Evaluation of cloud-based real-time simulation of smart grids

dc.contributor.advisorPérez González, Ernesto
dc.contributor.advisorMirz, Markus
dc.contributor.authorNoreña Monsalve, Juan Pablo
dc.contributor.cvlacNOREÑA MONSALVE, JUAN PABLOspa
dc.contributor.googlescholarujyRPFMAAAAJspa
dc.contributor.orcid0000-0003-1488-0507spa
dc.contributor.researchgateJuan-Norena-Monsalvespa
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunalspa
dc.contributor.scopus57213686941spa
dc.date.accessioned2023-07-17T16:45:39Z
dc.date.available2023-07-17T16:45:39Z
dc.date.issued2022-10-26
dc.descriptionIlustracionesspa
dc.description.abstractPower systems are suffering profound transformations in the transition toward modern energy systems, facing significant challenges regarding the decentralization, decarbonization, and digitalization of power grids. The literature generally presents approaches requiring optimal coordination between the power grid and Information and Communication Technologies. The research of these solutions requires realistic testing environments, which is why Digital Real-Time Simulators have gained popularity in power system laboratories. Furthermore, cloud computing has enabled a cost-efficient alternative for the sector’s digitalization. However, cloud technologies are not used for real-time constrained workloads traditionally. This thesis evaluates a proposed cloud infrastructure as a computational tool to serve digital twins modeling power systems. To this end, this thesis implements a private cloud based on Kubernetes. It sets a laboratory for cloud-native applications interacting with a cloud-based real-time simulator based on an open-source real-time simulation framework. Additionally, it presents an application model that other researchers can replicate to test with the simulation loop, their software-based solutions for the automation of power systems. The results presented in this thesis evidence the capabilities and limitations of abstracting physical compute resources to execute real-time workloads in the context of digital twins for smart grids. Although the evaluation is addressed as a soft-constrained real-time application for a testing environment, this work opens a discussion to address firm-constrained real-time applications in production-grade environments.eng
dc.description.abstractLos sistemas eléctricos están sufriendo transformaciones profundas como parte del proceso del transición a sistemas modernos de energía. La denominada transición energética enfrenta grandes retos de cara a la descentralización, descarbonización, digitalización y democratización de los sistemas eléctricos. Para afrontarlos, la industria y la academia han propuesto soluciones que en general requieren de una coordinación optima entre la red eléctrica y los sistemas de tecnologías de la información y comunicaciones. La investigación de dichas soluciones depende de ambientes realistas de pruebas, por eso los simuladores digitales de tiempo real se han vuelto muy populares en los laboratorios. Por otra parte, la computación en la nube se ha vuelto un habilitador tecnológico para el sector eléctrico. Sin embargo, las tecnologías de nube no suelen ser utilizadas para cargas de trabajo con restricciones de tiempo real. Esta tesis tiene como objetivo evaluar una infraestructura de nube propuesta, como herramienta de computo para servir gemelos digitales de sistemas de potencia. En esta tesis se implementó una nube privada basada en un cluster de Kubernetes, que sirve como laboratorio para aplicaciones nativas en nube que interactuan con el lazo de simulación de un framework de simulación en tiempo real de código abierto. Adicionalmente, se presenta una modelo de aplicación que podría ser replicado para probar soluciones basadas en software orientadas a la automatización de sistemas de potencia. Los resultados presentados en esta tesis evidencian las capacidades y las limitaciones de la abstracción de recursos computacionales para la ejecución de cargas de trabajo con restricciones de tiempo real, enfocado en los gemelos digitales de sistemas de potencia. Todos las evaluaciones se desarrollaron en un ambiente de laboratorio donde se podría considerar que las restricciones de tiempo real son suaves, pero se abre una discusión a la posibilidad de llevarlo a ambientes productivos con restricciones firmes. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaAutomatización de Sistemas de Potenciaspa
dc.format.extent67 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84185
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedLaReferenciaspa
dc.relation.references[1] Maria Luisa Di Silvestre, Salvatore Favuzza, Eleonora Riva Sanseverino, and Gaetano Zizzo. How decarbonization, digitalization and decentralization are changing key power infrastructures. Renewable and Sustainable Energy Reviews, 93:483–498, 2018.spa
dc.relation.references[2] Dongdong Zhang, Chunjiao Li, Hui Hwang Goh, Tanveer Ahmad, Hongyu Zhu, Hui Liu, and Thomas Wu. A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems. Renewable Energy, 189:1383–1406, 2022.spa
dc.relation.references[3] A. Benigni, T. Strasser, G. De Carne, M. Liserre, M. Cupelli, and A. Monti. Real-Time Simulation-Based Testing of Modern Energy Systems: A Review and Discussion. IEEE Industrial Electronics Magazine, 14(2):28–39, 2020.spa
dc.relation.references[4] C. Gavriluta, C. Boudinet, F. Kupzog, A. Gomez-Exposito, and R. Caire. Cyber- physical framework for emulating distributed control systems in smart grids. Interna- tional Journal of Electrical Power and Energy Systems, 114, 2020.spa
dc.relation.references[5] K. Heussen, C. Steinbrink, I.F. Abdulhadi, N. Van Hoa, M.Z. Degefa, J. Merino, T.V. Jensen, H. Guo, O. Gehrke, D.E.M. Bondy, F.P. Andrén, and T.I. Strasser. Erigrid holistic test description for validating cyber-physical energy systems. Energies, 12(14), 2019.spa
dc.relation.references[6] Dan C Marinescu. Chapter 8 - Cloud Hardware and Software. In Dan C Marinescu, editor, Cloud Computing (Second Edition), pages 281–319. Morgan Kaufmann, second edition edition, 2018.spa
dc.relation.references[7] C. Hauser, E. Litvinov, X. Luo, Q. Zhang, D. Anderson, T. Gkountouvas, M. Meng, K. Birman, and A. Bose. Gridcloud: Infrastructure for cloud-based wide area monitoring of bulk electric power grids. IEEE Transactions on Smart Grid, 10(2):2170–2179, 2019.spa
dc.relation.references[8] E. Harmon, U. Ozgur, M.H. Cintuglu, R. De Azevedo, K. Akkaya, and O.A. Moham- med. The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Transactions on Industrial Informatics, 14(3):1262–1274, 2018.spa
dc.relation.references[9] M. Pau, E. Patti, L. Barbierato, A. Estebsari, E. Pons, F. Ponci, and A. Monti. A cloud-based smart metering infrastructure for distribution grid services and automation. Sustainable Energy, Grids and Networks, 15:14–25, 2018.spa
dc.relation.references[10] N.D. Popovi ́c, D.S. Popovíc, and I. Seskar. A novel cloud-based advanced distribution management system solution. IEEE Transactions on Industrial Informatics, 14(8):3469– 3476, 2018.spa
dc.relation.references[11] Markus Mirz, Steffen Vogel, Georg Reinke, and Antonello Monti. SoftwareX DPsim — A dynamic phasor real-time simulator for power systems. SoftwareX, 10:100253, 2019.spa
dc.relation.references[12] Markus Mirz, Steffen Vogel, Bettina Schafer, and Antonello Monti. Distributed real- time co-simulation as a service. In 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), pages 534–539. IEEE, jan 2018.spa
dc.relation.references[13] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The real-time linux kernel: A survey on PreemptRT.CMComputingSurveys, 52(1), 2019.spa
dc.relation.references[14] Lu Jian-feng, Wang Chun-yi, and Hu Jie. A High Performance Data Storage Method for Embedded Linux Real-time Database in Power Systems. Energy Procedia, 16:883–888, 2012.spa
dc.relation.references[15] G Bruzzone, M Caccia, G Ravera, and A Bertone. Standard Linux for embedded real- time robotics and manufacturing control systems. Robotics and Computer-Integrated Manufacturing, 25(1):178–190, 2009.spa
dc.relation.references[16] Yorick De Bock, Siegfried Mercelis, Jan Broeckhove, and Peter Hellinckx. Real-time virtualization with Xvisor. Internet of Things, 11:100238, 2020.spa
dc.relation.references[17] Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente, and Marko Bertogna. Deterministic memory hierarchy and virtualization for modern multi- core embedded systems. Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS, 2019-April:1–14, 2019.spa
dc.relation.references[18] Luca Abeni and Dario Faggioli. Using Xen and KVM as real-time hypervisors. Journal of Systems Architecture, 106(January), 2020.spa
dc.relation.references[19] Vaclav Struhar, Moris Behnam, Mohammad Ashjaei, and Alessandro V. Papadopoulos. Real-time containers: A survey. OpenAccess Series in Informatics, 80(7):1–7, 2020.spa
dc.relation.references[20] CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids. CEN- CENELEC-ETSI Smart Grid Coordination Group: Smart Grid Information Security. (November):1–107, 2012.spa
dc.relation.references[21] X. Luo, S. Zhang, and E. Litvinov. Practical design and implementation of cloud computing for power system planning studies. IEEE Transactions on Smart Grid, 10(2):2301–2311, 2019.spa
dc.relation.references[22] Deepak Kumar Panda and Saptarshi Das. Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. Journal of Cleaner Production, 301:126877, 2021.spa
dc.relation.references[23] Mathias Uslar, Sebastian Rohjans, Christian Neureiter, Filip Pro ̈stl Andr ́en, Jorge Ve- lasquez, Cornelius Steinbrink, Venizelos Efthymiou, Gianluigi Migliavacca, Seppo Hors- manheimo, Helfried Brunner, and Thomas I. Strasser. Applying the smart grid archi- tecture model for designing and validating system-of-systems in the power and energy domain: A European perspective. Energies, 12(2), 2019.spa
dc.relation.references[24] Kai Strunz, Christian Dufour, Vahid Jalili-Marandi, Xiaoyu Wang, Thomas Strasser, Venkata Dinavahi, Panos Kotsampopoulos, Maryam Saeedifard, David Shearer, Paul Forsyth, Mario Paolone, Georg Lauss, M. D. Omar Faruque, Antonello Monti, and Juan A. Martinez. Real-Time Simulation Technologies for Power Systems Design, Tes- ting, and Analysis. IEEE Power and Energy Technology Systems Journal, 2(2):63–73, 2015.spa
dc.relation.references[25] Markus Mirz, Jan Dinkelbach, and Antonello Monti. DPsim—Advancements in po- wer electronics modelling using shifted frequency analysis and in real-time simulation capability by parallelization. Energies, 13(15), 2020.spa
dc.relation.references[26] Markus Mirz. Dynamic Phasor Real-Time Simulation-Based Digital Twin for Power Systems. [27] Marco Pagani, Alessandro Biondi, Mauro Marinoni, Lorenzo Molinari, Giuseppe Lipari, and Giorgio Buttazzo. A Linux-based support for developing real-time applications on heterogeneous platforms with dynamic FPGA reconfiguration. Future Generation Computer Systems, 129:125–140, 2022.spa
dc.relation.references[28] Manuel F Dolz, Francisco D Igual, Thomas Ludwig, Luis Pin ̃uel, and Enrique S Quintana-Ort ́ı. Balancing task- and data-level parallelism to improve performance and energy consumption of matrix computations on the Intel Xeon Phi. Computers Electrical Engineering, 46:95–111, 2015.spa
dc.relation.references[30] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful model for Performance Visual multicore Architectures conVentional. Communications of the ACM, 52(4):65–76, 2009.spa
dc.relation.references[31] Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra. Using Advanced Vector Extensions AVX-512 for MPI Reductions. PervasiveHealth: Pervasive Computingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembDistribución de energía eléctricaspa
dc.subject.proposalReal-time simulationeng
dc.subject.proposalSmart gridseng
dc.subject.proposalCloud tecnologieseng
dc.subject.proposalSimulación en tiempo realspa
dc.subject.proposalTecnologías en la nubespa
dc.subject.wikidataComputación en la nubespa
dc.titleEvaluation of cloud-based real-time simulation of smart gridseng
dc.title.translatedEvaluación de simulación en tiempo real de redes inteligentes en la nubeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstrategia de transformación del sector energético Colombiano en el horizonte de 2030spa
oaire.fundernameConvocatoria 778 de Minciencias - Programa “Ecosistema Ciéntifico”spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037657755.2022.pdf
Tamaño:
1.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: