Matching between supersymmetric effective theory of inflation and pure de Sitter SUGRA

dc.contributor.advisorFazio, Angelo Raffaelespa
dc.contributor.authorSerrano Morales, Federicospa
dc.contributor.researchgroupGrupo de Campos y Particulasspa
dc.date.accessioned2020-02-26T16:53:54Zspa
dc.date.available2020-02-26T16:53:54Zspa
dc.date.issued2019-09-11spa
dc.description.abstractSeveral models of inflationary cosmology have been recently established. They provide a wide and rich field of research where most of the predictions are meant to be tested within the next generation of cosmological experiments. However, on this talk we place particular interest on the effective theory of inflation because it (effectively) incorporates the vast majority of these models in one general Lagrangian. Such Lagrangian synthesizes the relevant physics of inflation at some energy scale of interest; however, to develop such effective theory of inflation one has to assume a priori the symmetries of space-time. This elucidates the fact that when we step forward to determine the reasons or meaning underlying the physical principles, we often find that everything points towards symmetries. One other way to construct an effective action is by considering a UV-complete theory and integrate out the heavy degrees of freedom that are not manifest at some desired energy scale. Evidently, some of the symmetries of the complete theory will not necessarily be symmetries of the effective description. In this sense, the physics of a process that occurs at some energy scale may be derived from a more general (elegant?) view of Nature. For this, and other several reasons, it is convenient to consider Supersymmetry as a fundamental extension of the Poincaré group which represents the symmetries of space-time. The question to be worked out during this talk is whether these two effective prescriptions are equivalent in the context of spontaneously broken Supergravity and inflation.spa
dc.description.additionalMaestría en Ciencias-Físicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent176spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75762
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.relation.references[1] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 2005. [2] S. Friederich, “Gauge symmetry breaking in gauge theories—In search of clarification,” arXiv e-prints, Jul 2011. [3] R. Healey, Gaugin what’s real: the conceptual foundations of contemporary gauge theories. Oxford University Press, 2007. [4] S. J. Brodsky, “Nuclear Chromodynamics: Applications of Quantum Chromodynamics to Few Nucleon Systems,” Comments Nucl. Part. Phys., vol. 12, no. 5-6, 1984. [5] G. R. Farrar, K. Huleihel, and H.-y. Zhang, “Perturbative QCD predictions for large momentum transfer photoproduction,” Nucl. Phys., vol. B349, 1991. [6] A. Linde, “Chaotic Inflation,” Physical Letters, vol. 129B, no. 3,4, 1983. [7] A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett., vol. 48, 1982. [Adv. Ser. Astrophys. Cosmol.3,158(1987)]. [8] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev., vol. D23, 1981. [Adv. Ser. Astrophys. Cosmol.3,139(1987)]. [9] D. Baumann and L. McAllister, Inflation and String Theory, ch. 1, p. 19. Cambridge University Press, 1st ed., 2015. [10] D. Baumann, Cosmology, ch. 1, p. 20. Cambridge University Press, 1st ed., 2014. [11] D. Baumann, Cosmology, ch. 1, p. 26. Cambridge University Press, 1st ed., 2014. [12] P. Astier et al., “The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set,” Astron. Astrophys., vol. 447, pp. 31–48, 2006. [13] M. R. Blanton, M. A. Bershady, B. Abolfathi, F. D. Albareti, C. Allende Prieto, A. Almeida, J. Alonso-García, F. Anders, S. F. Anderson, B. Andrews, and et al., “Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe,” Astro. Jour., vol. 154, p. 28, July 2017. [14] A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, 1998. [15] S. Perlmutter et al., “Measurements of Omega and Lambda from 42 high redshift supernovae,” Astrophys. J., vol. 517, 1999. [16] J. A. Frieman and A. V. Olinto, “Natural Inflation with Pseudo Nambu-Goldstone Boson,” Phys. Rev. Lett, vol. 65, 1990 [17] L. Boubekeur and D. Lyth, “Hilltop Inflation,” JCAP, vol. 0507, 2005. [18] F. L. Bezrukov and M. Shaposhnikov, “The Standard Model Higgs boson as the inflaton,” Phys. Lett., vol. B659, 2008. [19] S. Dimopoulos, S. Kachru, J. McGreevy, and J. G. Wacker, “N-flation,” JCAP, vol. 0808, 2008. [20] A. R. Liddle, A. Mazumdar, and F. E. Schunck, “Assisted inflation,” Phys. Rev., vol. D58, 1998. [21] R. Utiyama, “Invariant Theoretical Interpretation of Interaction,” Phys. Rev., vol. 101, 1965. [22] D. W. Sciama, On the analogy between charge and spin in general relativity, p. 415. Polish Scientific Publishers, 1962. [23] T. W. Kibble, “Lorentz Invariance and the Gravitational Field,” J. Math. Phys., vol. 2, 1960. [24] P. Creminelli, M. Luty, A. Nicolis, and L. Senatore, “Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies,” JHEP, vol. 80, 2006. [25] C. Cheung, P. Creminelli, A. Liam Fitzpatrick, J. Kaplan, and L. Senatore, “The Effective Field Theory of Inflation,” JHEP, vol. 14, 2007. [26] A. H. Guth and S. Y. Pi, “Fluctuations in the New Inflationary Universe,” Phys. Rev. Lett., vol. 49, 1982. [27] A. A. Starobinsky, “Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations,” Phys. Lett., vol. 117B, 1982. [28] S. W. Hawking, “The Development of Irregularities in a Single Bubble Inflationary Universe,” Phys. Lett., vol. 115B, 1982. [29] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe,” Phys. Rev., vol. D28, 1983. [30] J. M. Bardeen, “Gauge Invariant Cosmological Perturbations,” Phys. Rev., vol. D22, 1980. [31] D. H. Lyth, “Large Scale Energy Density Perturbations and Inflation,” Phys. Rev., vol. D31, 1985. [32] S. Weinberg, “Quantum contributions to cosmological correlations,” Phys. Rev., vol. D72, 2005. [33] A. A. Starobinsky, “Spectrum of relict gravitational radiation and the early state of the universe,” JETP Lett., vol. 30, 1979. [,767(1979)]. [34] D. H. Lyth and A. R. Liddle, The primordial density perturbation: Cosmology, inflation and the origin of structure. Cambridge, UK: Cambridge Univ. Pr. (2009) 497 p, 2009. [35] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright, “Nine-Year Wilkinson Microwave Anisotropy PROBE (WMAP) Observations: Cosmological Parameter Results,” The Astrophysical Journal Supplement Series, vol. 208, sep 2013. [36] R. Keisler et al., “A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope,” Astrophys. J., vol. 743, 2011. 37] Planck Collaboration, “Planck 2013 results XVI. cosmological parameters,” A&A, vol. 571, no. A16, 2014. [38] M. Yamaguchi, “Supergravity based inflation models: a review,” Class. Quant. Grav., vol. 28, 2011. [39] A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett., vol. B91, 1980. [,771(1980)]. [40] L. Senatore, “Lectures on Inflation.” Lecture Notes, 2016. [41] S. Weinberg, “Effective field theory for inflation,” Phys. Rev. D, vol. 77, 2008. [42] D. Baumann, “The effective field theory of single-field inflation.” University Lecture, 2012. [43] J. Goldstone, “Field Theories with Super-Cunductor Solutions,” Il Nuovo Cimento, vol. 19, no. 1, 1961. [44] CMS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, 2012. [45] ATLAS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B, vol. 716, 2012. [46] Yu. A. Golfand and E. P. Likhtman, “Extension of the Algebra of Poincare Group Generators and Violation of p Invariance,” JETP Lett., vol. 13, 1971. [47] S. Coleman and J. Mandula, “All Possible Symmetries of the S-Matrix,” Phys. Rev., vol. 159, 1967. [48] A. Salam and J. A. Strathdee, “Supergauge Transformations,” Nucl. Phys., vol. B76, pp. 477–482, 1974. 49] D. Z. Freedman and P. van Nieuwenhuizen, “Progress Towards a Theory of Supergravity,” Phys. Rev. D, vol. 13, 1976. [50] D. Z. Freedman and P. van Nieuwenhuizen, “Properties of Supergravity Theory,” Phys. Rev. D, vol. 14, 1976. [51] S. Deser and B. Zumino, “Consistent Supergravity,” Phys. Lett. B, vol. 62, 1976. [52] J. Wess and J. Bagger, Supersymmetry and Supergravity, ch. 18, p. 144. Princeton University Press, 1st ed., 1992. [53] S. R. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological Lagrangians. I,” Phys. Rev., vol. 177, 1969. [54] C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological lagrangians. II,” Phys. Rev., vol. 177, Jan 1969. [55] D. V. Volkov and V. P. Akulov, “Is The Neutrino a Goldstone Particle?,” Phys. Lett., vol. 46, 1973. [56] J. Wess and J. Bagger, Supersymmetry and Supergravity, ch. Appendix E, p. 246. Princeton University Press, 1st ed., 1992. [57] A. A. Kapustnikov, “Nonlinear Realization of Einsteinian Supergravity,” Theor. Math. Phys., vol. 47, 1981. [58] L. Delacrétaz, V. Gorbenko, and L. Senatore, “The Supersymmetric Effective Field Thery of Inflation,” JHEP, vol. 63, 2017. [59] M. Roček, “Linearizing the Volkov-Akulov model,” Phys. Rev. Lett., vol. 41, Aug 1978. 60] E. Bergshoeff, D. Firedmann, R. Kallosh, and A. Van Proeyen, “Pure de Sitter Supergravity,” Phys. Rev. D, vol. 92, 2016. [61] E. Bergshoeff, D. Freedman, R. Kallosh, and A. Van Proeyen, “Construction of the de Sitter Supergravity,” 2016. [62] N. Cribiori, Non-linear realisations in global and local supersymmetry. PhD thesis, Padua U., Astron. Dept., 2018. [63] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, and R. Gatto, “Non-linear realization of supersymmetry algebra from supersymmetric constraint,” Phys. Lett. B, vol. 220, 1989. [64] G. Dall’Agata, E. Dudas, and F. Farakos, “On the origin of constrained superfields,” JHEP, vol. 2016, May 2016. [65] S. Samuel and J. Wess, “A Superfield Formulation of the Nonlinear Realization of Supersymmetry and Its Coupling to Supergravity,” Nucl. Phys., vol. B221, 1983. [66] S. Samuel and J. Wess, “Secret Supersymmetry,” Nucl. Phys., vol. B233, 1984. [67] S. Ferrara and A. Sagnotti, “Supersymmetry and Inflation,” Int. J. Mod. Phys., vol. 1, 2017. [68] S. Ferrara, A. Kehagias, and A. Sagnotti, “Cosmology and Supergravity,” Int. J. Mod. Phys., vol. A31, no. 25, 2016. [69] R. Kallosh and T. Wrase, “de sitter supergravity model building,” Phys. Rev. D, vol. 92, p. 105010, Nov 2015. [70] S. Ferrara, R. Kallosh, and A. Linde, “Cosmology with Nilpotent Superfields,” JHEP, vol. 143, 2014. [71] R. Kallosh, L. Kofman, A. Linde, and A. Van Proeyen, “Superconformal Symmetry, Supergravity and Cosmology,” Class. Quant. Grav., vol. 17, 2004. [72] R. Kallosh, L. Kofman, A. Linde, , and A. Van Proeyen, “Gravitino Production After Inflation,” Phys. Rev. D, vol. 61, 2000. [73] N. Cribiori, G. Dall’Agata, F. Farakos, and M. Porrati, “Minimal constrained supergravity,” Phys. Lett. B, vol. 764, 2017. [74] E. Dudas, S. Ferrara, A. Kehagias, and A. Sagnotti, “Properties of Nilpotent Supergravity,” JHEP, vol. 09, 2015. [75] J. Wess and J. Bagger, Supersymmetry and Supergravity, ch. 21, p. 162. Princeton University Press, 1st ed., 1992. [76] J. Wess and B. Zumino, “Superfield Lagrangian for Supergravity,” Phys. Lett., vol. 74B, 1978. [77] V. Ogievetsky and E. Sokatchev, “Structure of Supergravity Group,” Phys. Lett., vol. B79, 1978. [,410(1978)]. [78] A. Brignole, F. Feruglio, and F. Zwirner, “On the effective interactions of a light gravitino with matter fermions,” JHEP, vol. 11, 1997. [79] G. Dall’Agata, S. Ferrara, and F. Zwirner, “Minimal scalarless matter-coupled supergravity,” Phys. Lett., vol. B752, 2016. [80] G. Dall’Agata, E. Dudas, and F. Farakos, “On the origin of constrained superfields,” JHEP, vol. 05, 2016. [81] R. Kallosh and A. Linde, “Superconformal generalizations of the Starobinsky model,” JCAP, vol. 1306, 2013. [82] B. Whitt, “Fourth Order Gravity as General Relativity Plus Matter,” Phys. Lett., vol. 145B, 1984. [83] S. Ferrara and P. van Nieuwenhuizen, “Tensor Calculus for Supergravity,” Phys. Lett., vol. B76, 1978. [,404(1978)]. [84] K. S. Stelle and P. C. West, “Minimal Auxiliary Fields for Supergravity,” Phys. Lett., vol. 74B, 1978. [85] M. F. Sohnius and P. C. West, “An Alternative Minimal OffShell Version of N=1 Supergravity,” Phys. Lett., vol. 105B, 1981. [86] M. Sohnius and P. C. West, “The Tensor Calculus and Matter Coupling of the Alternative Minimal Auxiliary Field Formulation of N = 1 Supergravity,” Nucl. Phys., vol. B198, 1982. [87] S. Ferrara and S. Sabharwal, “Structure of New Minimal Supergravity,” Annals Phys., vol. 189, 1989. [88] S. Ferrara, R. Kallosh, and A. Linde, “Cosmology with Nilpotent Superfields,” JHEP, vol. 10, 2014. [89] I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti, “The Volkov–Akulov–Starobinsky supergravity,” Phys. Lett., vol. B733, 2014. [90] R. Kallosh and A. Linde, “Inflation and Uplifting with Nilpotent Superfields,” JCAP, vol. 1501, 2015. [91] G. Dall’Agata and F. Zwirner, “On sgoldstino-less supergravity models of inflation,” JHEP, vol. 12, 2014. [92] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, “Aspects of split supersymmetry,” Nucl. Phys., vol. B709, 2005. [93] P. Fayet and J. Iliopoulos, “Spontaneously Broken Supergauge Symmetries and Goldstone Spinors,” Phys. Lett., vol. 51B, 1974. [94] E. Witten, “Dynamical Breaking of Supersymmetry,” Nucl. Phys., vol. B188, 1981. [95] T. T. Dumitrescu and Z. Komargodski, “Aspects of supersymmetry and its breaking,” Nucl. Phys. Proc. Suppl., vol. 216, 2011. [96] S. R. Behbahani, A. Dymarsky, M. Mirbabayi, and L. Senatore, “(Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation,” JCAP, vol. 1212, 2012. [97] S. R. Behbahani, A. Dymarsky, M. Mirbabayi, and L. Senatore, “(Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation,” JCAP, vol. 1212, 2012. [98] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, and R. Gatto, “A gravitino - goldstino high-energy equivalence theorem,” Phys. Lett., vol. B215, 1988. [99] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, and R. Gatto, “When does supergravity become strong?,” Phys. Lett., vol. B216, 1989. [Erratum: Phys. Lett.B229,439(1989)].spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.proposalCosmologyeng
dc.subject.proposalSupergravedadspa
dc.subject.proposalEffective Field Theoryeng
dc.subject.proposalInflaciónspa
dc.subject.proposalCosmologíaspa
dc.subject.proposalInflationeng
dc.subject.proposalSupersimetríaspa
dc.subject.proposalSupersymmetryeng
dc.subject.proposalNon linear Realizationseng
dc.subject.proposalRealizaciones no linealesspa
dc.subject.proposalConstrained Superfieldseng
dc.subject.proposalSupergravityeng
dc.titleMatching between supersymmetric effective theory of inflation and pure de Sitter SUGRAspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Master_Thesis.pdf
Tamaño:
1.77 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: