-53858-1.00023-5. | spa |
dc.relation.references | Walter Zucchini, lain MacDonald. Hidden Markov Models for Time Series: An Introduction Using R. Chapman and Hall/CRC, 2009. | spa |
dc.relation.references | Sam Ewen. The Poisson Distribution. | spa |
dc.relation.references | Sachin Date. An Illustrated Guide to the Poisson Regression Model. | spa |
dc.relation.references | Sachin Date. Negative Binomial Regression: A Step by Step Guide. | spa |
dc.relation.references | NCSS Statistical Software. Negative Binomial Regression. | spa |
dc.relation.references | A. Colin Cameron, Pravin K. Trivedi. Regression analysis of count data. Cambridge University Press, 2013. | spa |
dc.relation.references | CFI Corporate Financial Institute. Overfitting - A modeling error that occurs when a function corresponds too closely to a particular set of data. | spa |
dc.relation.references | Shaun Turney. Coefficient of Determination (R squared) | Calculation & Interpretation. | spa |
dc.relation.references | Rohan Joseph. Grid Search for model tuning. | spa |
dc.relation.references | Gareth James, Daniela Witten, Trevor Hastie. An Introduction to Statistical Learning: With Applications in R. Springer Nature, 2017. | spa |
dc.relation.references | James Franklin. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 2005. DOI: 10.1007/bf02985802. | spa |
dc.relation.references | Emelina López, Marcos Ruiz. Análisis de datos con el Modelo Lineal Generalizado. Una aplicación con R. Revista española de pedagogía, 2011. | spa |
dc.relation.references | Jerome Friedman, Trevor Hastie, Robert Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 2010. DOI: 10.18637/jss.v033.i01. | spa |
dc.relation.references | Skipper Seabold, Josef Perktold. statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference, 2010. | spa |
dc.relation.references | R: A Language and Environment for Statistical Computing, R Core Team, 2022. | spa |
dc.relation.references | Robert E Fay III, Roger A Herriot. Estimates of income for small places: an application of James-Stein procedures to census data. Journal of the American Statistical Association, 74(366a), 1979. | spa |
dc.relation.references | Richard Valliant. Generalized variance functions in stratified two-stagy sampling. Journal of the American Statistical Association, 82(398), 1987. | spa |
dc.relation.references | H. S. Gutiérrez. Estrategias de Muestreo: Diseño de encuestas y estimación de parámetros. Ediciones de la U, 2016. | spa |
dc.relation.references | IGAC, Suelos y Tierras de Colombia. Instituto Geográfico A gustín Codazzi, IGAC., 2016. | spa |
dc.relation.references | THOMPSON L. M. AND TROEH F. R, Soils and Fertility. 1980. | spa |
dc.relation.references | HARVEY D., Teorías, leyes y modelos en geografta. Alianza Editorial, 1969. | spa |
dc.relation.references | PABÓN J. & MONTEALEGRE J., Los Fenómenos de El Niño Y de la Niña. Bogotá, Editorial Gente Nueva, 2017. [5] CRESSIE N., Statistics for Spatial Data. New York: Jhon Wiley & Sons, 1993. | spa |
dc.relation.references | TOBLER W., A Computer Movie Simulating Urban Growth in the Detroit Region, Economic Geography, Supplement: Proceedings. International Geographical Union. Commission on Quantitative Methods, vol. 46, pp. 234-240, 1970. | spa |
dc.relation.references | UNWIN D., Introductory Spatial Analysis. New York: Methuen & Co., 1981. | spa |
dc.relation.references | RHIND D. W., A skeletal overview of spatial interpolation techniques, Computer Applica-tions, vol. 2, pp. 293-309, 1975. | spa |
dc.relation.references | ISAAKS E. H. & SRIVASTAVA M., Applied Geostatistics. New York: Oxford University Press, Inc., 1989 | spa |
dc.relation.references | JOURNEL A. G. & HUIBREGTS CH. J, Mining Geoestatistics. Francia: Harcourt Brace Jnovich, Publishers, 1978. | spa |
dc.relation.references | GIRALDO R., Introducción a la Geoestadistica, Teoría y Aplicación. Bogotá, D.C. : Universidad Nacional de Colombia, 2011. | spa |
dc.relation.references | GIRALDO R, Geoestadística con Datos Funcionales. Conferencia, 32° Simposio Internacional de Estadística, Bioestadística y Datos Funcionales, Aug. 03, 2023. | spa |
dc.relation.references | SIABATO W., Técnicas de Análisis Modelado Espacial (TAME). Notas de apoyo en clase. Bogotá D.C., Colombia: Universidad Nacional de Colombia, 2023. | spa |
dc.relation.references | CRESSIE N. & C. WIKLE, Statistics for Spatio-Temporal Data. New Jersey, USA y Canada : Wiley & Sons, Inc, 2011. | spa |
dc.relation.references | HARVEY D., Social justice and the city. Johns Hopkins University Press, 1973. | spa |
dc.relation.references | WATERS, N., Unit 40 - Spatial interpolation 1, 1990. | spa |
dc.relation.references | STEEN F. H. & BALLOU D. H., Geometría Analítica. México D.F: Publicaciones Cultural, S. A., 1966. | spa |
dc.relation.references | DE IACO, S. & CAPELLO, C., Spatio-temporal modeling and prediction, ISI Online Course: Spatio-temporal modeling and prediction, 2023. | spa |
dc.relation.references | JHONSTON K., VER HOEF J., KRIVORUCHYO, K. & LUCAS, N., Using Arcgis Geostatis-tical Analyst, GIS by ESRI, United States of America, 2001. | spa |
dc.relation.references | DíAz-FRANCÉS., Introducción a Conceptos Básicos de Geoestadística, Memorias Seminario Estadística y Medio Ambiente, Guanajuato, México, Centro de Investigación en Matemáticas, CIMAT, 1993. | spa |
dc.relation.references | NowicKI, K. AND SNIDERS, T. A. B., Estimation and prediction for stochastic block-structures. Journal of the American statistical association, 96(455): 1077-1087, 2001. | spa |
dc.relation.references | ] KOLACZYK, E. D. AND CÁRDI, G., Statistical analysis of network data with R, Springer, Volume 65, 2020. | spa |
dc.relation.references | HASELMAYER, M. AND JENNY, M., Sentiment analysis of political communication: Combining a dictionary approach with crowdcoding, Quality & Quantity, 51:2623-2646. 2017. | spa |
dc.relation.references | ampo Elías Pardo. Estadística Descriptiva Multivariada. Universidad Nacional de Colom-bia. Sede Bogotá, 2020. | spa |
dc.relation.references | Encuesta Nacional de Calidad de Vida. DANE, 2023. Agencia Nacional de Datos Abiertos. | spa |
dc.relation.references | DANE. Encuesta Nacional de Calidad de Vida. 2023. Disponible en: https:// microdatos.dane.gov.co/index. php/catalog/POBCONVID | spa |
dc.relation.references | Glenn C. Blomquist. Measuring Quality of Life. A Companion to Urban Economics, 2006. DOl: https://doi.org/10.1002/9780470996225. ch28 | spa |
dc.relation.references | Bilver Astorquiza-Bustos, Kevin Bravo-Bolaño, Enmanuel Aguirre-Bernal. Indice de precariedad laboral en Colombia: una construcción teórica y analítica a partir de mi-crodatos. Revista Mexicana de Economía y Finanzas Nueva Época REMEF, vol. 18, no. 1, 2022. Palabras clave: Precariedad laboral, microdatos, metodología de conjuntos di-fusos, Colombia. Resumen y DOI: https://www.remef.org.mx/index.php/remef/ article/view/822 | spa |
dc.relation.references | IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). (s.f.). Contami-nación y calidad ambiental. | spa |
dc.relation.references | Holmes, J., Hassini, S. Discrete-Time Markov Chain Modelling of the Ontario Air Quality Health Index. Water Air Soil Pollut 232, 158 (2021). | spa |
dc.relation.references | Blanco-Castañeda, L., & Arunachalam, V. (20J3). Applied Stochastic Modeling. Springer. | spa |
dc.relation.references | Holmes, J., Hassini, S. Discrete-Time Markov Chain Modelling of the Ontario Air Quality Health Index. Water Air Soil Pollut 232, 158 (2021). https://www.paho.org/es/temas/ calidad-aire/calidad-aire-ambiente | spa |
dc.relation.references | IBOCA (Índice Bogotano de Calidad del Aire). (s.f.). ¿Qué es el IBOCA? Recuperado de http://iboca.ambientebogota.gov. co/publicaciones/175/que-es-el-iboca/ | spa |
dc.relation.references | DÍAz, F., y HERNÁNDEz, G., Estrategias docentes para un aprendizaje significativo: una interpretación constructivista (2" ed.), Mc Graw Hill, 2002. | spa |
dc.relation.references | CABERO, J., Las TIC y las Universidades: retos, posibilidades y preocupaciones, Revista de la Educación Superior, 34 (3), 77-100. | spa |
dc.relation.references | HAIR, J., HULT, T., RINGLE, C. Y SARSTED, M., A primer on partial least square structural equation modeling (PLS-SEM) (2" ed.) , Sage Publications,2017. | spa |
dc.relation.references | SÁNCHEZ-OTERO, M., GARCÍA-GUILIANY, J., STEFFENS-SANABRIA, E., Y PALMA, H. H., Estrategias pedagógicas en procesos de enseñanza y aprendizaje en la educación superior incluyendo tecnologías de la información y las comunicaciones, Información Tecnológica, 30(3), 277-286. | spa |
dc.relation.references | VARGAS, C. G. J., La investigación prixeológica: un enfoque alternativo, Praxis Pedagóg-ica, 20(26), , 117-148. | spa |
dc.relation.references | Madden, L.V., Hughes, G., & Bosch, F.V. Spatial aspects of epidemics II: A theory of spatio-temporal disease dynamics. En: The Study of Plant Disease Epidemics. APS Press - The American Phytopathological Society, St. Paul, Minnesota, U.S.A., 2007. 421 pp. ISBN 978-0-89054-354-2. | spa |
dc.relation.references | Grubesic, Tony H, Wei, Ran y Murray, Alan T, Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense, Annals of the Association of American Geographers, vol. 104, no. 6, pp. 1134-1156, 2014, Taylor & Francis. | spa |
dc.relation.references | Grubesic, Tony H, Wei, Ran y Murray, Alan T, Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense, Annals of the Association of American Geographers, vol. 104, no. 6, pp. 1134-1156, 2014, Taylor & Francis. | spa |
dc.relation.references | Siabato, Willington y Guzmán-Manrique, Jhon, Spatial autocorrelation and the development of quantitative geography, Cuadernos de Geografta: Revista Colombiana de Geografia, vol. 28, no. 1, pp. 1-22, 2019. | spa |
dc.relation.references | Siabato, Willington y Guzmán-Manrique, Jhon, Spatial autocorrelation and the development of quantitative geography, Cuadernos de Geografta: Revista Colombiana de Geografia, vol. 28, no. 1, pp. 1-22, 2019. | spa |
dc.relation.references | Esri, Spatial Statistics Resources, Disponible en: https://spatialstats-analysis-1/ hub.arcgis.com/, 2021. | spa |
dc.relation.references | David R. Cagna, Terence E. Donovan, James R. McKee, Frederick Eichmiller, James E. Metz, Jean-Pierre Albouy, Ricardo Marzola, Kevin G. Murphy y Matthias Troeltzsch, "Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry," The Journal of Prosthetic Dentistry, vol. 126, no. 3, pp. 276-359, 2021. DOI: https://doi.org/10.1016/j.prosdent.2021 06.014. | spa |
dc.relation.references | E. L. Kaplan y Paul Meier, "Nonparametric Estimation from Incomplete Observations," Journal of the American Statistical Association, vol. 53, no. 282, pp. 457-481, 1958. URL: http://www.jstor.org/stable/2281868 (visitado el 19-07-2023). | spa |
dc.relation.references | David G. Kleinbaum y Mitchel Klein, Survival Analysis: A Self-Learning Text, Springer New York, 2012. | spa |
dc.relation.references | David Machin, Yin Bun Cheung y Mahesh Parmar, Survival Analysis: A Practical Approach, 2nd ed., Wiley, 2023. | spa |
dc.relation.references | Terry M. Thereau y The R Foundation, Survival Analysis in R, marzo de 2023. URL: https://cran.rproject.org/web/packages/survival/index.html (visitado el 24- 03-2023). | spa |
dc.relation.references | J. P. Van Nieuwenhuysen, W. D'Hoore, J. Carvalho y V. Qvist, "Long-term evaluation of extensive restorations in permanent teeth," J Dent, vol. 31, no. 6, pp. 395-405, 2003. DOI: 10. 1016/s0300-5712 s0300-5712(03) 00084-8 | spa |
dc.relation.references | Gail Potter, Jimmy Wong, Irvin Alcaraz, Peter Chi, y otros, Web application teaching tools for statistics using R and shiny. Technology Innovations in Statistics Education, vol. 9, no. 1, 2016. | spa |
dc.relation.references | Andrew Gelman, John B Carlin, Hal S Stern y Donald B Rubin, Bayesian data analysis. Chapman and Hall/CRC, 1995. | spa |
dc.relation.references | Yen-Ting Lin y Min Jou, Integrating popular web applications in classroom learning environments and its effects on teaching, student learning motivation and performance. Turkish Online Journal of Educational Technology-TOJET, vol. 12, no. 2, pp. 157-165, 2013. | spa |
dc.relation.references | Gil Perry, Silla Blondheim y Eliran Kuta, D-ID, IA generativa. Recuperado julio de 2023, de https://www.d-id.com/ 1 2023. | spa |
dc.relation.references | NATIONAL HEART, LUNG AND BLOOD INSTITUTE, Pneumonia Recovery, 2022. Recuper-ado de https://www.nhlbi.nih.gov/health/pneumonia/recover. | spa |
dc.relation.references | R CoRE TEAM, R: A Language and Environment for Statistical Computing, 2020. URL = https://www.R-project.org/ | spa |
dc.relation.references | Ros-GUTIÉRREZ A, To https://www.R-project.org/AM V. • (2023) An updated estimation approach for SEIR models wun swenuse penurbations: Application to COVID-19 data in Bogotá. PLOS ONE 18(8): e0285624. htups://doi. org/ 10. 1371/journal pone 0285624 | spa |
dc.relation.references | Soumyya Kanti Datta, Mohammad Abuzar Shaikh, Sargur N Srihari y Mingchen Gao, "Soft attention improves skin cancer classification performance," en Interpretabiliry of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th International Workshop, iMIMIC 2021, and Ist International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAT 2021, Strasbourg, France, September 27, 2021, Proceedings 4, pp. 13-23, 2021, Springer. | spa |
dc.relation.references | Giona Kleinberg, Michael J Diaz, Sai Batchu y Brandon Lucke-Wold, "Racial under-representation in dermatological datasets leads to biased machine learning models and inequitable healthcare," en Journal of biomed research, vol. 3, no. 1, p. 42, 2022, NIH Public Access. | spa |
dc.relation.references | MaryBeth B Culp y Natasha Buchanan Lunsford, "Melanoma among non-Hispanic black Americans," en Preventing Chronic Disease, vol. 16, 2019, Centers for Disease Control and Prevention. | spa |
dc.relation.references | Andres MORALES-FORERO, Lili RUEDA, Sebastian GIL-QUINONEZ, M BARRERA, Samuel BASSETTO y Eric COATANEA, "AN INSIGHT INTO RACIAL BIAS IN DER-MOSCOPY REPOSITORIES: A HAM10000 DATASET ANALYSIS," presentado en Journal of the European Academy of Dermatology and Venereology, agosto de 2023. | spa |
dc.relation.references | International Skin Imaging Collaboration y otros, "Siim-isic 2020 challenge dataset," en International Skin Imaging Collaboration, 2020. | spa |
dc.relation.references | Marc Combalia, Noel CF Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer Reiter, Cristina Carrera, Alicia Barreiro, Allan C Halpern, Susana Puig y otros, "Ben20000: Dermoscopic lesions in the wild," en arXiv preprint ar Xiv:1908.02288, 2019. | spa |
dc.relation.references | Philipp schandl, Cliff Rosendahl y Harald Kittler, "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,' " en Scientific data, vol. 5, no. 1, Pp. 1-9, 2018, Natere Publishing Group. | spa |
dc.relation.references | Jose L Cortez, Juan Vasquez y Maria L. Wei, "The impact of demographics, socioeconomics, and health care access on melanoma outcomes," en Journal of the American Academy of Dermatology, vol. 84, no. 6, pp. 1677-1683, 2021, Elsevier. | spa |
dc.relation.references | Zehra Rizvi, Viktor Kunder, Hanna Stewart, Paola Torres, Sana Moon, Nimisha Lingappa, Mallory Kazaleh, Varshini Mallireddigari, Julian Perez, Nigel John y otros, "The bias of physicians and lack of education in patients of color with melanoma as causes of increased mortality: a scoping review," en Cureus, vol, 14, no. 11, 2022, Cureus. | spa |
dc.relation.references | JC Lester, JL. Jia, L Zhang, GA Okoye y E Linos, *Absence of images of skin of colour in publications of COVID-19 skin manifestations," en British Journal of Dermatology, vol. 183, no. 3, pp. 593-595, 2020, Blackwell Publishing Ltd Oxford, UK. | spa |
dc.relation.references | Patricia Patricia Louie y Rima Wilkes, "Representations of race and skin tone in medical textbook imagery," en Social Science & Medicine, vol. 202, PP. 38-42, 2018, Elsevier. | spa |
dc.relation.references | Mina Kim, Susan L Boone, Dennis P West, Alfred W Rademaker y Roopal V Kundu, "Perception of skin cancer risk by those with ethnic skin," en Archives of dermatology, vol. 145, no. 2, pp. 207-208, 2009, American Medical Association. | spa |
dc.relation.references | "Why the Color of Your Skin Can Affect the Quality of Your Diagnosis," https://www.improvediagnosis.org/dxiq-column/ why-the-color-of-your-skin-can- affect-the-quality-of-your-diagnosis/ consultado el 01-06-2023. | spa |
dc.relation.references | Sean M Dawes, Sheena Tsai, Haley Gittleman, Jill S Barnholtz-Sloan y Jeremy S Bor-deaux, "Racial disparities in melanoma survival," en Journal of the American Academy of Dermatology, vol. 75, no. 5, pp. 983-991, 2016, Elsevier. | spa |
dc.relation.references | Joshua Brady, Reem Kashlan, Julie Ruterbusch, Mehdi Farshchian y Meena Moossavi, "Racial disparities in patients with melanoma: a multivariate survival analysis," en Clinical, Cosmetic and Investigational Dermatology, PP. 547-550, 2021, Taylor & Francis. | spa |
dc.relation.references | Hugh M Gloster Jr y Kenneth Neal, "Skin cancer in skin of color," en Journal of the American Academy of Dermatology, vol. 55, no. 5, pp. 741-760, 2006, Elsevier. | spa |
dc.relation.references | U.S. Census Bureau Newsroom, https://www.census-gov/newsroom/releases/ archives/population/ cb12-243. html, consultado el 01-06-2023. | spa |
dc.relation.references | Mona A Gohara, "Skin cancer in skins of color," en Journal of drugs in dermatology: JDD, vol. 7, no. 5, pp. 441-445, 2008. | spa |
dc.relation.references | Xiao-Cheng Wu, Melody J Eide, Jessica King, Mona Saraiya, Youjie Huang, Charles Wiggins, Jill S Barnholtz-Sloan, Nicolle Martin, Vilma Cokkinides, Jacqueline Miller y otros, "Racial and ethnic variations in incidence and survival of cutaneous melanoma in the United States, 1999-2006," en Journal of the American Academy of Dermatology, vol. 65, no. 5, pp. S26-el, 2011, Elsevier. | spa |
dc.relation.references | Stephen J Merrill, Madhan Subramanian y Dianne E Godar, "Worldwide cutaneous malignant melanoma incidences analyzed by sex, age, and skin type over time (1955-2007): Is HPV infection of androgenic hair follicular melanocytes a risk factor for developing melanoma exclusively in people of European-ancestry?," en Dermato-endocrinology, vol. 8, no. 1. p. e1215391, 2016, Taylor & Francis. | spa |
dc.relation.references | Alpana K Gupta, Mausumi Bharadwaj y Ravi Mehrotra, Skin cancer concerns in people of color: risk factors and prevention," en A sian Pacific journal of cancer prevention: APJCP, vol. 17, no. 12, p. 5257, 2016, Shahid Beheshti University of Medical Sciences. | spa |
dc.relation.references | Andres Morales-Forero, Samuel Bassetto y Eric Coatanea, "Toward safe AI," en Al & SOCIETY, vol. 38, no. 2, pp. 685-696, 2023, Springer. | spa |
dc.relation.references | Cynthia Rudin, "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead," en Nature machine intelligence, vol. I, no. 5, pp. 206-215, 2019, Nature Publishing Group UK London. | spa |
dc.relation.references | ELCA 2016 RONDA 3. Bases de datos Rural, formulario personas. Tomado de https: //encuestalongitudinal. uniandes.edu. co/es/ | spa |
dc.relation.references | PARDO, C. E., (2020). Estadística descriptiva multivariada. Universidad Nacional. | spa |
dc.relation.references | RAMONI, J. Y ORLANDONI, G., (2016). Análisis de la estructura del mercado laboral en Colombia: un estudio por género mediante correspondencias múltiples. Universidad de Santander. Recuperado de https://repositorio.uam.es/bitstream/handle/10486/ 690541/CB_113_2. pdf | spa |
dc.relation.references | MAYORGA, M.,Caracterización ecofisiológica de curuba (Passiflora tripartita var. Mollis-sima) en dos condiciones ambientales, Tesis de maestría en Ciencias A grarias, Universidad Nacional de Colombia, Bogota, 2016. | spa |
dc.relation.references | R CORE TEAM, R: A Language and Environment for Statistical Computing, Vienna, Austria, R Foundation for Statistical Computing, 2023. url - https://www.R-project.org/ | spa |
dc.relation.references | MARDIA, K. V. AND KENT, J. T. AND BIBBY, J. M., Multivariate analysis, London, Academic Press, 2002. | spa |
dc.relation.references | GOWER, J. C. AND KRZANOWSKI, W.J., Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance, Applied statistics, 48(4), 505-519, 1999. | spa |
dc.relation.references | C. Zelada, "Evaluación de modelos de clasificación." Recuperado de https://rpubs.com/ chzelada/275494, 2017. Online. | spa |
dc.relation.references | Haolun S., Yuping Y., Liangliang W., Da M., Mirza F. B., Jian P. y Jiguo C., "Two-Dimensional Functional Principal Component Analysis for Image Feature Extraction.* Recuperado de https://doi.org/10.1080/10618600.2022. 2035738, 2022. Online. | spa |
dc.relation.references | M.E. Arrieta, "Material de clase Analisis de regresión. Semana 17." 2023. Online. | spa |
dc.relation.references | Navoneel Chakrabarty, "Brain MRI Images for Brain Tumor Detec- tion." Recuperado de https://www.kaggle.com/datasets/navonee1/ brain-mri-images-for-brain-tumor-detection, 2019. Online. | spa |
dc.relation.references | J.0. Ramsay y B.W. Silverman, "Functional Data Analysis." Springer, vol. 322, no. 2, 2005. (7] A. Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow." O'REILLY, no. 2, 2019. | spa |
dc.relation.references | DE AMO, E., DÍAZ CARRILLO, M., DURANTE, F., FERNÁNDEZ SÁNCHEZ, J., Extensions of subcopulas, Journal of Mathematical Analysis and Applications 452 (1): 1 - 15, 2017 | spa |
dc.relation.references | DURANTE, F. AND SEMPI, C., Principles of Copula Theory, CRC press, 2016 | spa |
dc.relation.references | ERDELY, A., A subcopula based dependence measure, Kybernetika 53 (2), 231 - 243, 2017 | spa |
dc.relation.references | JOE, H., Dependence Modeling with Copulas, CRC Press, 2014 | spa |
dc.relation.references | NELSEN, R. B., An Introduction to Copulas, Springer, New York, 2006 | spa |
dc.relation.references | Organización Mundial de la Salud y Banco Mundial: Informe mundial sobre la discapacidad. 11. https://www.oas.org(2011) | spa |
dc.relation.references | Pardo, Campo Elías: Estadística descriptiva multivariada, Bogotá, Colombia: Universidad Nacional de Colombia. 2020 | spa |
dc.relation.references | Pineda Duque, J. A., Luna Ruiz, A: Intersecciones de género y discapacidad. La inclusión laboral de mujeres con discapacidad, Sociedad y Economía, (35), 158-181. https://doi.org/ 10.25100/sye.v0i35.5652(2018) | spa |
dc.relation.references | Universidad de los Andes: Encuesta Longitudinal Colombiana: Formularios Urbano adultos y Urbano Hogar, 2016. | spa |
dc.relation.references | D. Kosiorowski, J. P. Rydlewski, M. Snarska. (2017). Detecting a structural change in functional time series using local Wilcoxon statistic | spa |
dc.relation.references | D. Paindaveine & G. Van bever (2013). From Depth to Local Depth: A Focus on Centrality Journal of the American Statistical Association | spa |
dc.relation.references | S. Lopez-Pintado, R. Jornsten (2007). Functiodal analysis via extensions of the band depth J Stat Softw 29:5 | spa |
dc.relation.references | AGRESTI, A. Y FINLAY, B. , Statistical Methods for the Social Sciences, 4th ed. Prentice Hall, 2009. | spa |
dc.relation.references | R CORE TEAM., R: A Language and Environment for Statistical Computing. Tech. rep. Vienna, Austria, 2020. url: https://www.R-project.org | spa |
dc.relation.references | SISTEMA NACIONAL DE INFORMACIÓN DE LA EDUCACIÓN SUPERIOR, SNIES. Minedu-cación. BOGOTA, 2000. url: https://www.mineducacion.gov.co/sistemasinfo/Informacion-Institucional/. | spa |
dc.relation.references | Azzalini, A., with the collaboration of A. Capitanio (2014). The Skew-Normal and Related Families. Cambridge University Press, Cambridge | spa |
dc.relation.references | Koenker, R., Bassett Jr., G. (1978). Regression quantiles. Econometrica, 46(1), 33-50. | spa |
dc.relation.references | Mazucheli, J., Alves, B., Menezes, A. and Leiva, V. An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data. Computer Methods and Programs in Biomedicine 2022, 221, 106816. | spa |
dc.relation.references | Mazucheli, J., Alves, B., Menezes, A. and Leiva, V. An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data. Computer Methods and Programs in Biomedicine 2022, 221, 106816. | spa |
dc.relation.references | Muzamhindo, Yusheng Kong and Takur iramunashe Famba. (2017); PRINCIPAL COMPONENT ANALYSIS AS A RANKING TOOL - A CASE OF WORLD UNIVERSITIES. int J. of Adv. Res. 5 (Jun). 2114-2135 (ISSN 2320-5407). www.journalijar.com | spa |
dc.relation.references | Bracken J, van Assen MALM. An empirical Kaiser criterion. Psychol Methods. (2017);22(3):450-466. doi: 10.1037/met0000074. Epub 2016 Mar 31. PMID: 27031883. | spa |
dc.relation.references | R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ | spa |
dc.relation.references | Andrzej Mackiewicz, Waldemar Ratajczak. Principal components analysis (PCA) (1993), Computers & Geosciences, Volume 19, Issue 3,1993, Pages 303-342, ISSN 0098-3004, https://doi.org/10.1016/0098-3004(93)90090-R. | spa |
dc.relation.references | Banco Mundial. Indicadores de Desarrollo Mundial, World Bank Group, 2015, data. worldbank.org | spa |
dc.relation.references | Khatun, Tahmina. (2009). Measuring environmental degradation by using principal component analysis. Environment, Development and Sustainability. 11. 439-457. 10.1007/s 10668- 007-9123-2. | spa |
dc.relation.references | PERSSON, RICKARD, Weight of evidence transformation in credit scoring models: How does it affect the discriminatory power? Student Paper, 2021. | spa |
dc.relation.references | ZENG, G., A necessary condition for a good binning algorithm in credit scoring, 2014. | spa |
dc.relation.references | Basu S, Santra S (2010). "A joint model for incomplete data in crossover trials." Journal of Statistical Planning and Inference, 140(10), 2839-2845. | spa |
dc.relation.references | Chard AN, Trinies V, Edmonds CJ, Sogore A, Freeman MC (2019). "The impact of water consumption on hydration and cognition among schoolchildren: Methods and results from a crossover trial in rural Mali." PloS one, 14(1), e0210568. | spa |
dc.relation.references | Cruz NA, Melo OO, Martinez CA (2023). "A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures." Statistical Papers, pp. 1-28. | spa |
dc.relation.references | Davis CS (2002). Statistical Methods for the Analysis of Repeated Measurements. Springer, San Diego. [6] Fleiss JL (1989). "A critique of recent research on the two-treatment crossover design.* Controlled clinical trials, 10(3), 237-243. | spa |
dc.relation.references | Grayling MJ, Mander AP, Wason JM (2018). *Blinded and unblinded sample size reesti-mation in crossover trials balanced for period." Biometrical Journal, 60(5), 917-933. | spa |
dc.relation.references | Hardin JW, Hilbe J (2003). Generalized Estimating Equations, Chapman & Hall, Boca Raton. | spa |
dc.relation.references | Harville DA (1997). Matrix algebra from a statistician's perspective, volume I. Springer, New York. | spa |
dc.relation.references | Hin LY, Wang YG (2009). "Working-correlation-structure identification in generalized estimating equations." Statistics in medicine, 28(4), 642-658. | spa |
dc.relation.references | Hinkelmann K, Kempthorne O (2005). Design and Analysis of Experiments, volume Volume 2 of Wiley series in probability and mathematical statistics. Applied probability and statistics. Wiley, New York. ISBN 9780471551775,0-471-55177-5,0471551783. | spa |
dc.relation.references | Hojsgaard S, Halekoh U, Yan J (2006). "The R package geepack for generalized estimating equations." Journal of statistical software, 15, 1-11. | spa |
dc.relation.references | Jones B, Kenward MG (2015). Design and Analysis of Cross-Over Trials Third Edition. Chapman & Hall/CRC, Boca Raton. | spa |
dc.relation.references | Josephy H, Vansteelandt S, Vanderhasselt MA, Loeys T (2015). "Within-subject mediation analysis in AB/BA crossover designs." The international journal of biostatistics, 11(l), 1-22. | spa |
dc.relation.references | Kitchenham B, Madeyski L, Curtin F, et al. (2018). "Corrections to effect size variances for continuous outcomes of cross-over clinical trials." Statistics in medicine, 37(2), 320-323. | spa |
dc.relation.references | Kleinman K, Sakrejda A, Moyer J, Nugent J, Reich N (2021). clusterPower: Power Calculations for Cluster-Randomized and Cluster-Randomized Crossover Trials. R package version 0.7.0, URL ht tps:// CRAN.R-project.org/package=clusterPower. | spa |
dc.relation.references | Labes D (2019). randomizeBE: Create a Random List for Crossover Studies. R package version 0.3-5, URL https:// CRAN.R-project. org/package=randomizeBE | spa |
dc.relation.references | Liang KY, Zeger SL (1986). "Longitudinal data analysis using generalized linear models." Biometrika, 73(1), 13-22. | spa |
dc.relation.references | Madeyski L, Kitchenham B (2018). "Effect sizes and their variance for AB/BA crossover design studies." Empirical Software Engineering, 23(4), 1982-2017. | spa |
dc.relation.references | McDaniel LS, Henderson NC, Rathouz PJ (2013). "Fast pure R implementation of GEE: application of the Matrix package." The R Journal, 5, 181-187. URL https://journal! I-project.org/archive/2013-1/mcdaniel-henderson-rathouz.pdf | spa |
dc.relation.references | Pan W (2001). "Akaike's information criterion in generalized estimating equations." Bio-metrics, 57, 120-125. | spa |
dc.relation.references | Patterson HD (1951). "Change-Over Trials." Journal of the Royal Statistical Society. Series B (Methodological), 13, 256-271. | spa |
dc.relation.references | Rohmeyer K (2021). Crossover: Analysis and Search of Crossover Designs. R package version 0.1-20, URL attps://CRAN.R-projget.org/package-Crossover. | spa |
dc.relation.references | Rosenkranz GK (2015). "Analysis of cross-over studies with missing data." Statistical methods in medical research, 24(4), 420-433. | spa |
dc.relation.references | Sailer MO (2022), crossdes: Construction of Crossover Designs. R package version 1.1-2, URL https://CRAN.R-project.org/package=crossdes. | spa |
dc.relation.references | Senn S (1992). "Is the 'simple carry-over'model useful?" Statistics in Medicine, 11(6), 715-726. | spa |
dc.relation.references | Vegas S, Apa C, Juristo N (2016). "Crossover designs in software engineering experiments: Benefits and perils." IEEE Transactions on Software Engineering, 42(2), 120-135. | spa |
dc.relation.references | Wei T, Simko V (2021). R package 'corrplot: Visualization of a Correlation Matrix. (Version 0.92), URL https://github. com/taiyun/corrplot. | spa |
dc.relation.references | Zhang H, Yu Q, Feng C, Gunzler D, Wu P, Tu X (2012). "A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses." Journal of Applied Statistics, 39(9), 2067-2079. | spa |
dc.relation.references | N. M. Laird and J. H. Ware, Random-Effects Models for Longitudinal Data, Biometrics, vol. 38, no. 4, pp. 963-974, 1982. URL: http://www.jstor.org/stable/2529876 | spa |
dc.relation.references | B. A. Chvatal et al., Development of Multilevel Models for Longitudinal Craniofacial Growth Prediction, Am. J. Orthod. Dentofacial Orthop., vol. 128, no. 1, pp. 45-56, 2005. DOI: 10.1016/j-ajodo.2004. 03.035 | spa |
dc.relation.references | J. C. Correa and J. C. Salazar, Introducción a los Modelos Mixtos, 2016. URL: http: //www.bdigital.unal.edu.co/57330/ | spa |
dc.relation.references | E. W. Frees, Longitudinal and Panel Data: Analysis and Applications in the Social Sciences, Cambridge University Press, 2004. New York. | spa |
dc.relation.references | A. Charpentier, Confidence Intervals and Credible Intervals, 2016. URL: http:// freakonometrics.hypotheses.org/18117 Consultado el 24 de julio de 2023. | spa |
dc.relation.references | L. D. Jiménez, L. Villegas, G. Álvarez, and J. C. Salazar-Uribe, Modeling Facial Growth Data in 49 Untreated Colombian Mestizo Subjects During 18 Years Follow-up Using Linear Mixed Models, Am. J. Orthod. Dentofacial Orthop., In Press, 2019. | spa |
dc.relation.references | R: A Language and Environment for Statistical Computing, R Core Team, R Foundation for Statistical Computing, 2023. URL: https://www.R-project.org/ | spa |
dc.relation.references | AZZALINI, A. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 1985, 12, 171-178. | spa |
dc.relation.references | GUO, B. AND WANG, B Control charts for monitoring the Weibull shape parameter based on type II censored sample. Quality and Reliability Engineering International, 2014 | spa |
dc.relation.references | LI, C.; SU, N.C.; SU, P.F. AND SHYR, Y. The design of X and R control charts for skew-normal distributed data. Communications in Statistics-Theory and Methods, 2014, 43(23), 4908-4924. | spa |
dc.relation.references | MORALES, V.H. AND PANZA, C.A. Control charts for monitoring the mean of skew-normal samples. Symmetry, 2022, 14, 2302-2312. | spa |
dc.relation.references | SHEN, X.; ZOU, C.; JIANG, W. AND TSUNG, F. Monitoring Poisson count data with probability control limits when sample sizes are time varying. Naval Research Logistics, 2013, 60(8), 625-636. | spa |
dc.relation.references | CHOW S-C, SHAO J, WANG H, LOKHNYGINA Y., Sample size calculations in clinical research., In: Second. Chapman & Hall; 2008. p. 1-21 | spa |
dc.relation.references | FRIEDMAN LM, FURBERG CD, DEMETS DL, REBOUSSIN DM, GRANGER CB., Fundamentals of clinical trials. In: Fundamentals of Clinical Trials. Spinger; 2015. p. 1-17. | spa |
dc.relation.references | KUMBHARE D, ALAVINIA M, FURLAN J., Hypothesis Testing in Superiority, Noninfe-riority, and Equivalence Clinical Trials. Am J Phys Med Rehabil. 2019;98(3):226-30. Interdisciplinary and Applied | spa |
dc.relation.references | CHARITOS T, DE WAAL PR Y VAN DER GAAG LC., Computing short-interval transition matrices of a discrete-time Markov chain from partially observed data. Stat Med. 2008 Mar 15;27(6): 905-21. doi: 10.1002/sim.2970. PMID: 17579926. | spa |
dc.relation.references | ALEXANDRE JACQUILLAT, A Queuing Model of Airport Congestion and Policy Implications at JFK and EWR Massachusetts Institute of Technology. 2012 May 11. | spa |
dc.relation.references | HIGHAM, N.J. Y LIN, L., On pth Roots of Stochastic Matrices. Linear Algebra and its Applications, 435, 448-463,2011. | spa |
dc.relation.references | HIGHAM, N.J., Functions Of Matrices. Society for Industrial and Applied Mathemat-ics,2008. | spa |
dc.relation.references | MARCUS, M. AND MINC, H., ome Results on Doubly Stochastic Matrices. American Mathematical Society, 13(4), 571-579, 1962. doi: http://doi.org/10. 2307/2034828 | spa |
dc.relation.references | Q1-MING H. Y GUNN E., Note on the Stochastic Roots of Stochastic Matrices. Jourmal of Systems Science and Systems Engineering, 12(2), 210-223, Jun 2003. | spa |
dc.relation.references | Sara López-Pintado and Juan Romo, A half-region depth for functional data, Computational Statistics & Data Analysis, vol. 55, no. 4, pp. 1679-1695, 2011, Elsevier. | spa |
dc.relation.references | James O. Ramsay and Bernard W. Silverman, Applied functional data analysis: methods and case studies, 2002, Springer. | spa |
dc.relation.references | Subhabrata Chakraborti and Marien Graham, Nonparametric statistical process control, 2019, John Wiley & Sons. | spa |
dc.relation.references | Partha Sarathi Mukherjee, On phase Il monitoring of the probability distributions of univariate continuous processes, Statistical Papers, vol, 57, no. 2, pp. 539-562, 2016. Springer. | spa |
dc.relation.references | Douglas C. Montgomery, Statistical quality control, vol. 7, 2009, Wiley New York. | spa |
dc.relation.references | Alessandro Fasso, Maurizio Toccu, and Marino Magno, Functional control charts and health monitoring of steam sterilizers, Quality and Reliability Engineering International, vol. 32, no. 6, pp. 2081-2091, 2016, Wiley Online Library. | spa |
dc.relation.references | Alba M Franco Pereira and Rosa E Lillo, Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations, Advances in Data Analysis and Classification, vol. 14, no. 3, pp. 651-676, 2020, Springer. | spa |
dc.relation.references | Miguel Flores, Salvador Naya, Rubén Fernández-Casal, Sonia Zaragoza, Paula Raña, and Javier Tarrfo-Saavedra, Constructing a control chart using functional data, Mathematics, vol. 8, no. 1, p. 58, 2020, MDPI. | spa |
dc.relation.references | Piotr Kokoszka and Matthew Reimherr, Introduction to functional data analysis, 2017, CRC press. | spa |
dc.relation.references | Ana Arribas-Gil and Juan Romo, Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, vol. 15, no. 4, pp. 603-619, 2014, Oxford University Press. | spa |
dc.relation.references | Sara López-Pintado and Juan Romo, On the concept of depth for functional data, Journal of the American statistical Association, vol. 104, no. 486, pp. 718-734, 2009, Taylor & Francis. | spa |
dc.relation.references | Christian Capezza, Fabio Centofanti, Antonio Lepore, and Biagio Palumbo, A functional data analysis approach for the monitoring of ship CO 2 emissions, Gestão & Produção, vol. 28, 2021, SciELO Brasil. | spa |
dc.relation.references | Marco Grasso, Bianca Maria Colosimo, and Fugee Tsung, A phase I multi-modelling ap- proach for profile monitoring of signal data, International Joumal of Production Research, vol. 55, no. 15, pp. 4354-4377, 2017, Taylor & Francis. | spa |
dc.relation.references | Koenker, R.; Bassett, G., Jr. Regression quantiles. Econometrica 1978, 46, 33-50. | spa |
dc.relation.references | McKeague, I.W.; López-Pintado, S.; Hallin, M.; Siman, M. Analyzing growth trajectories. J. Dev. Orig. Health Dis. 2011 2, 322-329. | spa |
dc.relation.references | Petrella, L.; Raponi, V. Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress. J. Multivar. Anal. 2019, 173, 70-84. | spa |
dc.relation.references | BARÓN, J. & MARTÍNEZ, G., Probabilistic Sampling Design and Strategies. Package ProbSamplingI, software R-project, 2021. | spa |
dc.relation.references | SARNDAL, C., SWENSSON, B. & WRETMAN, J.. Model Assisted Survey Sampling, 2003. | spa |
dc.relation.references | Calderón, S. (2023). TimeSeries. GitHub. de URL: https: //github.con/sacalderonv/ Time Series | spa |
dc.relation.references | Martinez C. (2017) Suavizacion Exponencial Simple - Pronostico de la Demanda en Excel de https://excelcartagena. com. | spa |
dc.relation.references | SciPy developers. (Agosto, 2023). SciPy Reference Guide. URL: https://docs. scipy org/doc/scipy/ | spa |
dc.relation.references | Statsmodels developers. (AMayo, 2023). User Guide. URL: https://www.statsmodels org/stable/user-guide.html | spa |
dc.relation.references | BARDWELL, G. E. AND CROW, E. L., A two-parameter family of hyper-poisson distribu-tions. Journal of the American Statistical Association, 59(305): 133-141, (1964)... | spa |
dc.relation.references | BENJAMIN, M. A., RIGBY, R. A., AND STASINOPOULOS, D. M., Generalized au-toregressive moving average models. Journal of the American Statistical Association, 98(461):214-223, (2003). | spa |
dc.relation.references | JOHNSON, N., KEMP, A., AND KOTZ, S. Univariate Discrete Distributions. Wiley Series in Probability and Statistics. Wiley, (2005). | spa |
dc.relation.references | R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2022). | spa |
dc.relation.references | SÁEZ-CASTILLO, A. AND CONDE-SÁNCHEZ, A. A hyper-poisson regression model for overdispersed and underdispersed count data. Computational Statistics & Data Analysis, 61:148-157, (2013). | spa |
dc.relation.references | R, r-project.org, R version 4.2.3, 2023. | spa |
dc.relation.references | ZEITLIN, W. AND ES AUERBACH, C., Basic statistics for the behavioral and social sciences using R., Oxford University Press, 2019. | spa |
dc.relation.references | GRAJALES-MORALES S., https://github.com/SaraGraMo/DaneFinancEducat,2023. | spa |
dc.relation.references | Harrou, F., Sun, Y., Hering, A. S., & Madakyaru, M. Statistical process monitoring using advanced data-driven and deep learning approaches: theory and practical applications. Elsevier.2020 | spa |
dc.relation.references | Nurettin Dorukhan Sergin & Hao Yan Toward a better monitoring statistic for profile monitoring via variational autoencoders, Joural of Quality Technology, 53:5, 454-473,2021 | spa |
dc.relation.references | Lee, S., Kwak, M., Tsui, K. L., & Kim, S. B. Process monitoring using variational au-toencoder for high-dimensional nonlinear processes. Engineering Applications of Artificial Intelligence, 83, 13-27.2019 | spa |
dc.relation.references | BRIAN EVERITT, & HOTHORN, T., An Introduction to Applied Multivariate Analysis with R,Springer, 2011 ed. | spa |
dc.relation.references | CATTELL, R. B. The scree test for the number of factors, "Multivariate Behavioural Re-search, 1, 245-276. Cited on p. 72,1966. | spa |
dc.relation.references | KAISER, H., The varimax criterion for analytic rotation in factor analysis, " Psychometrika, 23, 187-200. Cited on p. 72, 146, 1958. | spa |
dc.relation.references | HAN, J., PEL, J., & KAMBER, M., Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) (English Edition), 3.a ed, Morgan Kaufmann, 2011. | spa |
dc.relation.references | HOERL, ARTHUR E AND KENNARD, ROBERT W, Ridge regression: Biased estimation for nonorthogonal problems. Technometries, Taylor & Francis, 1970. | spa |
dc.relation.references | GOLUB, G.H. AND REINSCH, Singular value decomposition and least square solutions Numer. Math, Marcel Dekker, Inc., 1970. | spa |
dc.relation.references | HOERL, A.E., Applications of ridge analysis to regression problems, Chem. Eng. Progress, 1962. | spa |
dc.relation.references | BELSLEY, DA, E, Kuh, RE Welsch, Regression Diagnostics. New York: Wiley, 1980. | spa |
dc.relation.references | R. Ferland, A. Latour, D. Oraichi, Integer-Valued GARCH Process, Journal of Time Series Analysis, vol. 27, no. 6, pp. 923-942, 2006. https: //doi. org/10.1111/j. 1467-9892 2006. 00496.20 | spa |
dc.relation.references | K. Fokianos, A. Rahbek, D. Tjestheim, Poisson Autoregression, Journal of the American Statistical Association, vol. 104, no. 488, pp. 1430-1439, 2009. http://www.jstor.org/ stable/ 40592351 | spa |
dc.relation.references | K. Fokianos, D. Tjostheim, Log-linear Poisson autoregression, Journal of Multivariate Analysis, vol. 102, no. 3, pp. 563-578, 2011. https://doi.org/10.1016/j. juva. 2010. 11.002 | spa |
dc.relation.references | K. Fokianos, Count Time Series Models, Time Series Analysis: Methods and Applications, 2012. http://dx.doi. org/10.1016/B978-0-444-53858-1. 00012-0 | spa |
dc.relation.references | A. Zhang, Z. C. Lipton, M. Li, A. J. Smola, Dive into Deep Learning, arXiv preprint arXiv:2106.11342, 2021. [6] S. Ruder, An overview of gradient descent optimization algorithms, CORR, vol. abs/1609.04747, 2016. http://arxiv.org/abs/1609.04747 | spa |
dc.relation.references | R. J. Hyndman, G. Athanasopoulus, Forecasting: Principles and Practice, Monash Univer-sity, Australia, 2018, | spa |
dc.relation.references | T. Liboschik, K. Fokianos, R. Fried, scount: An R Package for Analysis of Count Time Series Following Generalized Linear Models, Journal of Statistical Software, vol. 82, no. 5, pp. 1-51, 2017. https://www.jstatsoft.org/index.php/jss/article/view/v082i05 https://doi.org/10.18637/jss.v082. 105 | spa |
dc.relation.references | BERRENDERO, J. R., JUSTEL, A., & SVARC, M., Principal components for multivariate functional data. Computational Statistics & Data Analysis., Recuperado de https: // repositorio.uam.es/bitstream/handle/10486, 2011. | spa |
dc.relation.references | YAMAMOTO, M, Clustering of functional data in a low-dimensional subspace Advances in Data Analysis and Classification. Recuperado de https://link. springer) com/article/10.1007/s11634-012-0113-3, 2012. | spa |
dc.relation.references | Medellincomovamos (2021), 2020 Pico de probreza en Medellin. https://www.medellincomovamos.org/2020-pico-de-la-pobreza-en-medellin | spa |
dc.relation.references | Breadfortheworld, https://www.bread.org/es/que-causa-el-hambre | spa |
dc.relation.references | Alcaldia de Medellin, Encuesta de calidad de vida 2020. https://www.medellin.gov.co/irj/portal/medellin?NavigationTarget=contenido/9946- Encuesta-de-Calidad-de-Vida-2020 | spa |
dc.relation.references | Kass, R. E., Gilks, W. R., Richardson, S., Spiege lhalter, D. J. (1997), Markov Chain Monte Carlo in Practice. Journal of the American Statistical Association. https://doi.org/10.2307/2965438 | spa |
dc.relation.references | Chang, M., Dalpatadu, R. J., Phanord, D., Singh, A. K., Harrah, W. F., Administration, H. (2018), Breast Cancer Prediction Using Bayesian Logistic Regression. https://doi.org/10.31031/OABB.2018.02.000537 | spa |
dc.relation.references | Box G E P and Tiao G C. (1992), Bayesian Inference in Statistical Analysis. Canada: John Wiley Sons, Inc | spa |
dc.relation.references | R package version 3-13, Bayesian graphical models using MCMC. http://cran.r-project.org/package=rjags | spa |
dc.relation.references | ARAGÓN-MORENO, J. A., Y LERMA-LERMA, B. D., Analysis temporary space (1981-2010) of the precipitation in the city of Bogota: advances in the generation of extreme indices. Revista Facultad de Ingenieria, 28(57), 57-71. (2019). | spa |
dc.relation.references | SOCHA, L. M., Análisis tendencial de la variación climática " temperatura y precipitación" espacio-temporal del departamento de Boyacá, (2014) | spa |
dc.relation.references | WIKLE, C. K., ZAMMIT-MANGION, A., AND CRESSIE, N., Spatio-Temporal Statistics with R, Boca Raton (2019) | spa |
dc.relation.references | MATEU, J. GIRALDO, R, Geostatistical Functional Data Analysis (2021) | spa |
dc.relation.references | Yuanjun Guo, Zhile Yang, Shengzhong Feng, Jinxing Hu, Complex power system status monitoring and evaluation using big data platform and machine learning algorithms: a review and a case study, Complexity, vol. 2018, 2018, Hindawi. | spa |
dc.relation.references | Douglas C. Montgomery, Statistical quality control, vol. 7, 2009, Wiley New York. | spa |
dc.relation.references | Mohamed E. El-Hawary, Electrical Power Systems: Design and Analysis, vol. 7, 1995, TEBE Press. | spa |
dc.relation.references | Iván Matulic, Introducción a Los Sistemas eléctricos de potencia, Acta Nova, Universidad Católica Boliviana, 2005, http://www.scielo.org.bo/scielo.php?script-sci arttext&: pid=51683-07892003000100005. | spa |
dc.relation.references | Comisión de Regulación de Energía y Gas, Resolución CREG 025-95, Codigo de Redes, 1995. | spa |
dc.relation.references | Walter Andrew Shewhart, Economic quality control of manufactured product 7, Bell System Technical Joumal, vol. 9, no. 2, 1930, Wiley Online Library. | spa |
dc.relation.references | Ewan S Page, Continuous inspection schemes, Biometrika, vol. 41, no. 1/2, 1954, JSTOR. | spa |
dc.relation.references | SW Roberts, Control chart tests based on geometric moving averages, Technometrics, vol. 42, no. 1, 2000, Taylor & Francis. | spa |
dc.relation.references | JA Vargas, Control estadístico de calidad, Universidad Nacional de Colombia, Bogotá, Colombia, 2006. | spa |
dc.relation.references | S. Calderón, Notas de clase Series de tiempo, Universidad Nacional de Colombia, 2022. | spa |
dc.relation.references | MARTINEZ-FLÓREZ, G., MORENO-ARENAS, G. Y VERGARA-CARDOZO, S. Properties and inference for proportional hazard models. Revista Colombiana de Estadistica, 2013, Vol. 36, 95-114. | spa |
dc.relation.references | MARTÍNEZ-FLÓREZ, G., GÓMEZ, H. W. Y TOVAR-FALÓN, R. Modeling Proportion Data with Inflation by Using a Power-Skew-Normal/Logit Mixture Model. Mathematics 2021, 9, 1989. | spa |
dc.relation.references | AGRESTI, A. (2002). Categorical Data Analysis. John Wiley and Sons. New Jersey. | spa |
dc.relation.references | CHRISTENSEN, R. (1997). Log-Linear Models and Logistic Regression. Springer-Verlag. New York. | spa |
dc.relation.references | MARTÍNEZ-FLÓREZ, G., MORENO-ARENAS, G. Y VERGARA-CARDOZO, S. (2013). Properties and inference for proportional hazard models. Revista Colombiana de Estadística. Vol. 36, 95-114. | spa |
dc.relation.references | PAOLINO, P. Maximum likelihood estimation of models with beta-distributed dependent variables. Political Anal. 2001, 9, 325-346. | spa |
dc.relation.references | CRIBARI-NETO, F. Y VASCONCELLOS, K. L. P. Nearly unbiased maximum likelhood estimation for the beta distribution. J. Stat. Comput. Simul. 2002, 72, 107-118. | spa |
dc.relation.references | KIESCHNICK, R. Y MCCULLOUGH, B. D. Regression analysis of variates observed on (O, 1). Stat. Model. 2003, 3, 193-213. | spa |
dc.relation.references | FERRARI, S.; CRIBARI-NETO, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799-815. | spa |
dc.relation.references | VASCONCELLOS, K. L.P.: CRIBARI-NETO, F. Improved maximum likelihood estimation in a new class of beta regression models. Braz. J. Probab. Stat 2005, 19, 13-31. | spa |
dc.relation.references | MARTÍNEZ-FLÓREZ, G., BOLFARINE, H. Y GÓMEZ, H. W.. Skew-normal Alpha-Power Model. 2013 Statistics-doi 10.1080/02331888.2013.826659. | spa |
dc.relation.references | CRAGG, J. Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 1971, 39, 829-844. | spa |
dc.relation.references | MOULTON, L. Y HALSEY, N. A Mixture Model with Detection Limits for Regression Analysses of Antibody Response to Vaccine. Biometrics, 1995, 51, 1550-1578. | spa |
dc.relation.references | MARTÍNEZ-FLÓREZ, G., GOMEZ, H. W. Y TOVAR-FALON, R. Modeling Proportion Data with Inflation by Using a Power-Skew-Normal/Logit Mixture Model, Mathematics, 2021, 9, 1989. | spa |
dc.relation.references | EL-MORSHEDY, M., ELIWA, M. S., & ALTUN, E., Discrete Burr-Hatke Distribution With Properties, Estimation Methods and Regression Model, IBEE Access, 2020. | spa |
dc.relation.references | RIGBY, R.A. AND STASINOPOULOS, D.M., Generalized Additive Models for Location, Scale and Shape, Journal of the Royal Statistical Society: Series C (Applied Statistics), 2005. | spa |
dc.relation.references | Multivariate functional random fields: prediction and optimal sampling. Stochastic Environmental Research and Risk Assessment. 2017 * Bohorquez, M., & Sandoval D., Villamil A., Guevara R., Sanchez S., Vergel N., Bejarano | spa |
dc.relation.references | V., Castro J., Muñoz M., Giraldo R., Mateu J. SpatFD (Version 0.0.1). R cran package. https://github.com/mpbohorquezc/GeostatFunct. (2023). | spa |
dc.relation.references | Villamizar, S., Lopez, O., Collazos, A. C., Sarmiento, J., and Rodriguez, J. B. Recognition of EEG signals from imagined vowels using deep leaming methods. Sensors. 2021. | spa |
dc.relation.references | C. DAVIDSON. QUICKSTART, 2020., URL https://github.com/CamDavidsonPilon/lifetimes/blob/master/docs/Quickstart.md. | spa |
dc.relation.references | P. FADER AND B. HARDIE., The gamma-gamma model of monetary value., 2013. | spa |
dc.relation.references | P. FADER, B. HARDIE, AND K. LEE., Counting your customers, the easy way: An alternative to the pareto/nbd model. 24:275-284, 2005. | spa |
dc.relation.references | D. MCCARTHY AND E. WADSWORTH. BUY *TIL YOU DIE - A WALKTHROUGH, 2014., URL https://cran. r-project.org/web/packages/BTYD/vignettes/BTYDwalkthrough.pdf | spa |
dc.relation.references | H. ONNEN., Buy 'til you die: Predict customer lifetime value in python, 2021. URL https://towardsdatascience.com/buy-til-you-die-predict-customer-lifetime-value-in-python-9701bfd4ddc0. | spa |
dc.relation.references | D. SCHMITTLEIN, D. MORRISON, AND R. COLOMBO., Counting your customers: Who are they and what will they do next? 33: 1-24, 1987. | spa |
dc.relation.references | Leung, A., Zhang, H., & Zamar, R. H. (2016). Robust Regression Estimation and Inference in the Presence of Cellwise and Casewise Contamination. Computational Statistics & Data Analysis, 99, 1-11. | spa |
dc.relation.references | Falk, M. (1997). On Mad and Comedians. Annals of the Institute of Statistical Mathematics, 49(4), 615-644. [3] Kunjunni, S. O., & Sajesh, T. A. (2020). S, Covariance. Communications in Statistics - Theory and Methods, 49(24), 6133-6138. | spa |
dc.relation.references | Tarr, G., Muller, S., & Weber, N. (2012). A Robust Scale Estimator Based on Pairwise Means. Journal of Nonparametric Statistics, 24(1), 187-199. [5] Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the Median Absolute Deviation. Journal of the American Statistical Association, 88(424), 1273-1283. | spa |
dc.relation.references | Pinzón, M. A., Ortiz, S., Holguín, H., Betancur, J. F., Cardona Arango, D., Laniado, H., ... Quiceno, J. (2021). Dexamethasone vs Methylprednisolone High Dose for Covid-19 Pneumonia. PLOS ONE, 16(5), 1-13. | spa |
dc.relation.references | Jobe, J. M., & Pokojovy, M. (2015). A Cluster-Based Outlier Detection Scheme for Multivariate Data. Journal of the American Statistical Association, 110(512), 1543-1551. | spa |
dc.relation.references | Ro, K., Zou, C., Wang, Z., & Yin, G. (2015). Outlier Detection for High-Dimensional Data. Biometrika, 102(3), 589-599. | spa |
dc.relation.references | Hubert, M., Rousseeuw, P. J., Vanpaemel, D., & Verdonck, T. (2015). The DetS and DetMM Estimators for Multivariate Location and Scatter. Computational Statistics & Data Analysis, 87, 64-75. | spa |
dc.relation.references | Boudt, K., Rousseeuw, P. J., Vanduffel, S., & Verdonck, T. (2020). The Minimum Regularized Covariance Determinant Estimator. Statistics and Computing, 30, 113-128. | spa |
dc.relation.references | Kandanaarachchi, S., & Hyndman, R. J. (2021). Dimension Reduction for Outlier Detection Using DOBIN, Journal of Computational and Graphical Statistics, 30(1), | spa |
dc.relation.references | Navarro-Esteban, P., & Cuesta-Albertos, J. A. (2021). High-Dimensional Outlier Detection Using Random Projections. | spa |
dc.relation.references | Pena, D., &e Prieto, F: 1. (2001), Multivariate Outlier Detection and Robust Covariance Matrix Estimation. Technometrics, 43(3), 286-300. | spa |
dc.relation.references | Maronna, R. A., & Zamar, R. H. (2002). Robust Estimates of Location and Dispersion for High-Dimensional Datasets. Technometrics, 44(4), 307-317. | spa |
dc.relation.references | Peña, D., & Prieto, F. J. (2007). Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data. Journal of Computational & Graphical Statistics, 16(1), 228-254. | spa |
dc.relation.references | Rousseeuw, P. J., & Van Driessen, K. (1999). A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics, 41(3), 212-223. | spa |
dc.relation.references | Donoho, D. (1982). Breakdown Properties of Multivariate Location Estimators. Harvard University, Boston. | spa |
dc.relation.references | Rousseeuw, P. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley. | spa |
dc.relation.references | Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of the American Statistical Association, 79(388), 871-880. | spa |
dc.relation.references | Stahel, W. A. (1981). Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von Kovarianzmatrizen. ETH, Zurich, Switzerland. | spa |
dc.relation.references | Sajesh, T. A., & Srinivasan, M. R. (2012). Outlier Detection for High Dimensional Data Using the Comedian Approach. Journal of Statistical Computation and Simulation, 82(5), 745-757. | spa |
dc.relation.references | Atkinson, A. C. (1994). Fast Very Robust Methods for the Detection of Multiple Outliers. Journal of the American Statistical Association, 89(428), 1329-1339. | spa |
dc.relation.references | Filzmoser, P. (2005). Identification of Multivariate Outliers: A Performance Study. Austrian Journal of Statistics, 34(2), 127-138. | spa |
dc.relation.references | Hubert, Mia, & Van der Veeken, Stephan (2008). Outlier Detection for Skewed Data. Journal of Chemometrics, 22(3-4), 235-246. | spa |
dc.relation.references | Magnotti, John F., & Billor, Nedret (2014). Finding Multivariate Outliers in fMRI Time-Series Data. Computers in Biology and Medicine, 53, 115-124. | spa |
dc.relation.references | Rocke, David M. (1989). Robust Control Charts. Technometrics, 31(2), 173-184. | spa |
dc.relation.references | Davis, Cali Manning, & Adams, Benjamin M. (2005). Robust Monitoring of Contaminated Data. Journal of Quality Technology, 37(2), 163-174. | spa |
dc.relation.references | Galeano, P., Peña, D., & Tsay, R. (2006). Outlier Detection in Multivariate Time Series by Projection Pursuit. Journal of the American Statistical Association, 101(474), 654-669. | spa |
dc.relation.references | Maronna, Ricardo A., Martin, R. Douglas, & Yohai, Victor J. (2006). Robust Statistics: Theory and Methods. Wiley. | spa |
dc.relation.references | Rocke, David M., & Woodruff, David L. (1996). Identification of Outliers in Multivariate Data. Journal of the American Statistical Association, 91(435), 1047-1061. | spa |
dc.relation.references | Brys, G., Hubert, M., & Struyf, A. (2004). A Robust Mfasure of Skewness. Journal of Computational and Graphical Statistics, 13(4), 996-1017. | spa |
dc.relation.references | Olive, D. J. (2004). A Resistant Estimator of Multivariate Location and Dispersion. Computational Statistics & Data Analysis, 46(I), 93-102. | spa |
dc.relation.references | A gostinelli, C., Leung, A., Yohai, V. J., & Zamar, R. H. (2015). Robust Estimation of Multivariate Location and Scatter in the Presence of Cellwise and Casewise Contamination. TEST, 24(3), 441-461. | spa |
dc.relation.references | Cuesta-Albertos, J. A., & Nieto-Reyes, A. (2008). The Random Tukey Depth. Computational Statistics & Data Analysis, 52(11), 4979-4988. | spa |
dc.relation.references | Fraiman, Ricardo, Meloche, Jean, García, Luis A., Gordaliza, Alfonso, He, Xuming, Maronna, Ricardo,.. Wood, Andrew (1999). Multivariate L-estimation. TEST, 8(2), 255-317. | spa |
dc.relation.references | Liu, Regina Y., & Parelius, Jesse M., & Singh, Kesar (1990). On a Notion of Data Depth Based on Random Simplices. The Annals of Statistics, 18(1), 405-414 | spa |
dc.relation.references | Liu, Regina Y., Parelius, Jesse M., & Singh, Kesar (1999). Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference. The Annals of Statistics, 27(3), 783-858. | spa |
dc.relation.references | Zuo, Yijun, & Serfling, Robert (2000). General Notions of Statistical Depth Function. The Annals of Statistics, 28(2), 461-482. | spa |
dc.relation.references | Cabana, Elisa, Lillo, Rosa E., & Laniado, Henry (2019). Multivariate Outlier Detection Based on a Robust Mahalanobis Distance with Shrinkage Estimators. Statistical Papers, 60(2), 199-210. | spa |
dc.relation.references | Hubert, M., & Vandervieren, E. (2008). An Adjusted Boxplot for Skewed Distributions. Computational Statistics & Data Analysis, 52(12), 5186-5201. | spa |
dc.relation.references | Filzmoser, P., Maronna, R., & Werner, M. (2008). Outlier Identification in High Dimensions. Computational Statistics & Data Analysis, 52(3), 1694-1711. | spa |
dc.relation.references | Cuesta-Albertos, J. A., & Nieto-Reyes, A. (2008). The Random Tukey Depth. Computational Statistics & Data Analysis, 52(11), 4979-4988. | spa |
dc.relation.references | Loperfido, N. (2018). Skewness-Based Projection Pursuit: A Computational Approach. Computational Statistics & Data Analysis, 120, 42-57. | spa |
dc.relation.references | Ortiz, S. (2019). Multivariate Outlier Detection and Robust Estimation Using Skewness and Projections. Master's thesis, Universidad EAFIT, Medellín, Colombia. | spa |
dc.relation.references | Maronna, Ricardo A., & Yohai, Víctor J. (1995). The Behavior of the Stahel-Donoho Robust Multivariate Estimator. Journal of the American Statistical Association, 90(429), 330-341. | spa |
dc.relation.references | Van Aelst, S., Vandervieren, E., & Willems, G. (2012). A Stahel-Donoho Estimator Based on Huberized Outlyingness. Computational Statistics & Data Analysis, 56(3), 531-542. | spa |
dc.relation.references | Gervini, Daniel (2002). The Influence Function of the Stahel-Donoho Estimator of Multivariate Location and Scatter. Statistics & Probability Letteks, 60(4), 425-435. | spa |
dc.relation.references | Jones, M. C., & Sibson, R. (1987). What is Projection Pursuit? Journal of the Royal Statistical Society: Series A (General), 750(L), 1-18. | spa |
dc.relation.references | Algallaf, F., Van Aelst, S., Yohai, V. J., & Zamar, R. H. (2009). Propagation of Outliers in Multivariate Data. The Annals of Statistics, 37(1), 311-331. | spa |
dc.relation.references | R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. | spa |
dc.relation.references | Van Aelst, S. (2016). Stahel-Donoho Estimation for High-Dimensional Data. International Journal of Computer Mathematics, 93(4), 628-639. | spa |
dc.relation.references | Juan, J., & Prieto, F. J. (1995). A Subsampling Method for the Computation of Multivariate Estimators with High Breakdown Point. Journal of Computational & Graphical Statistics, 4(4), 319-334. | spa |
dc.relation.references | BANCOLDEX, Bancoldex,30 de 07 de 2018. Obtenido de Bancoldex: attps: //www.bancoldex.com/sabe-que-es-el-sistema-financiero-colombiano-1630. | spa |
dc.relation.references | COLOMBIA COMPETITIVA, Índice de Competitividad Global -ICG (Global Competitiveness Index Obtenido de http://www.colombiacompetd-global, 2019. | spa |
dc.relation.references | R. C. TEAM, «R: A language and environment for statistical computing,» 2016. [En Inea] | spa |
dc.relation.references | Torres, R., Montes E., Pérez, O & Andrade, R. (2012). Influencia del estado de madurez. sobre las propiedades visco elásticas de frutas tropicales (mango, papaya y plátano), Información Tecnológica, 23(5), 115-124. | spa |
dc.relation.references | Organización Mundial de la Salud (OMS). (2015). Plan de acción mundial sobre la resistencia a los antimicrobianos [Internet]. 68.* Asamblea Mundial de la Salud; del 18 al 26 de mayo del 2015; Ginebra. Disponible en: https://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_20-sp.pdf | spa |
dc.relation.references | Organización Mundial de la Salud (OMS). (2019). Antimicrobianos de importancia crítica para la medicina humana, 6.* revisión [Critically important antimicrobials for human medicine, 6th revisión]. Ginebra. Licencia: CC BY-NC-SA 3.0 IGO. | spa |
dc.relation.references | Organización Mundial de la Salud (OMS), Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) y Organización Mundial de Sanidad Animal (OIE). (2021). Encuesta tripartita de autoevaluación nacional sobre la RAM (TrACSS) 2020-2021. Disponible en: https://www.who.int/es/publications/m/item/ tripartite-amr-country-solf-assessnent-supy®y-(traces)-2020-2021 | spa |
dc.relation.references | Pagès, J. (2004) Analyse Factorielle de Données Mix https://www.who.int/es/publications/m/ite 52, 93-111 m/tripartite-amr-country-self-assessment-survey-(tracss)-2020-2021 | spa |
dc.relation.references | R Core Team (2022). R: A language and environment Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ | spa |
dc.relation.references | World Organisation for Animal Health (OIE). (2021). OIE Annual Report on Antimicrobial Agents Intended for Use in Animals. better understanding of the global situation. Fifth report. | spa |
dc.relation.references | ABONAZEL, M.R., EL-SAYED, S. M., Y SABER, O. M, , Performance of robust count regression estimators in the case of overdispersion, zero inflated, and outliers: simulation study and application to German health data, Communications in mathematical biology and neuroscience, Article ID 55, 2021, https://doi.org/10.28919/cmbn/5658. | spa |
dc.relation.references | ASWI, A., ASTUTI, S. A., Y SUDARMIN, S., Evaluating the performance of zero-inflated and hurdle Poisson models for modeling overdispersion in count data. Inferensi, Vol. 5 num. 1, 2022, https://doi.org/10.12962/j27213862.v511.12422. | spa |
dc.relation.references | CAMPBELL, H., The consequences of checking for zero-inflation and overdispersion in the analysis of count data, Methods in Ecology and Evolution, Vol. 12 num. 4, pp. 665-680, 2021, https://doi.org/10.1111/2041-210x.13559. | spa |
dc.relation.references | HILBE, J. M., Negative Binomial Regression (2a ed.), Cambridge University Press, 2012. | spa |
dc.relation.references | HILBE, J. M. ,Modeling Count Data, Cambridge University Press, 2014. | spa |
dc.relation.references | ZUUR, A. F., IENO, E. N., WALKER, N., SAVELIEV, A. A., Y SMITH, G. M, Negative Binomial Regression (2a ed.) Mixed effects models and extensions in ecology with R, Springer, 2011. | spa |
dc.relation.references | Bos, M. (2016.), educación en America Latina y el Caribe: Diagnostico y Perspectiva. BID-OCDE. | spa |
dc.relation.references | Costa M. Domingos A.(2019) promover o ensino da matematica num contexto de formacao profissional com STEM. Educacion Matematica, vol 31,num 1. | spa |
dc.relation.references | WISE (2019). Emprendedoras STEM en América latina. BID-LAB-IAE. [4] Mody, C. (2015). Scientific practice and science education. Science Education, 99(6), 1026-1032. | spa |
dc.relation.references | R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org | spa |
dc.relation.references | Vertel et al. (2021). Grupo de Estadística y Modelamiento Matemático aplicado a calidad educativa adscrito a la universidad de Sucre. | spa |
dc.relation.references | Torres, R., Montes E., Pérez, O & Andrade, R. (2012). Influencia del estado de madurez: sobre las propiedades visco-elásticas de frutas tropicales (mango, papaya y plátano), Información Tecnológica, 23(5), 115-124. | spa |
dc.relation.references | Pardo, C. & Del Campo, P. (2007). Combinación de métodos factoriales y de análisis de conglomerados en R: el paquete FactoClass. Rev. Colombiana de Estadística, 30 (2), 231-245. | spa |
dc.relation.references | R Development Core Team. (2020). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at: http://www.R-project.org | spa |
dc.relation.references | Chessel, D., Dufour, A., & Thioulouse, J. (2004), The ade4 Package-I: One table Methods, RNews 4(1), 5-10. | spa |
dc.relation.references | R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org | spa |
dc.relation.references | Vertel et al. (2021). Grupo de Estadística y Modelamiento Matemático aplicado a calidad educativa adscrito a la universidad de Sucre. | spa |
dc.relation.references | Boyd, L. R., & Muggia, F. M. (2018). Carboplatin/Paclitaxel Induction in Ovarian Cancer: The Finer Points. Oncology (Williston Park, N.Y.), 32(8), 418-420, 422-424. | spa |
dc.relation.references | Cobo, M. J., López Herrera, A. G., Herrera Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609-1630. https://doi.org/10.1002/asi.22688 | spa |
dc.relation.references | Damia, G., & Broggini, M. (2019). Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers, 11(1), 119. https://doi.org/10.3390/cancers11010119 | spa |
dc.relation.references | Norouzibarough, L., Sarookhani, M. R., & Sharifi, M. (2017). Molecular Mechanisms of Drug Resistance in Ovarian Cancer. Journal of Cellular Physiology, 233(6), 4546-4562. https://doi.org/10.1002/j cp.26289 | spa |
dc.relation.references | HARRISON, N., CHUDRY, F., WALLER, R. Y HATT, S., Towards a Typology of Debt Attitudes among Contemporary Young uk Undergraduates. Journal of Further and Higher Education, Vol 39(1), 85-107, 2015. | spa |
dc.relation.references | HAULTAIN, S., KEMP, S. Y CHERNISHENCKO, O., The structure of attitudes to student debt. Journal of Economic Psychology, Vol 31, 322-330, 2010. | spa |
dc.relation.references | ] KAUR, J. Y ARORA, S., Indian students' attitude toward educational debt: scale development and validation. Quality Assurance in Education, Vol 27(4), 361-383, 2019. | spa |
dc.relation.references | PARK, T., YUSUF, A.A. Y HADSALL, R.S. , Pharmacy students' attitudes toward debt. American Journal of Pharmaceutical Education, Vol 79(4), 52, 2015. | spa |
dc.relation.references | CEPEDA-CUERVO, E., Modelagem da Variabilidade em Modelos Lineares Generalizados. Unpublished Ph.D. thesis, Mathematics Institute, Universidade Federal do Rio de Janeiro, 2001. | spa |
dc.relation.references | CEPEDA-CUERVO E., jo? beta and uo? Beta-Binomial Regression Models. Revista Colombiana de Estadística, 46(1), 63-79, 2023. | spa |
dc.relation.references | CEPEDA-CUERVO E., Beta regression models: joint mean and variance modeling. Journal of Statistical Theory and Practice 9, 134-145, 2015. | spa |
dc.relation.references | PAOLINO, P., Maximum likelihood estimation of models with beta-distributed dependent variables. Political Analysis, 9(4), 325-346, 2001. | spa |
dc.relation.references | S. FERRARI AND F. CRIBARI-NETO., Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31 (7) 799-815, 2004. | spa |
dc.relation.references | QUINE, S., Achievement orientation of aboriginal and white Australian adolescents, Ph.d. thesis, Australian National University, Australia. | spa |
dc.relation.references | OKUBO, A. Y LEVIN, S. A., Diffusion and Ecological Problems, Modern Perspectives. Interdisciplinary and Applied Mathematics, Springer, 2001. | spa |
dc.relation.references | QUINTERO-SARMIENTO, A., AND CEPEDA-CUERVO, E., AND NUNEZ-ANTON, V. , Estimating infant mortality in Colombia: some overdispersion modelling approaches. Joumal of Applied Statistics, 39(5), 1011-1036, 2012. | spa |
dc.relation.references | H. Zhou, L. Li, and H. Zhu, Tensor Regression with Applications in Neuroimaging Data Analysis, J. Amer. Statist. Assoc. Vol. 108 502 (2013), pp. 540-552. | spa |
dc.relation.references | J. Bobb, C. Crainiceanu, B. Caffo, D. Reich and J. Goldsmith, Penalized Funcitonal Regression, J. Comput. Graph. Statist. Vol. 20 4 (201 1), pp. 830-851. | spa |
dc.relation.references | A. Chambolle, An algorithm for total variation minimization and application, Comput. Imaging Vision Vol. 20 1 (2014), pp. 89-97. | spa |
dc.relation.references | C. LI, W. Yin, H. Jiang and Y. Zhang, An Efficient Augmented Lagrangian Method with Applications to Total Variation Minimization, Comput. Optim. Appl. Vol. 56 3 (2013), pp. 507-530. | spa |
dc.relation.references | C. LI, W. Yin, H. Jiang and Y. Zhang, An Alternating Direction Method for Total Variation Denoising, Optim. Methods Softw. Vol. 30 3 (2015), pp. 594-615. | spa |
dc.relation.references | Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for totalvariation image reconstruction, SIAM J. Imaging Sci. Vol. 13 (2018), pp. 248-272. | spa |
dc.relation.references | C. Chen, L. He, H. Li, and J. Huang, Fast Iteratively Reweighted Least Squares Algorithms for Analysis-Based Sparsity Reconstruction, Med. Image Anal. Vol. 49 1 (2018), pp. 141-151. | spa |
dc.relation.references | S. Toshi, Applied Matrix and Tensor Variate Data Analysis, Springer, Tokyo, 2016. [9] PT. Reiss, and RT. Ogden, Fuctional Principal Component Regression and Functional Partial Least Squares, J. Amer. Statist. Assoc. Vol. 49 1 (2018), pp. 984-996. | spa |
dc.relation.references | PT. Reiss and RT. Ogden, Fuctional generalized Linear Models with Images as Predictors, Biometrics Vol. 66 1 (2010), pp. 61-69. | spa |
dc.relation.references | K.J. Worsley, Developments in Random Field Theory, Human Brain Function: Second Edition Vol. 2 (2004). | spa |
dc.relation.references | N. Lazar, The Statistical Analysis of Functional MRI Data, Springer, New York, 2008. | spa |
dc.relation.references | Kokoszka P. and M. Reimher, Introduction to Functional Data Analysis, Chapman and Hall-CRC, New York, 2017. | spa |
dc.relation.references | L. Horváth and P. Kokoszka, Inference for Functional Data with Applications, Springer, New York, 2012. | spa |
dc.relation.references | X. Wang and H. Zhu, Generalized Scalar-on-Image Regression Models via Total Variation, J. Amer. Statist. Assoc. Vol. 112 519 (2017), pp. 1156-1168. | spa |
dc.relation.references | H. Zhou, Matlab Tensor Reg Toolbox Version 1.0, Available online. Software available at https://hua-zhou.github.io/TensorReg/. | spa |
dc.relation.references | J. Zeng, W. Wang X. and Zhang, TRES: An R Package for Tensor Regression and Envelope Algorithms, Available online. Software available at https://cran.r-project.org/web/packages/TRES/TRES. | spa |
dc.relation.references | I.A. Eckley and G.P. Nason, LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R, J. Stat. Softw. Vol. 43 3 (2011), pp. 1-23. | spa |
dc.relation.references | G. Nason, Wavelet Methods in Statistics with R, Springer, New York, 2011. | spa |
dc.relation.references | J. A. Clarkson and C. R. Adams, On definitions of bounded variation for functions of two variables, Transactions of the American Mathematical Society Vol. 35 4 (1933), pp. 824-854 | spa |
dc.relation.references | P. J. Basser and S. Pajevic, A normal distribution for tensor valued random variables: applications to diffusion tensor MRI, IBEE transactions on medical imaging vol. 22 7 (2003), pp. 785-794. | spa |
dc.relation.references | M. Ohlson and M. R. Ahmad and D. Von Rosen, The multilinear normal distribution: Introduction and some basic properties, Joumal of Multivariate Analysis, vol 113 (2013), pp 37-47. | spa |
dc.relation.references | ] M. Ohlson and M. R. Ahmad and D. Von Rosen, Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition, PLoS One, vol 10 (2015). | spa |
dc.relation.references | L. laliang and G. Ming and D. Ralph, Evaluatin' classification accuracy for modern learning approaches, Statistics in medicine, vol 38 13 (2019), pp 2477-2503. | spa |
dc.relation.references | S. SumaiyaZ and S. Loraine and L. Jialiang and D. Ralph, Statistical Learning in Medical Research with Decision Threshold and Accuracy Evaluatio, Journal of Data Science, vol 19 4 (2021) | spa |
dc.relation.references | P. Margaret Sullivan The statistical evaluation of medical tests for classification and prediction, Oxford University Press, USA, 2003. | spa |
dc.relation.references | H. David J and A, Christoforos, When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance?, Patter Recognition Letters, vol 34 5 (2013), pp 492-495. | spa |
dc.relation.references | T. Alaa, Classification assessment methods, Pattern Recognition Letters, vol 17 1 (2021), pp 168-192. | spa |
dc.relation.references | N. Christos ROC Analysis for Classification and Prediction in Practice, CRC Press, 2023. | spa |
dc.relation.references | D. Yang and C. Martinez and L. Visuña and H. Khandhar and C. Bhatt and J. Carretero, Detection and analysis of COVID-19 in medical images using deep learning techniques, Scientific Reports, vol 11 5 (2021), pp 19638 | spa |
dc.relation.references | M. Puttagunta and S. Ravi, Medical image analysis based on deep leaming approach, Multimedia tools and applications, vol 80 (2021), pp 24365-24398. | spa |
dc.relation.references | Branscum, A. J., Johnson, W. O., & Thurmond, M. C. (2007), Bayesian beta regression: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Australian & New Zealand Journal of Statistics, 49(3), 287-301. | spa |
dc.relation.references | Diaz, P. R. (2018). Regresión con proyecciones aleatorias para datos funcionales (Doctoral dissertation, Uniandes). | spa |
dc.relation.references | Espinheira, P. L., Ferrari, S. L., & Cribari-Neto, F. (2008). On beta regression residuals. Journal of Applied Statistics, 35(4), 407-419. | spa |
dc.relation.references | Ferrari, S., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of applied statistics, 31(7), 799-815. | spa |
dc.relation.references | Galvis, D. M., Bandyopadhyay, D., & Lachos, V. H. (2014). Augmented mixed beta regression models for periodontal proportion data. Statistics in medicine, 33(21), 3759-3771. | spa |
dc.relation.references | Sentürk, D., Dalrymple, L. S., & Nguyen, D. V. (2014). Functional linear models for zero-inflated count data with application to modeling hospitalizations in patients on dialysis. Statistics in medicine, 33(27), 4825-4840. | spa |
dc.relation.references | Wang, J. L., Chiou, J. M., & Muller, H. G. (2016). Functional data analysis. Annual Review of Statistics and its application, 3, 257-295. | spa |
dc.relation.references | YS Amirkhalili, A Aghsami, and F Jolai. Comparison of Time Series ARIMA Model and Support Vector Regression. In: International Journal of Hybrid Information Technology, 13.1 (2020), pp. 7-18. | spa |
dc.relation.references | Yukun Bao, Tao Xiong, and Zhongyi Hu. Multi-step-ahead time series prediction using multiple-output support vector regression. In: Neurocomputing, 129 (2014), pp. 482-493. | spa |
dc.relation.references | Barreto, H. (2012). El progreso de la Estadística y su utilidad en la evaluación del desarrollo. Papeles de Población, 18(73), 241-27 L. | spa |
dc.relation.references | S. KALIRAMESH, V. CHELLADURAI, D. JAYAS, K. ALAGUSUNDARAM, N. WHITE, AND P. FIELDS, Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging, Journal of Stored Products Research, 52:107-111, 2013. | spa |
dc.relation.references | F. MARTINELLI, R. SCALENGHE, S. DAVINO, S. PANNO, G. SCUDERI, P. RUISI, P. VILLA, D. STROPPIANA, M. BOSCHETTI, L. R. GOULART, ET AL., Advanced methods of plant disease detection. A review, Agronomy for Sustainable Development, 35(1): 1-25, 2015. | spa |
dc.relation.references | A. RATNADASS, P. FERNANDES, J. AVELINO, AND R. HABIB, Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review, A gronomy for Sustainable Development, 32(1):273-303, 2012. | spa |
dc.relation.references | J. ZHANG, R. PU, W. HUANG, L. YUAN, J. LUO, AND J. WANG, Using in-situ hyperspec-tral data for detecting and discriminating yellow rust disease from nutrient stresses, Field Crops Research, 134:165-174, 2012. | spa |
dc.relation.references | CABALLERO, Y., GIRALDO, R., AND MATEU, J., A spatial randomness test based on the box-counting dimension, AStA Advances in Statistical Analysis, 106:499-524, 2022. | spa |
dc.relation.references | FALCONER, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 2nd edition, 2004.* | spa |
dc.relation.references | STOYAN, D. AND STOYAN, H., Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics, John Wiley & Sons, Chichester, 1994. | spa |
dc.relation.references | KOLDA, T. G. & BADER, B. W., Tensor decompositions and applications, SIAM Review, 51(3), 455-500, 2009. | spa |
dc.relation.references | GUO, W., KOTSIA, I. & PATRAS, I., Tensor learning for regression, IEEE Transactions on Image Processing, 21(2), 816-827, 2011. | spa |
dc.relation.references | OUT, C., NIE, F., YI, D. & WU, Y., Eficient image classification via multiple rank regression, IEEE Transactions on Image Processing, 22(1), 340-352, 2012. | spa |
dc.relation.references | HILBE, J. M. (2009)., Logistic regression models., Boca Raton: Chapman HalV/CRC. | spa |
dc.relation.references | HOSMER JR., D., Y LaMESHOW, S. (2000)., Applied logistic regression (2nd ed.). New York: John Wiley Sons. | spa |
dc.relation.references | PANDO, V., Y SAN MARTÍN, R. (2004)., Regresión logística multinomial., 18, 323-327. | spa |
dc.relation.references | ACKROYD, S., Part Il Critique and development, En S. FLEETWOOD & S. ACKROYD (EDS.), Critical realist applications in organisation and management studies (pp. 121-153), Routledge, Taylor & Francis Group, 2004. | spa |
dc.relation.references | BHASKAR, R., A Realistic Theory of Science, Verso, 1975. | spa |
dc.relation.references | BHASKAR, R., Plato etc.: The Problems of Philosophy and their Resolution, Verso, 1994, | spa |
dc.relation.references | BHASKAR, R., A Realist Theory of Science, Taylor & Francis Group, 2008. | spa |
dc.relation.references | BHASKAR, R., Plato Etc. Problems of Philosophy and their Resolution, Taylor & Francis Group, 2010. | spa |
dc.relation.references | CARAYANNIS, E. G., BARTH, T. D. & CAMPBELL, D. F., The Quintuple Helic innovation model: global warming as a challenge and driver for innovation, Journal of Innovation and Entrepreneurship, 1(1), 2, 2012. | spa |
dc.relation.references | CARAYANNIS, E. G. & CAMPBELL, D. F. J., Triple Helix, Quadruple Helix and Quintuple Helix and How Do Knowledge, Innovation and the Environment Relate To Each Other?, International Journal of Social Ecology and Sustainable Development, 1(1), 41-69, 2010. | spa |
dc.relation.references | CARAYANNIS, E. G. & CAMPBELL, D. F. J., Open Innovation Diplomacy and a 21 st Century Fractal Research, Education and Innovation (FREIE) Ecosystem: Building on the Quadruple and Quintuple Helix Innovation Concepts and the "Mode 3" Knowledge Production System, Journal of the Knowledge Economy, 2(3), 327-372, 2011. https: //doi.org/10.1007/813132-011-0058-3 | spa |
dc.relation.references | CARMAGNOLA, FRANCESCA & OSBORNE, FRANCESCO & TORRE, ILARIA, Cross-systems identification of users in the Social Web. 1101 C. CHEN, N. N. XIONG, X. GUO AND J. REN, The System Identification and Prediction of the Social Earthquakes Burst in Human Society, IEEE Access, 8, 103848-103859, 2020. doi: 10.1109/ACCESS. 2020. 2999575 | spa |
dc.relation.references | FERNÁNDEZ-ESQUINAS, M. & PEREZ-YRUELA, M., Knowledge Transfer in Regional Innovation Systems: The effects of Socioeconomic Structure, En H. PINTO (BD.), Resilient Territories: Innovation and Creativity for New Modes of Regional Development (pp. 53-74), Cambridge Scholar Publishing, 2015. | spa |
dc.relation.references | GÓMEZ, A., Aportes para la construcción de una política pública para la formación doctoral en Colombia, 2015. | spa |
dc.relation.references | HAMM, R., KOPPER, J., JAGER, A., KARL, H., STROTEBECK, F. & WARNECKE, C., RegTrans - Zwischenbericht I Regionale Transfereffekte verschiedener Hochschultypen Analyse und Strategien für eine verbesserte Potenzialausschöpfung, 2012. | spa |
dc.relation.references | H. -T. WAI, A. SCAGLIONE & A. LESHEM, The social system identification problem, 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 406-411, 2015. doi: 10. 1109/CDC. 2015.7402234 | spa |
dc.relation.references | JAEGER, A. & KOPPER, J., Third mission potential in higher education: measuring the regional focus of different types of HEls, Jahrbuch Fur Regionalwissenschaft, 95-118, 2014. | spa |
dc.relation.references | KASIANIUK, K., A system-cybernetic approach to the study of political power. In-troductory remarks, Kybernetes, 47(6), 1262-1276, 2018. https://doi.org/10.1108/ K-04-2017-0146| | spa |
dc.relation.references | LLISTERRI, J. J.J. & PIETROBELLI, C., Los Sistemas Regionales de Innovación en América Latina, Banco Interamericano de Desarrollo, 2011. | spa |
dc.relation.references | MELO, A., BECK, C. L., PENA, J. I. & PARE, P. E., Knowledge transfer from universities to regions as a network spreading process, 4th IEEE International Symposium on Systems Engineering, ISSE 2018 - Proceedings, 2018. https://doi.org/10. 1109/SysEng. 2018, 8644398 | spa |
dc.relation.references | UNAL-CID, Lineamientos de Política y Plan Operativo para la política de Fomento y Formación de Vocaciones en Ciencia Tecnología e Innovación: Producto Final, 2020. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | ANALISIS NUMERICO-PROCESAMIENTO DE DATOS-CONGRESOS,CONFERENCIAS,ETC. | spa |
dc.subject.lemb | Numerical analysis - data processing congresses | eng |
dc.subject.lemb | ANALISIS DE REGRESION-PROCESAMIENTO DE DATOS | spa |
dc.subject.lemb | Regression analysis - data processing | eng |
dc.subject.lemb | ANALISIS DE REGRESION LOGISTICA | spa |
dc.subject.lemb | Logistic regression analysis | eng |
dc.subject.proposal | Estadística | spa |
dc.subject.proposal | Modelado | spa |
dc.subject.proposal | Regresión | spa |
dc.subject.proposal | Análisis de datos | spa |
dc.subject.proposal | Series de tiempo | spa |
dc.subject.proposal | Aprendizaje automático (Machine Learning) | spa |
dc.subject.proposal | Redes neuronales | spa |
dc.subject.proposal | Bayesiano | spa |
dc.subject.proposal | Inferencia estadística | spa |
dc.subject.proposal | Control estadístico de procesos | spa |
dc.subject.proposal | Distribuciones estadísticas | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Visualización de datos | spa |
dc.title | 32° Simposio Internacional de estadística 2023 : bioestadística y datos funcionales | spa |
dc.type | Libro | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/book | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/LIB | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Memorias_32_SIE_2023.pdf
- Tamaño:
- 74.97 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Memorias Simposio Internacional de Estadística N° 32
Bloque de licencias
1 - 2 de 2
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- Licencia para publicación de obras en el Repositorio Institucional UNAL_SIE 2023.pdf
- Tamaño:
- 701.77 KB
- Formato:
- Adobe Portable Document Format
- Descripción: