Optimización de algoritmos para computación científica sobre arquitecturas heterogéneas

dc.contributor.advisorOsorio Londoño, Gustavo Adolfo
dc.contributor.authorCastaño Londoño, Luis Fernando
dc.contributor.researchgroupPercepción y Control Inteligente (PCI)spa
dc.date.accessioned2021-10-08T22:38:18Z
dc.date.available2021-10-08T22:38:18Z
dc.date.issued2021-09
dc.descriptionDigitalspa
dc.description.abstractUn esquema muy usado en la computación científica se conoce como computación con esténcil. Es el núcleo central de algoritmos de álgebra lineal, ecuaciones diferenciales parciales (EDP) y procesamiento de imágenes. Sin embargo, el desempeño de los algoritmos basados en esténcil, está limitado por la notable diferencia entre el máximo rendimiento de procesamiento y el máximo ancho de banda de memoria en los sistemas multinúcleo y unidades de computación grafica (GPU). Por esta razón el estudio de métodos para su optimización ha sido de gran interés. Algunos métodos se basan en la optimización del empleo de memoria, sobre los cuales se han desarrollado diversos trabajos en sistemas basados en CPU y arquitecturas heterogéneas. Debido a que con estos métodos de optimización persisten limitaciones en el rendimiento, algunos autores han propuesto esquemas para sistemas basados en arreglos de compuertas programables en campo (FPGA). En esta tesis doctoral se presentan dos metodologías para la optimización de arquitecturas basadas en FPGA para la computación con esténcil. Para algunas arquitecturas el diseño se realiza a nivel de hardware con base en el modelo de Glushkov utilizando VHDL. En otros casos se realiza codiseño hardware/software utilizando herramientas de síntesis de alto nivel. Como casos de estudio se propone la implementación y evaluación de rendimiento de una arquitectura basada en esténcil para la aproximación a la solución de problemas de propagación de calor modelados con la ecuación de calor unidimensional y la ecuación de Laplace bidimensional. Se proponen transformaciones en las arquitecturas y códigos basados en esténcil para el mejoramiento del desempeño en la ejecución del algoritmo con relación a una implementación base. En el caso de implementación con la herramienta de síntesis de alto nivel se definen parámetros asociados al tamaño del dominio de la solución y directivas de optimización, para la determinación del efecto en el desempeño de la ejecución del algoritmo basado en computación con esténcil. Se define una superficie de respuesta para determinar los valores óptimos de los parámetros con los cuales se obtiene la menor latencia para la implementación propuesta (Texto tomado de la fuente).spa
dc.description.abstractA scheme widely used in scientific computing is known as stencil computation. It is the central kernel of linear algebra algorithms, partial differential equations (PDE) and image processing. However, the performance of stencil-based algorithms is limited by the remarkable difference between maximum throughput and maximum memory bandwidth in multi-core systems and graphics computing units (GPUs). For this reason the study of methods for its optimization has been of great interest. Some methods are based on optimizing the use of memory, on which various jobs have been developed in CPU-based systems and heterogeneous architectures. Because these optimization methods persist with performance limitations, some authors have proposed schemes for systems based on programmable field gate arrays (FPGA). In this thesis, two methodologies for the optimization of FPGA-based architectures for stencil computing are presented. For some architectures the design is done at the hardware level based on the Glushkov model using VHDL. In other cases, hardware/software co-design is carried out using high-level synthesis tools. As a case study, the implementation and performance evaluation of a stencil-based architecture is proposed for the approximation to the solution of heat propagation problems modeled with the one-dimensional heat equation and the two-dimensional Laplace equationeng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automáticaspa
dc.description.researchareaDiseño Electrónicospa
dc.format.extentix, 146 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80466
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesBandishti, V. ; Pananilath, I. ; Bondhugula, U.: Tiling Stencil Computations to Maximize Parallelism. En: Proceedings of the IEEE International Conference for High Performance Computing, Networking, Storage and Analysis IEEE, 2012, p. 1–11spa
dc.relation.referencesBeauchamp, Michael J. ; Hauck, Scott ; Underwood, Keith D. ; Hemmert, K S.: Architectural modifications to enhance the floating-point performance of FPGAs. En: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16 (2008), Nr. 2, p. 177–187spa
dc.relation.referencesBelanović, Pavle ; Leeser, Miriam: A library of parameterized floating-point modules and their use. En: International Conference on Field Programmable Logic and Applications Springer, 2002, p. 657–666spa
dc.relation.referencesBrodtkorb, A. R. ; Dyken, C. ; Hagen, T. R. ; Hjelmervik, J. M. ; Storaasli, O. O.: State-of-the-art in heterogeneous computing. En: Scientific Programming, IOS Press Amsterdam 18 (2010), p. 1–33spa
dc.relation.referencesCaffarena, Gabriel ; López, Juan A. ; Leyva, Gerardo ; Carreras, Carlos ; Nieto- Taladriz, Octavio: Architectural synthesis of fixed-point DSP datapaths using fpgas. En: International Journal of Reconfigurable Computing 2009 (2009), p. 8spa
dc.relation.referencesCattaneo, Riccardo ; Natale, Giuseppe ; Sicignano, Carlo ; Sciuto, Donatella ; Santambrogio, Marco D.: On how to accelerate iterative stencil loops: a scalable streaming-based approach. En: ACM Transactions on Architecture and Code Optimi- zation (TACO) 12 (2016), Nr. 4, p. 53spa
dc.relation.referencesCecilia, J. M. ; Abellán, J. L. ; Fernández, J. ; Acacio, M. E. ; Garc´ıa, J. M. ; Ujaldón, M.: Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus Cell BE. En: The Journal of Supercomputing, Springer Science+Business Media 62 (2012), Nr. 2, p. 787–803spa
dc.relation.referencesChong, Yee J. ; Parameswaran, Sri: Configurable multimode embedded floatingpoint units for FPGAs. En: IEEE transactions on very large scale integration (VLSI) systems 19 (2011), Nr. 11, p. 2033–2044spa
dc.relation.referencesChugh, Nitin ; Vasista, Vinay ; Purini, Suresh ; Bondhugula, Uday: A DSL compiler for accelerating image processing pipelines on FPGAs. En: Parallel Architecture and Compilation Techniques (PACT), 2016 International Conference on IEEE, 2016, p. 327–338spa
dc.relation.referencesCong, Jason ; Li, Peng ; Xiao, Bingjun ; Zhang, Peng: An optimal microarchitecture for stencil computation acceleration based on non-uniform partitioning of data reuse buffers. En: Proceedings of the 51st annual design automation conference ACM, 2014, p. 1–6spa
dc.relation.referencesDatta, Kaushik ; Kamil, Shoaib ;Williams, Samuel ; Oliker, Leonid ; Shalf, John ; Yelick, Katherine: Optimization and performance modeling of stencil computations on modern microprocessors. En: SIAM review 51 (2009), Nr. 1, p. 129–159spa
dc.relation.referencesDeest, Gaël ; Estibals, Nicolas ; Yuki, Tomofumi ; Derrien, Steven ; Rajopadhye, Sanjay: Towards Scalable and Efficient FPGA Stencil Accelerators. En: 6th Internatio- nal Workshop on Polyhedral Compilation Techniques - IMPACT’16, 2016spa
dc.relation.referencesDeest, Gaël ; Yuki, Tomofumi ; Rajopadhye, Sanjay ; Derrien, Steven: One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs. En: Field Programmable Logic and Applications (FPL), 2017 27th International Conference on IEEE, 2017, p. 1–8spa
dc.relation.referencesDeschamps, Jean-Pierre ; Bioul, Gery J. ; Sutter, Gustavo D.: Synthesis of arith- metic circuits: FPGA, ASIC and embedded systems. John Wiley & Sons, 2006spa
dc.relation.referencesDetrey, Jérémie ; de Dinechin, Florent: Parameterized floating-point logarithm and exponential functions for FPGAs. En: Microprocessors and Microsystems 31 (2007), Nr. 8, p. 537–545spa
dc.relation.referencesDido, Jérôme ; Geraudie, Nicolas ; Loiseau, Ludovic ; Payeur, Olivier ; Savaria, Yvon ; Poirier, Daniel: A flexible floating-point format for optimizing data-paths and operators in FPGA based DSPs. En: Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable gate arrays ACM, 2002, p. 50–55spa
dc.relation.referencesde Dinechin, Florent ; Detrey, Jérémie ; Cret¸, Octavian ; Tudoran, Radu: When FPGAs are better at floating-point than microprocessors. (2007)spa
dc.relation.referencesDursun, Hikmet ; Nomura, Ken-Ichi ; Peng, Liu ; Seymour, Richard ; Wang, Weiqiang ; Kalia, Rajiv K. ; Nakano, Aiichiro ; Vashishta, Priya: A multilevel parallelization framework for high-order stencil computations. En: European Conference on Parallel Processing Springer, 2009, p. 642–653spa
dc.relation.referencesEcheverría, Pedro ; López-Vallejo, Marisa: Customizing floating-point units for FPGAs: Area-performance-standard trade-offs. En: Microprocessors and Microsystems 35 (2011), Nr. 6, p. 535–546spa
dc.relation.referencesEscobedo, Juan ; Lin, Mingjie: Graph-Theoretically Optimal Memory Banking for Stencil-Based Computing Kernels. En: Proceedings of the 2018 ACM/SIGDA Interna- tional Symposium on Field-Programmable Gate Arrays ACM, 2018, p. 199–208spa
dc.relation.referencesde Fine Licht, Johannes ; Blott, Michaela ; Hoefler, Torsten: Designing scalable FPGA architectures using high-level synthesis. En: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’18) Vol. 53 ACM, 2018, p. 403–404spa
dc.relation.referencesFu, Haohuan ; Osborne,William ; Clapp, Robert G. ;Mencer, Oskar ; Luk,Wayne: Accelerating seismic computations using customized number representations on FPGAs. En: EURASIP Journal on Embedded Systems 2009 (2009), p. 3spa
dc.relation.referencesHo, Chun H. ; Leong, Monk-Ping ; Leong, Philip Heng W. ; Becker, J¨urgen ; Glesner, Manfred: Rapid prototyping of FPGA based floating point DSP systems. En: Rapid System Prototyping, 2002. Proceedings. 13th IEEE International Workshop on IEEE, 2002, p. 19–24spa
dc.relation.referencesHo, Chun H. ; Yu, Chi W. ; Leong, Philip ; Luk, Wayne ; Wilton, Steven J.: Floating-point FPGA: architecture and modeling. En: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17 (2009), Nr. 12, p. 1709–1718spa
dc.relation.referencesHockert, Neil ; Compton, Katherine: Improving floating-point performance in less area: Fractured floating point units (FFPUs). En: Journal of Signal Processing Systems 67 (2012), Nr. 1, p. 31–46spa
dc.relation.referencesKobayashi, R. ; Takamaeda-Yamazaki, S. ; Kise, K.: Towards a Low-Power Accelerator of Many FPGAs for Stencil Computations. En: Proceedings of the IEEE Third International Conference on Networking and Computing IEEE, 2012, p. 343–349spa
dc.relation.referencesKobayashi, Ryohei ; Oobata, Yuma ; Fujita, Norihisa ; Yamaguchi, Yoshiki ; Boku, Taisuke: OpenCL-ready High Speed FPGA Network for Reconfigurable High Performance Computing. En: Proceedings of the International Conference on High Per- formance Computing in Asia-Pacific Region ACM, 2018, p. 192–201spa
dc.relation.referencesLászló, Endre ; Nagy, Zoltán ; Giles, Michael B. ; Reguly, István ; Appleyard, Jeremy ; Szolgay, Peter: Analysis of parallel processor architectures for the solution of the Black-Scholes PDE. En: Circuits and Systems (ISCAS), 2015 IEEE International Symposium on IEEE, 2015, p. 1977–1980spa
dc.relation.referencesLiu, Junyi ; Bayliss, Samuel ; Constantinides, George A.: Offline synthesis of online dependence testing: Parametric loop pipelining for HLS. En: Field-Programmable Cus- tom Computing Machines (FCCM), 2015 IEEE 23rd Annual International Symposium on IEEE, 2015, p. 159–162spa
dc.relation.referencesLiu, Junyi ; Wickerson, John ; Bayliss, Samuel ; Constantinides, George A.: Polyhedral-based Dynamic Loop Pipelining for High-Level Synthesis. En: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2017)spa
dc.relation.referencesLiu, Junyi ; Wickerson, John ; Constantinides, George A.: Loop splitting for efficient pipelining in high-level synthesis. En: 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) IEEE, 2016, p. 72–79spa
dc.relation.referencesMokhov, Andrey ; De Gennaro, Alessandro ; Tarawneh, Ghaith ; Wray, Jonny ; Lukyanov, Georgy ; Mileiko, Sergey ; Scott, Joe ; Yakovlev, Alex ; Brown, Andrew: Language and hardware acceleration backend for graph processing. En: Spe- cification and Design Languages (FDL), 2017 Forum on IEEE, 2017, p. 1–7spa
dc.relation.referencesMondigo, Antoniette ; Ueno, Tomohiro ; Tanaka, Daichi ; Sano, Kentaro ; Yamamoto, Satoru: Design and scalability analysis of bandwidth-compressed stream computing with multiple FPGAs. En: Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2017 12th International Symposium on IEEE, 2017, p. 1–8spa
dc.relation.referencesMuranushi, Takayuki ; Makino, Junichiro: Optimal temporal blocking for stencil computation. En: Procedia Computer Science 51 (2015), p. 1303–1312spa
dc.relation.referencesNacci, Alessandro A. ; Rana, Vincenzo ; Bruschi, Francesco ; Sciuto, Donatella ; Beretta, Ivan ; Atienza, David: A high-level synthesis flow for the implementation of iterative stencil loop algorithms on FPGA devices. En: Proceedings of the 50th annual design automation conference ACM, 2013, p. 52spa
dc.relation.referencesNatale, Giuseppe ; Stramondo, Giulio ; Bressana, Pietro ; Cattaneo, Riccardo ; Sciuto, Donatella ; Santambrogio, Marco D.: A polyhedral model-based framework for dataflow implementation on FPGA devices of iterative stencil loops. En: Computer- Aided Design (ICCAD), 2016 IEEE/ACM International Conference on IEEE, 2016, p. 1–8spa
dc.relation.referencesde Oliveira, Cristiano B. ; Cardoso, Joao M. ; Marques, Eduardo: High-level synthesis from C vs. a DSL-based approach. En: Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International IEEE, 2014, p. 257–262spa
dc.relation.referencesPeng, Liu ; Seymour, Richard ; Nomura, Ken-ichi ; Kalia, Rajiv K. ; Nakano, Aiichiro ; Vashishta, Priya ; Loddoch, Alexander ; Netzband, Michael ; Volz, William R. ; Wong, Chap C.: High-order stencil computations on multicore clusters. En: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on IEEE, 2009, p. 1–11spa
dc.relation.referencesReagen, Brandon ; Adolf, Robert ; Shao, Yakun S. ; Wei, Gu-Yeon ; Brooks, David: Machsuite: Benchmarks for accelerator design and customized architectures. En: Workload Characterization (IISWC), 2014 IEEE International Symposium on IEEE, 2014, p. 110–119spa
dc.relation.referencesReiche, Oliver ; ¨ Ozkan, M A. ; Hannig, Frank ; Teich, J¨urgen ; Schmid, Moritz: Loop parallelization techniques for fpga accelerator synthesis. En: Journal of Signal Processing Systems 90 (2018), Nr. 1, p. 3–27spa
dc.relation.referencesRocher, Romuald ; Menard, Daniel ; Herve, Nicolas ; Sentieys, Olivier: Fixedpoint configurable hardware components. En: EURASIP Journal on Embedded Systems 2006 (2006), Nr. 1, p. 023197spa
dc.relation.referencesSakai, Ryotaro ; Sugimoto, Naru ; Miyajima, Takaaki ; Fujita, Naoyuki ; Amano, Hideharu: Acceleration of full-pic simulation on a cpu-fpga tightly coupled environment. En: Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2016 IEEE 10th Inter- national Symposium on IEEE, 2016, p. 8–14spa
dc.relation.referencesSano, K. ; Hatsuda, Y. ; Yamamoto, S.: Multi-FPGA Accelerator for Scalable Stencil Computation with Constant Memory-Bandwidth. En: IEEE Transactions on Parallel and Distributed Systems 25 (2014), March, Nr. 3, p. 695–705spa
dc.relation.referencesSano, K. ; Luzhou, W. ; Hatsuda, Y. ; Yamamoto, S.: Scalable FPGA-Array for High-Performance and Power-Efficient Computation Based on Difference Schemes. En: Proceedings of the Second International Workshop on High-Performance Reconfigurable Computing Technology and Applications IEEE, 2008, p. 1–9spa
dc.relation.referencesSano, Kentaro: FPGA-based systolic computational-memory array for scalable stencil computations. En: High-Performance Computing Using FPGAs. Springer, 2013, p. 279–303spa
dc.relation.referencesSchmid, Moritz ; Reiche, Oliver ; Schmitt, Christian ; Hannig, Frank ; Teich, J¨urgen: Code generation for high-level synthesis of multiresolution applications on fpgas. En: arXiv preprint arXiv:1408.4721 (2014)spa
dc.relation.referencesSchmitt, Christian ; Schmid, Moritz ; Kuckuk, Sebastian ; K¨ostler, Harald ; Teich, J¨urgen ; Hannig, Frank: Reconfigurable Hardware Generation of Multigrid Solvers with Conjugate Gradient Coarse-Grid Solution. En: Parallel Processing Letters 28 (2018), Nr. 04, p. 1850016spa
dc.relation.referencesShao, Yakun S. ; Reagen, Brandon ;Wei, Gu-Yeon ; Brooks, David: Aladdin: A pre- RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures. En: ACM SIGARCH Computer Architecture News Vol. 42 IEEE Press, 2014, p. 97–108spa
dc.relation.referencesShen, Chongfei ; Liu, Hongtao ; Xie, XB ; Luk, Keith D. ; Hu, Yong: Selection of floating-point or fixed-point for adaptive noise canceller in somatosensory evoked potential measurement. En: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE IEEE, 2007, p. 3274–3277spa
dc.relation.referencesdel Sozzo, Emanuele ; Baghdadi, Riyadh ; Amarasinghe, Saman ; Santambrogio, Marco D.: A Common Backend for Hardware Acceleration on FPGA. En: Com- puter Design (ICCD), 2017 IEEE International Conference on IEEE, 2017, p. 427–430spa
dc.relation.referencesStrenski, Dave ; Simkins, Jim ; Walke, Richard ; Wittig, Ralph: Evaluating fpgas for floating-point performance. En: High-Performance Reconfigurable Computing Technology and Applications, 2008. HPRCTA 2008. Second International Workshop on IEEE, 2008, p. 1–6spa
dc.relation.referencesStrzodka, R. ; Shaheen, M. ; Pajak, D. ; Seidel, H.: Cache oblivious parallelograms in iterative stencil computations. En: Proceedings of the 24th ACM International Conference on Supercomputing ACM, 2010, p. 49–59spa
dc.relation.referencesStrzodka, R. ; Shaheen, M. ; Pajak, D. ; Seidel, H.: Cache Accurate Time Skewing in Iterative Stencil Computations. En: Proceedings of the IEEE International Conference on Parallel Processing IEEE, 2011, p. 571–581spa
dc.relation.referencesTang, Yuan ; Chowdhury, Rezaul A. ; Kuszmaul, Bradley C. ; Luk, Chi-Keung ; Leiserson, Charles E.: The pochoir stencil compiler. En: Proceedings of the twenty- third annual ACM symposium on Parallelism in algorithms and architectures ACM, 2011, p. 117–128spa
dc.relation.referencesTe Ewe, Chun ; Cheung, Peter Y. ; Constantinides, George A.: Dual fixed-point: An efficient alternative to floating-point computation. En: International Conference on Field Programmable Logic and Applications Springer, 2004, p. 200–208spa
dc.relation.referencesUsui, T. ; Kobayashi, R. ; Kise, K.: A Challenge of Portable and High-Speed FPGA Accelerator. En: Proceedings of the 11th International Symposium on Applied Reconfi- gurable Computing, ARC 2015, 2015, p. 383–392spa
dc.relation.referencesVera, G A. ; Pattichis, Marios ; Lyke, James: A dynamic dual fixed-point arithmetic architecture for FPGAs. En: International Journal of Reconfigurable Computing 2011 (2011)spa
dc.relation.referencesWaidyasooriya, Hasitha M. ; Endo, Tsukasa ; Hariyama, Masanori ; Ohtera, Yasuo: OpenCL-Based FPGA Accelerator for 3D FDTD with Periodic and Absorbing Boundary Conditions. En: International Journal of Reconfigurable Computing 2017 (2017)spa
dc.relation.referencesWaidyasooriya, Hasitha M. ; Takei, Yasuhiro ; Tatsumi, Shunsuke ; Hariyama, Masanori: OpenCL-based FPGA-platform for stencil computation and its optimization methodology. En: IEEE Transactions on Parallel and Distributed Systems 28 (2017), Nr. 5, p. 1390–1402spa
dc.relation.referencesWang, Shuo ; Liang, Yun: A comprehensive framework for synthesizing stencil algorithms on FPGAs using OpenCL model. En: Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE IEEE, 2017, p. 1–6spa
dc.relation.referencesWilliams, Samuel ;Waterman, Andrew ; Patterson, David: Roofline: an insightful visual performance model for multicore architectures. En: Communications of the ACM 52 (2009), Nr. 4, p. 65–76spa
dc.relation.referencesYu, Chi W. ; Lamoureux, Julien ; Wilton, Steven J. ; Leong, Philip H. ; Luk, Wayne: The Coarse-Grained/Fine-Grained Logic Interface in FPGAs with Embedded Floating-Point Arithmetic Units. En: International Journal of Reconfigurable Compu- ting 2008 (2008)spa
dc.relation.referencesZohouri, Hamid R. ; Podobas, Artur ; Matsuoka, Satoshi: Combined spatial and temporal blocking for high-performance stencil computation on FPGAs using OpenCL. En: Proceedings of the 2018 ACM/SIGDA International Symposium on Field- Programmable Gate Arrays ACM, 2018, p. 153–162spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.proposalComputación heterogéneaspa
dc.subject.proposalFPGAspa
dc.subject.proposalComputación con esténcilspa
dc.subject.proposalEcuación de calorspa
dc.subject.proposalEcuación de Laplacespa
dc.subject.proposalSíntesis de alto nivelspa
dc.subject.unescoProgramación informática
dc.titleOptimización de algoritmos para computación científica sobre arquitecturas heterogéneasspa
dc.title.translatedAlgorithm optimization for scientific computing on heterogeneous architectureseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBeca Estudiante Sobresaliente de Posgrado (2012-2014)spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75100830.2021.pdf
Tamaño:
5.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: