Probabilistic forecasting of electricity demand in Colombia

dc.contributor.advisorLópez Ríos, Víctor Ignacio
dc.contributor.advisorGallón Gómez, Santiago
dc.contributor.authorMosquera Cabra, Jennifer
dc.coverage.countryColombia
dc.date.accessioned2024-04-18T15:43:41Z
dc.date.available2024-04-18T15:43:41Z
dc.date.issued2024-04-09
dc.descriptionilustraciones, gráficosspa
dc.description.abstractNew approaches have emerged in the field of uncertainty measurement, offering ways to estimate models and their corresponding confidence levels for point predictions. Our first purpose is to compare the predictive capabilities of some models built for forecasting daily electricity demand in Colombia. Initially, we employ generalized linear models, followed by Machine Learning models such as ensemble learning models, support vector machines (SVM), and finally deep learning models. The goal is to determine which model demonstrates superior predictive accuracy in forecasting daily electricity demand in Colombia. In order to evaluate their performance, we mainly use Mean Absolute Percentage Error (MAPE) as a comprehensive measure, which allows us to evaluate their effectiveness in capturing the actual demand values. And also take into account the mean absolute error (MAE) and the root mean squared error (RMSE). Next, we turn our attention on the creation of prediction intervals to handle the uncertainty in our forecasts. We use techniques like Bootstrapping to figure out these intervals. We also incorporate conformal prediction to improve the reliability of our intervals. Our prediction intervals are evaluated primarily based on their coverage percentage. This will allow us to see how frequently our prediction intervals correspond to the actual demand from this data. Through this combination of methods, our goal is to establish a robust and user-friendly framework for forecasting daily electricity demand in Colombia. The results of this development suggest that (1) for the daily energy demand of Colombia, with the variables obtained at a daily frequency, a simple model such as a regularized model works better than an advanced and much more complex model such as a deep learning model. (2) Regarding feature selection concerns, the most important variables are the energy demand lags and demand structure variables for the Lasso model, which works as a feature selection method, due to its regularization nature. This confirms that the inclusion of lags or having an autocorrelated structure is important in this type of problem. Finally, for the forecast intervals, in which we used two methods, the first and most common was the bootstrap method and the second, whose development is more recent, is the conformal Prediction. The construction of our prediction intervals allowed us to give a 99 % confidence level to the point prediction and not just rely on the comparison between the actual and predicted values. (Tomado de la fuente)eng
dc.description.abstractHan surgido nuevos enfoques en el campo de la medición de la incertidumbre, que ofrecen formas de estimar modelos y sus correspondientes niveles de confianza para predicciones puntuales. Nuestro primer propósito es comparar las capacidades predictivas de algunos modelos construidos para pronosticar la demanda diaria de electricidad en Colombia. Inicialmente, empleamos modelos lineales generalizados, seguidos de modelos de Machine Learning tales como modelos de aprendizaje ensemble, máquinas de vectores soporte (SVM), y finalmente modelos de aprendizaje profundo. El objetivo es determinar qué modelo demuestra una precisión predictiva superior en el pronóstico de la demanda diaria de electricidad en Colombia. Para evaluar su desempeño se utiliza principalmente el Error Porcentual Absoluto Medio (MAPE) como medida integral, que permite evaluar su efectividad para capturar los valores reales de demanda. También tenemos en cuenta el error medio absoluto (MAE) y el error cuadrático medio (RMSE). A continuación, centramos nuestra atención en la creación de intervalos de predicción para manejar la incertidumbre de nuestras previsiones. Para calcular estos intervalos utilizamos técnicas como el Bootstrapping. También incorporamos la predicción conforme para mejorar la fiabilidad de nuestros intervalos. Nuestros intervalos de predicción se evalúan principalmente en función de su porcentaje de cobertura. Esto nos permitirá ver con qué frecuencia nuestros intervalos de predicción se corresponden con la demanda real a partir de estos datos. Mediante esta combinación de métodos, nuestro objetivo es establecer un marco robusto y fácil de usar para la predicción de la demanda diaria de electricidad en Colombia. Los resultados de este desarrollo sugieren que (1) para la demanda diaria de energía de Colombia, con las variables obtenidas a una frecuencia diaria, un modelo simple como un modelo regularizado funciona mejor que un modelo avanzado y mucho más complejo como un modelo de aprendizaje profundo. (2) En cuanto a las preocupaciones de selección de características, las variables más importantes son los rezagos de demanda de energía y las variables de estructura de demanda para el modelo Lasso, que funciona como método de selección de características, debido a su naturaleza de regularización. Esto confirma que la inclusión de retardos o tener una estructura autocorrelacionada es importante en este tipo de problemas. Por último, para los intervalos de predicción, en los que utilizamos dos métodos, el primero y más común fue el método bootstrap y el segundo, cuyo desarrollo es más reciente, es la Predicción conforme. La construcción de nuestros intervalos de predicción nos permitió dar un nivel de confianza del 99% a la predicción puntual y no basarnos únicamente en la comparación entre los valores reales y los predichos.spa
dc.description.curricularareaEstadística.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extent79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85944
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAl-Musaylh, M. S., Deo, R. C., Adamowski, J. F., and Li, Y. (2018). Short-term electricity demand forecasting with mars, svr and arima models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics, 35(16):1–16.spa
dc.relation.referencesAmat Rodrigo, J. and Escobar Ortiz, J. (2023). skforecast (version 0.11.0) [computer software]. https://doi.org/10.5281/zenodo.8382788.spa
dc.relation.referencesBedi, J. and Toshniwal, D. (2019). Deep learning framework to forecast electricity demand. Applied Energy, 238(C):1312–1326.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine learning, 45(1):5–32.spa
dc.relation.referencesBrownlee, J. (2017). Introduction to Time Series Forecasting With Python: How to Prepare Data and Develop Models to Predict the Future. Machine Learning Mastery (Publisher).spa
dc.relation.referencesChen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM.spa
dc.relation.referencesClements, M. P. and Kim, J. H. (2007). Bootstrap prediction intervals for autoregressive time series. Computational Statistics Data Analysis, 51(7):3580–3594.spa
dc.relation.referencesEfron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Number 57 in Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, Florida, USA.spa
dc.relation.referencesFabbiani, E., Marziali, A., and Nicolao, G. D. (2021). Ensembling methods for countrywide short-term forecasting of gas demand. International Journal of Oil, Gas and Coal Technology, 26(2):184.spa
dc.relation.referencesFriedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2):337–407.spa
dc.relation.referencesFriedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 29(5):1189–1232.spa
dc.relation.referencesFriedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.spa
dc.relation.referencesGao, T., Niu, D., Ji, Z., and Sun, L. (2022). Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm. Energy, Elsevier, vol. 261(PB).spa
dc.relation.referencesGneiting, T. and Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1(1):125–151.spa
dc.relation.referencesGuo, Z., Zhou, K., Zhang, X., and Yang, S. (2018). A deep learning model for short-term power load and probability density forecasting. Energy, 160(C):1186–1200.spa
dc.relation.referencesHuurman, C., Ravazzolo, F., and Zhou, C. (2012). The power of weather. Computational Statistics Data Analysis, 56(11):3793–3807. 1st issue of the Annals of Computational and Financial Econometrics Sixth Special Issue on Computational Econometrics.spa
dc.relation.referencesJensen, V., Bianchi, F. M., and Anfinsen, S. N. (2024). Ensemble conformalized quantile regression for probabilistic time series forecasting. 1-12.spa
dc.relation.referencesJim´enez, J., Pertuz, A., Quintero, C., and Monta˜na, J. (2019). Multivariate statistical analysis based methodology for long-term demand forecasting. IEEE Latin America Transactions, 17(01):93–101.spa
dc.relation.referencesKath, C. and Ziel, F. (2021). Conformal prediction interval estimation and applications to day-ahead and intraday power markets. International Journal of Forecasting, 37(2):: 777–799.spa
dc.relation.referencesKhosravi, A., Nahavandi, S., and Creighton, D. (2013). Quantifying uncertainties of neural network-based electricity price forecasts. Applied Energy, 112:120–129.spa
dc.relation.referencesKilian, L. (1998). Small-sample confidence intervals for impulse response functions. The Review of Economics and Statistics, 80(2):218–230.spa
dc.relation.referencesLi, R., Chen, X., Baleentis, T., Treimikien˙e, D., and Niu, Z. (2020). Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Computing and Applications, 33:301–320.spa
dc.relation.referencesMaciejowska, K., Nowotarski, J., and Weron, R. (2016). Probabilistic forecasting of electricity spot prices using factor quantile regression averaging. International Journal of Forecasting, 32(3):957–965.spa
dc.relation.referencesMarino, A., Arango., A., Lotero, L., and Jimenez, M. (2021). Modelos de series temporales para pron´ostoco de la demanda el´ectrica del sector de explotaci´on de minas y canteras en Colombia. Revista EIA, 18:77 – 99.spa
dc.relation.referencesMasarotto, G. (1990). Bootstrap prediction intervals for autoregressions. International Journal of Forecasting, 6(2):229–239.spa
dc.relation.referencesMisiorek, A., Trueck, S., and Weron, R. (2006). Point and interval forecasting of spot electricity prices: Linear vs. non-linear time series models. Studies in Nonlinear Dynamics Econometrics, 10(3):1–34.spa
dc.relation.referencesMohammed, A. and Kora, R. (2023). A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University - Computer and Information Sciences, 35(2):757–774.spa
dc.relation.referencesNielsen, D. (2016). Tree boosting with xgboost-why does xgboost win every machine learning competition. Master’s thesis, Norwegian University of Science and Technology.spa
dc.relation.referencesNing, Y., Zhao, R., Wang, S., Yuan, B., Wang, Y., and Zheng, D. (2022). Probabilistic short-term power load forecasting based on b-scn. Energy Reports, 8:646–655. The 2022 International Conference on Energy Storage Technology and Power Systems.spa
dc.relation.referencesNowotarski, J. and Weron, R. (2013). Computing electricity spot price prediction intervals using quantile regression and forecast averaging. HSC Research Reports HSC/13/12, Hugo Steinhaus Center, Wroclaw University of Technology.spa
dc.relation.referencesNowotarski, J. and Weron, R. (2018). Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81:1548– 1568.spa
dc.relation.referencesPanagiotelis, A. and Smith, M. (2008). Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions. International Journal of Forecasting, 24(4):710–727.spa
dc.relation.referencesPascual, L., Romo, J., and Ruiz, E. (2005). Bootstrap prediction intervals for powertransformed time series. International Journal of Forecasting, 21:219–235.spa
dc.relation.referencesRamachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. retrieved from https://arxiv.org/abs/1710.05941.spa
dc.relation.referencesSon, N., Yang, S., and Na, J. (2020). Deep neural network and long short-term memory for electric power load forecasting. Applied Sciences, 10(18):6489.spa
dc.relation.referencesStankeviciute, K., M. Alaa, A., and van der Schaar, M. (2021). Conformal time-series forecasting. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages : 6216–6228. Curran Associates, Inc.spa
dc.relation.referencesUllah, F. U. M., Ullah, A., Khan, N., Lee, M. Y., Rho, S., Baik, S. W., and Bai, X. (2022). Deep Learning-Assisted Short-Term Power Load Forecasting Using Deep Convolutional LSTM and Stacked GRU. Complexity, 2022:1–15.spa
dc.relation.referencesWeron, R. and Misiorek, A. (2008). Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models. International Journal of Forecasting, 24(4):744–763.spa
dc.relation.referencesXu, C. and Xie, Y. (2023). Conformal prediction for time series. Preprint. https://arxiv.org/pdf/2010.09107.pdf.spa
dc.relation.referencesZhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2023). Dive into Deep Learning. Cambridge University Press. https://D2L.ai.spa
dc.relation.referencesZhang, Y., Liu, K., Liang, Q., and An, X. (2016). Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Conversion and Management, 112:208–219.spa
dc.relation.referencesZhao, J. H., Dong, Z. Y., Xu, Z., and Wong, K. P. (2008). A statistical approach for interval forecasting of the electricity price. IEEE Transactions on Power Systems, 23(2):267 – 276.spa
dc.relation.referencesZou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301– 320.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembDemanda de energía eléctrica - Colombia
dc.subject.lembDistribución de energía eléctrica - Colombia
dc.subject.lembAbastecimiento de energía - Colombia
dc.subject.lembAnálisis de series de tiempo
dc.subject.lembProbabilidades - Procesamiento de datos
dc.subject.proposalelectricity demandeng
dc.subject.proposalprediction intervalseng
dc.subject.proposaluncertainty quantificationeng
dc.subject.proposalBootstrappingeng
dc.subject.proposalconformal predictioneng
dc.subject.proposaldemanda de electricidadspa
dc.subject.proposalintervalos de predicciónspa
dc.subject.proposalcuantificación de incertidumbrespa
dc.subject.proposalpredicción conformespa
dc.subject.proposaltime series modelingeng
dc.subject.proposalmodelización de series temporalesspa
dc.titleProbabilistic forecasting of electricity demand in Colombiaeng
dc.title.translatedPronóstico probabilístico de la demanda de electricidad en Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1123514281.2024.pdf
Tamaño:
8.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: