Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos

dc.contributorCorrea Morales, Juan Carlosspa
dc.contributor.authorCarmona Flórez, Gloria Patriciaspa
dc.date.accessioned2019-06-29T20:06:50Zspa
dc.date.available2019-06-29T20:06:50Zspa
dc.date.issued2015-06-16spa
dc.description.abstractEl método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM. El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/49221/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/54325
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Estadísticaspa
dc.relation.ispartofEscuela de Estadísticaspa
dc.relation.referencesCarmona Flórez, Gloria Patricia (2015) Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalMínimos Cuadrados Ordinariosspa
dc.subject.proposalRegresión Ginispa
dc.subject.proposalModelos de Regresión Robustosspa
dc.subject.proposalEficienciaspa
dc.subject.proposalRobustezspa
dc.subject.proposalDatos atípicosspa
dc.subject.proposalGini Regressionspa
dc.subject.proposalOrdinary Least Squarespa
dc.subject.proposalRobustness Regressionspa
dc.subject.proposalEfficiencyspa
dc.subject.proposalAtypicalspa
dc.titleComparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
39214641.2015.pdf
Tamaño:
675.74 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística