Diseño racional y síntesis de derivados heterocíclicos azufrados y nitrogenados con potencial actividad farmacológica sobre canales iónicos reguladores de las señales nerviosas

dc.contributor.advisorOrozco Lopez, Fabian
dc.contributor.authorBecerra Rivas, Christian Alonso
dc.contributor.cvlacBECERRA RIVAS, CHRISTIAN ALONSO [0001535835]spa
dc.contributor.googlescholarChristian Alonso Becerra Rivas [AJsN-F7-D4NJlHWfvCzFFoYK3QhTUbFz5pzpo46E8Bsiin981m6tOiF4UK2jLdZXDlh_SOl32nxOMRzvYaQkQpr3QZc9GaRN6A]spa
dc.contributor.orcidChristian Becerra [0000000296623813]spa
dc.contributor.researchgateChristian Alonso Becerra [Christian-Becerra]spa
dc.contributor.researchgroupGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)spa
dc.date.accessioned2023-07-28T14:19:03Z
dc.date.available2023-07-28T14:19:03Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos canales iónicos han despertado recientemente el interés de estudio desde la farmacología dada su potencial aplicación como dianas terapéuticas en el tratamiento de diversas patologías. En esta medida se planteó una biblioteca de compuestos de núcleo heterocíclico pirazólico, tiazolidinónico, tiazepínico y pirimidínico que pudieran interactuar con dianas moleculares de esta familia de proteínas; resultando de especial interés para este trabajo el receptor GABAA y el canal de sodio dependiente de voltaje NaV1.7. Dicha biblioteca se sometió a un proceso de cribado mediante docking molecular usando 3 programas (AutoDock4, AutoDock-VINA y DOCK6), determinación in silico de los descriptores moleculares de biodisponibilidad de Lipinski (ADME) y predicción de las propiedades toxicológicas, seleccionando los prototipos más promisorios y llevándolos a la fase de síntesis donde se estudiaron también las condiciones óptimas, así como sutilezas estructurales y de reactividad orientadas al mejoramiento de los procesos químicos que permitieron obtener con buenos rendimientos, 4 series de compuestos con un alto perfil promisorio en modulación de los canales iónicos diana para el tratamiento de enfermedades derivadas de una desregulación autonómica de las señales nerviosas. Además del nuevo conocimiento obtenido sobre los aspectos estructurales, cinéticos y termodinámicos pertinentes para la síntesis de las moléculas objetivo de interés para este estudio.spa
dc.description.abstractIon channels have recently aroused study interest from pharmacology, given their potential usage as therapeutic targets in the treatment of diverse pathologies. To this purpose, a library of compounds with heterocyclic nucleus such as pyrazole, thiazolidine, thiazepine and pyrimidine was proposed, so that they could interact with molecular targets of this family of proteins; resulting especially interesting for the purpose of this work, GABA-A receptor and voltage gated sodium channel NaV1.7. Mentioned library was subjected to a screening process by molecular docking using three programs (AutoDock4, AutoDock-VINA, and DOCK6), in silico calculus of Lipinski bioavailability descriptors (ADME) and prediction of toxicological properties, selecting the most promising prototypes and taking them to synthesis phase, where optimal conditions as well as structural and reactivity subtleties were studied, aiming for the improvement of the chemical processes that allowed to obtain with good yields, four series of compounds with high promising profile in modulation of the target ion channels for the treatment of diseases related from autonomic deregulation of nerve signals. Besides of new knowledge acquired about the structural, kinetic and thermodynamic aspects related with the synthesis of target molecules interesting for the purposes of this work.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaSíntesis Químicaspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovación (Minciencias)spa
dc.format.extentxxviii, 369spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84352
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesM. Martínez-Rosas, “Los canales iónicos: la biología y patología,” Arch. Cardiol. México, vol. 74, no. 2, pp. S205–S210, 2004.spa
dc.relation.referencesK. June-Bum, “Channelopathies,” Korean J Pediatr, vol. 57, no. 1, pp. 194–194, 2014.spa
dc.relation.referencesD. M. Kullmann, “Neurological channelopathies,” Annu. Rev. Neurosci., vol. 33, pp. 151– 172, 2010.spa
dc.relation.referencesP. Nuss, “Anxiety disorders and GABA neurotransmission: A disturbance of modulation,” Neuropsychiatr. Dis. Treat., vol. 11, pp. 165–175, 2015.spa
dc.relation.referencesY. B. Martin, G. Herradon, and L. Ezquerra, “Uncovering New Pharmacological Targets to Treat Neuropathic Pain by Understanding How the Organism Reacts to Nerve Injury,” Curr. Pharm. Des., vol. 17, no. 5, pp. 434–448, 2011.spa
dc.relation.referencesGrupo de Gestión Integrada para la Salud Mental, “Boletín de salud mental Salud mental en niños, niñas y adolescentes,” 2017.spa
dc.relation.referencesGrupo Gestión Integrada para la Salud Mental, “Boletín de salud mental: Análisis de Indicadores en Salud Mental por territorio,” 2018.spa
dc.relation.referencesP. Xiong, M. Liu, B. Liu, and B. J. Hall, “Trends in the incidence and DALYs of anxiety disorders at the global, regional, and national levels: Estimates from the Global Burden of Disease Study 2019,” J. Affect. Disord., vol. 297, no. October 2021, pp. 83–93, 2022.spa
dc.relation.referencesC. Gudex, “Adverse effects of Benzodiazepines,” Soc. Sci. Med., vol. 33, no. 5, pp. 587– 596, 1991.spa
dc.relation.referencesJ. W. Martinez, J. C. Sánchez-Naranjo, and P. A. Londoño de los Rios, “Prevalencia de neuropatía periférica asociada a quimioterapia en cuatro centros oncológicos de Colombia,” Rev. Neurol., vol. 69, pp. 94–98, 2019spa
dc.relation.referencesJ. Moore and C. Gaines, “Gabapentin for chronic neuropathic pain in adults,” Br. J. Community Nurs., vol. 24, no. 12, pp. 608–609, 2019.spa
dc.relation.referencesD. C. Tamayo, “Diabetes en Colombia: Descripción de la epidemiología actual,” 2013.spa
dc.relation.referencesV. Verma, N. Singh, and A. Jaggi, “Pregabalin in Neuropathic Pain: Evidences and Possible Mechanisms,” Curr. Neuropharmacol., vol. 12, no. 1, pp. 44–56, 2014.spa
dc.relation.referencesJ. T. Hong et al., “Pharmacological target therapy of neuropathic pain and patient-reported outcomes in patients with chronic low back pain in Korea: Results from the NLBP Outcomes Research,” Med. (United States), vol. 97, no. 35, pp. 1–8, 2018spa
dc.relation.referencesS. Mandal, M. Moudgil, and S. K. Mandal, “Rational drug design,” Eur. J. Pharmacol., vol. 625, no. 1–3, pp. 90–100, 2009.spa
dc.relation.referencesG. Thomas, Fundamentals of medicinal chemistry., vol. 32, no. 3. 2004.spa
dc.relation.referencesT. Langer and R. D. Hoffmann, Methods and principles in Medicinal Chemistry. Pharmacophores and pharmacophore searches. 2006.spa
dc.relation.referencesM. E. Welsch, S. A. Snyder, and B. R. Stockwell, “Privileged scaffolds for library design and drug discovery,” Curr. Opin. Chem. Biol., vol. 14, no. 3, pp. 347–361, 2010spa
dc.relation.referencesC. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Adv. Drug Deliv. Rev., vol. 46, pp. 3–26, 2001.spa
dc.relation.referencesM. Sahu and N. Siddiqui, “A review on biological importance of pyrimidines in the new era.,” Int. J. Pharm. Pharm. Sci., vol. 8, no. 5, pp. 8–21, 2016.spa
dc.relation.referencesS. Kumar, S. Bawa, S. Drabu, R. Kumar, and H. Gupta, “Biological Activities of Pyrazoline Derivatives -A Recent Development,” Recent Pat. Antiinfect. Drug Discov., 2009.spa
dc.relation.referencesS. Nirwan, V. Chahal, and R. Kakkar, “Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications,” J. Heterocycl. Chem., vol. 56, no. 4, pp. 1239–1253, 2019.spa
dc.relation.referencesF. de Sa Alves, E. Barreiro, and C. Manssour Fraga, “From Nature to Drug Discovery: The Indole Scaffold as a Privileged Structure,” Mini-Reviews Med. Chem., vol. 9, no. 7, pp. 782– 793, 2009spa
dc.relation.referencesK. Hiesinger, D. Dar’In, E. Proschak, and M. Krasavin, “Spirocyclic Scaffolds in Medicinal Chemistry,” J. Med. Chem., vol. 64, no. 1, pp. 150–183, 2021.spa
dc.relation.referencesP. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem. Soc. Rev., vol. 39, no. 1, pp. 301–312, 2010.spa
dc.relation.referencesC. Gómez-restrepo, N. Tamayo, and A. Bohórquez, “Trastornos depresivos y de ansiedad y factores asociados en la población adulta colombiana , Encuesta Nacional de Salud Mental 2015,” Rev. Colomb. Psiquiatr., vol. 5, no. S 1, pp. 58–67, 2016.spa
dc.relation.referencesB. A. Kotsias, “LOS CANALES IÓNICOS COMO BLANCO DE DROGAS,” Medicina (B. Aires)., vol. 81, pp. 308–309, 2021.spa
dc.relation.referencesS. Alexander, A. Mathie, and J. Peters, “ION CHANNELS,” Br. J. Pharmacol., vol. 164, no. supplement s1, pp. S137–S174, Nov. 2011.spa
dc.relation.referencesW. A. Catterall, “Structure and Function of Voltage-Sensitive,” Science (80-. )., vol. 242, pp. 51–61, 1988.spa
dc.relation.referencesJ. J. Galligan, “Ligand-gated ion channels in the enteric nervous system,” Neurogastroenterol. Motil., vol. 14, no. 6, pp. 611–623, 2002.spa
dc.relation.referencesJ. Medel, L. Cortijo, E. Gasca, P. Tepetlan, A. Pérez, and F. Ramos, “Receptor GABAA: implicaciones farmacológicas a nivel central,” Arch. neurociencias (México, D.F.), vol. 16, no. 1, pp. 40–45, 2011.spa
dc.relation.referencesJ. Egebjerg, A. Schousboe, and P. Krogsgaard - Larsen, Glutamate and GABA receptors and transporters. Taylor and Francis Inc., 2002.spa
dc.relation.referencesS. Zhu, C. M. Noviello, J. Teng, R. M. Walsh, J. J. Kim, and R. E. Hibbs, “Structure of a human synaptic GABAA receptor,” Nature, vol. 559, no. 7712, pp. 67–88, 2018.spa
dc.relation.referencesH. Zuo et al., “Structural basis for auxiliary subunit KCTD16 regulation of the GABA-B receptor,” Proc. Natl. Acad. Sci., vol. 116, no. 17, pp. 8370 LP – 8379, Apr. 2019.spa
dc.relation.referencesR. Olsen and H. Betz, “GABA and Glycine,” in Basic Neurochemistry: Mollecular, Cellular and Medical Aspects., Septima ed., G. Siegel, R. Albers, S. Brady, and D. Price, Eds. Elsevier, 2006, pp. 291–302.spa
dc.relation.referencesU. Handa and K. Saroha, “Research and development of diazepam solid dispersion powder using natural polymers,” Int. J. Appl. Pharm., vol. 10, no. 5, pp. 220–225, 2018.spa
dc.relation.referencesJ. Payandeh, T. Scheuer, N. Zheng, and W. A. Catterall, “THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL,” Nature, vol. 475, no. 7356, pp. 353–358, 2012.spa
dc.relation.referencesS. D. Dib-Hajj and S. G. Waxman, “Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics.,” Annu. Rev. Neurosci., vol. 42, pp. 87–106, Jul. 2019.spa
dc.relation.referencesB. Furman, “Tetrodotoxin,” in Reference Module in Biomedical Sciences, Elsevier, 2018, pp. 1–4.spa
dc.relation.referencesD. van der Merwe, “Chapter 31 - Cyanobacterial (Blue-Green Algae) Toxins,” in Handbook of Toxicology of Chemical Warfare Agents, R. C. B. T.-H. of T. of C. W. A. (Second E. Gupta, Ed. Boston: Academic Press, 2015, pp. 421–429.spa
dc.relation.referencesD. L. Bennett, A. J. Clark, J. Huang, S. G. Waxman, and S. D. Dib-Hajj, “The Role of Voltage-Gated Sodium Channels in Pain Signaling.,” Physiol. Rev., vol. 99, no. 2, pp. 1079–1151, Apr. 2019spa
dc.relation.referencesR. H. Dworkin et al., “Recommendations for the pharmacological management of neuropathic pain: An overview and literature update,” Mayo Clin. Proc., vol. 85, no. 3 SUPPL., pp. S3–S14, 2010.spa
dc.relation.referencesH. Shen, H. Shen, D. Liu, K. Wu, J. Lei, and N. Yan, “Structures of human Na v 1 . 7 channel in complex with auxiliary subunits and animal toxins,” Science (80-. )., vol. 2493, no. February, pp. 1–12, 2019spa
dc.relation.referencesA. Alcántara Montero and C. I. Sánchez Carnerero, “Voltage-gated sodium channel blockers: New perspectives in the treatment of neuropathic pain,” Neurologia, vol. 36, no. 2, pp. 169–171, 2021.spa
dc.relation.referencesR. B. Silverman, The organic chemistry of drug design and drug action, Second edi. Elsevier Academic Press, 2004.spa
dc.relation.referencesD. S. Wishart et al., “DrugBank : a comprehensive resource for in silico drug discovery and exploration,” Nucleic Acids Res., vol. 34, pp. 668–672, 2006.spa
dc.relation.referencesC. Saavedra-Coronado, “DISEÑO RACIONAL DE NUEVOS COMPUESTOS ESPIROHETEROCÍCLICOS NITROGENADOS Y AZUFRADOS COMO POTENCIALES MODULADORES ALOSTÉRICOS DE RECEPTORES GABA-A,” Universidad Nacional de Colombia, 2018spa
dc.relation.referencesJ. C. Escalona-Arranz, R. Carrasco-velar, and J. Padrón-García, Introducción al diseño racional de fármacos, 1ra edició. Ciudad de la Habana: Editorial Universitaria, 2008.spa
dc.relation.referencesI. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, “Simple Method of Calculating Octanol/Water Partition Coefficient,” Chem. Pharm. Bull, vol. 40, no. 1, pp. 127– 130, 1992.spa
dc.relation.referencesA. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases,” J. Comb. Chem., vol. 1, no. 1, pp. 55–68, 1999spa
dc.relation.referencesH. Zhu, T. M. Martin, L. Ye, A. Sedykh, D. M. Young, and A. Tropsha, “Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure,” Chem. Res. Toxicol., vol. 22, no. 12, pp. 1913–1921, 2009.spa
dc.relation.referencesC. Sawyer, R. Peto, L. Bernstein, M. C. Pike, and L. Bernstein, “Calculation of Carcinogenic Potency from Long-term Animal Carcinogenesis Experiments,” Biometrics, vol. 40, no. 1, pp. 27–40, 1984.spa
dc.relation.referencesC. Xu, F. Cheng, L. Chen, Z. Du, and Y. Tang, “In silico Prediction of Chemical Ames Mutagenicity,” J. Chem. Inf. Model., vol. 52, pp. 2840–2847, 2012.spa
dc.relation.referencesD. M. Maron and B. N. Ames, “Revised methods for the Salmonella mutagenicity test,” Mutat. Res., vol. 113, pp. 173–215, 1983.spa
dc.relation.referencesT. Khan, A. J. Lawrence, I. Azad, S. Raza, and A. R. Khan, “Molecular Docking Simulation with Special Reference to Flexible Docking Approach,” JSM Chem., vol. 6, pp. 1053–1057, 2018.spa
dc.relation.referencesN. Foloppe and R. Hubbard, “Towards Predictive Ligand Design With Free-Energy Based Computational Methods ?,” Curr. Med. Chem., vol. 13, pp. 3583–3608, 2006.spa
dc.relation.referencesA. F. Pozharskii, A. T. Soldatenkov, and A. R. Katritzky, Heterocycles in Life and Society. 2011.spa
dc.relation.referencesT. Eicher and S. Hauptmann, The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications., Second edi. John Wiley & Sons press, 2003.spa
dc.relation.referencesR. A. Stockman, Heterocyclic chemistry, vol. 103. 2007spa
dc.relation.referencesJ. Clayden, N. Greeves, and S. Warren, Organic Chemistry, 2nd Editio., vol. 270, no. 5234. New York: Oxford University Press, 2012.spa
dc.relation.referencesI. Eggleston, Advanced Organic Chemistry Part B: Reactions and Synthesis, 4th Ed., vol. 2001, no. 16. 2004spa
dc.relation.referencesB. Insuasty et al., “Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4- (3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents,” Bioorganic Med. Chem., vol. 18, no. 14, pp. 4965–4974, 2010.spa
dc.relation.referencesN. K. Terrett, A. S. Bell, D. Brown, and P. Ellis, “Sildenafil (Viagra(TM)), a potent and selective inhibitor of type 5 CGMP phosphodiesterase with utility for the treatment of male erectile dysfunction,” Bioorganic Med. Chem. Lett., vol. 6, no. 15, pp. 1819–1824, 1996.spa
dc.relation.referencesS. L. Zheng, Y. Wang, Z. Yu, Q. Lin, and P. Coppens, “Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state,” J. Am. Chem. Soc., vol. 131, no. 50, pp. 18036–18037, 2009.spa
dc.relation.referencesK. M. L. Rai and N. Linganna, “Mercuric acetate in organic synthesis: A simple procedure for the synthesis of pyrazolines,” Synth. Commun., vol. 27, no. 21, pp. 3737–3744, 1997.spa
dc.relation.referencesS. R. Donohue, C. Halldin, and V. W. Pike, “A facile and regioselective synthesis of rimonabant through an enamine-directed 1,3-dipolar cycloaddition,” Tetrahedron Lett., vol. 49, no. 17, pp. 2789–2791, 2008.spa
dc.relation.referencesO. L. Melo Trujillo, D. Alonso Pérez, M. Zabalza Cerdeiriña, S. Nogué Xarau, J. M. Grau Junyent, and P. Munné Mas, “Tratamiento con fomepizol de una intoxicación aguda por metanol,” Rev. Toxicol., vol. 21, no. 1, pp. 41–43, 2004.spa
dc.relation.referencesA. S. Cheung and M. Grossmann, “Physiological basis behind ergogenic effects of anabolic androgens,” Mol. Cell. Endocrinol., vol. 464, no. November 2016, pp. 14–20, 2018.spa
dc.relation.referencesT. Hua et al., “Crystal structures of agonist-bound human cannabinoid receptor CB 1,” Nature, vol. 547, no. 7664, pp. 468–471, 2017.spa
dc.relation.referencesP. C. Lv, H. Q. Li, J. Sun, Y. Zhou, and H. L. Zhu, “Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents,” Bioorganic Med. Chem., vol. 18, no. 13, pp. 4606–4614, 2010.spa
dc.relation.referencesR. Lin et al., “Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors,” Bioorganic Med. Chem. Lett., vol. 17, no. 16, pp. 4557–4561, 2007.spa
dc.relation.referencesM. S. Christodoulou, S. Liekens, K. M. Kasiotis, and S. A. Haroutounian, “Novel pyrazole derivatives: Synthesis and evaluation of anti-angiogenic activity,” Bioorganic Med. Chem., vol. 18, no. 12, pp. 4338–4350, 2010.spa
dc.relation.referencesA. Chauhan, P. K. Sharma, and N. Kaushik, “Pyrazole: A versatile moiety,” Int. J. ChemTech Res., vol. 3, no. 1, pp. 11–17, 2011.spa
dc.relation.referencesM. Bonesi, M. R. Loizzo, G. A. Statti, S. Michel, F. Tillequin, and F. Menichini, “The synthesis and Angiotensin Converting Enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives,” Bioorganic Med. Chem. Lett., vol. 20, no. 6, pp. 1990–1993, 2010.spa
dc.relation.referencesR. Sridhar et al., “Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates,” Bioorganic Med. Chem. Lett., vol. 14, no. 24, pp. 6035–6040, 2004.spa
dc.relation.referencesS. Radi, S. Salhi, and A. Radi, “Synthesis and Preliminary Biological Activity of Some New Pyrazole Derivatives as Acyclonucleoside Analogues,” Lett. Drug Des. Discov., vol. 7, no. 1, pp. 27–30, 2009.spa
dc.relation.referencesF. F. Barsoum and A. S. Girgis, “Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1- carboxamides) and their thio-analogues of potential PGE2 inhibitory properties,” Eur. J. Med. Chem., vol. 44, no. 5, pp. 2172–2177, 2009.spa
dc.relation.referencesO. I. El-Sabbagh et al., “Synthesis and antiviral activity of new pyrazole and thiazole derivatives,” Eur. J. Med. Chem., vol. 44, no. 9, pp. 3746–3753, 2009.spa
dc.relation.referencesC. A. Luscombe, Z. Huang, M. G. Murray, M. Miller, J. Wilkinson, and G. D. Ewart, “A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-α-2b and nucleoside analogues,” Antiviral Res., vol. 86, no. 2, pp. 144–153, 2010.spa
dc.relation.referencesM. Abdel-Aziz, G. E. D. A. Abuo-Rahma, and A. A. Hassan, “Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities,” Eur. J. Med. Chem., vol. 44, no. 9, pp. 3480–3487, 2009.spa
dc.relation.referencesP. Biginelli, “Ueber aldehyduramide des acetessigäthers,” Berichte der deustchen Chem. Gesellschaft., pp. 1317–1319, 1891.spa
dc.relation.referencesR. Merugu, S. Garimella, D. Balla, and K. Sambaru, “Synthesis and biological activities of pyrimidines: A review,” Int. J. PharmTech Res., vol. 8, no. 6, pp. 88–93, 2015.spa
dc.relation.referencesA. E. G. E. Amr, H. H. Sayed, and M. M. Abdulla, “Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents,” Arch. Pharm. (Weinheim)., vol. 338, no. 9, pp. 433–440, 2005.spa
dc.relation.referencesM. M. M. Ramiz, W. A. El-Sayed, A. I. El-Tantawy, and A. A. H. Abdel-Rahman, “Antimicrobial activity of new 4, 6-disubstituted pyrimidine, pyrazoline, and pyran derivatives,” Arch. Pharm. Res., vol. 33, no. 5, pp. 647–654, 2010.spa
dc.relation.referencesN. C. Desai, A. H. Makwana, and R. D. Senta, “Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2- ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides,” J. Saudi Chem. Soc., vol. 20, no. 6, pp. 686–694, 2016.spa
dc.relation.referencesD. L. Guo et al., “Structural modifications of 5,6-dihydroxypyrimidines with anti-HIV activity,” Bioorganic Med. Chem. Lett., vol. 22, no. 23, pp. 7114–7118, 2012.spa
dc.relation.referencesI. K. Ho and R. A. Harris, “Mechanism of action of barbiturates.,” Annu. Rev. Pharmacol. Toxicol., vol. 21, pp. 83–111, 1981.spa
dc.relation.referencesA. R. Katritzky and A. F. Pozharskii, Handbook of heterocyclic chemistry, 2nd editio. Elsevier Academic Press, 2000.spa
dc.relation.referencesA. C. Tripathi, S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma, and S. K. Saraf, “4- Thiazolidinones: The advances continue.,” Eur. J. Med. Chem., vol. 72, pp. 52–77, 2014.spa
dc.relation.referencesF. C. Brown, “4-Thiazolidinones,” Chem. Rev., vol. 61, no. 5, pp. 463–521, 1961.spa
dc.relation.referencesX. Zhang et al., “Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities,” Bioorganic Med. Chem. Lett., vol. 19, no. 22, pp. 6280–6283, 2009.spa
dc.relation.referencesC. J. Andres et al., “4-Thiazolidinones: Novel inhibitors of the bacterial enzyme MurB,” Bioorganic Med. Chem. Lett., vol. 10, no. 8, pp. 715–717, 2000.spa
dc.relation.referencesP. Vicini, A. Geronikaki, M. Incerti, F. Zani, J. Dearden, and M. Hewitt, “2-Heteroarylimino- 5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4- thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship,” Bioorganic Med. Chem., vol. 16, no. 7, pp. 3714–3724, 2008.spa
dc.relation.referencesH. D. Troutman and L. M. Long, “The synthesis of 2,3-disubstituted 4-thiazolidinones,” J. Am. Chem. Soc., vol. 70, pp. 3436–3439, 1948.spa
dc.relation.referencesK. A. M. El-Bayouki, “Synthesis, reactions, and biological activity of 1,4-thiazepines and their fused aryl and heteroaryl derivatives: A review,” J. Sulfur Chem., vol. 32, no. 6, pp. 623–690, 2011.spa
dc.relation.referencesL. H. S. Smith, S. C. Coote, H. E. Sneddon, and D. J. Procter, “Beyond the Pummerer reaction: Recent developments in thionium ion chemistry,” Angew. Chemie - Int. Ed., vol. 49, no. 34, pp. 5832–5844, 2010.spa
dc.relation.referencesD. J. Le Count, “Azepines and their Fused-ring Derivatives,” in Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982-1995, vol. 9, no. 17, 1996, pp. 1–43.spa
dc.relation.referencesA. K. K, N. Renuka, K. R. Raghavendra, V. K. G, and B. K. Ranjitha, “BENZOTHIAZEPINES-AN OVERVIEW,” Int. J. Basic Appl. Chem. Sci., vol. 5, no. 1, pp. 79–88, 2015.spa
dc.relation.referencesG. R. Mhaske, S. S. Bajod, D. M. Ambhore, and S. N. Shelke, “Synthesis and Evaluation of Novel 1, 5-Benzothiazepine Derivatives as Anti-Inflammatory Agents,” Int. J. Innov. Res. Technol. Sci. Eng., vol. 3, no. 6, pp. 13208–13215, 2014.spa
dc.relation.referencesK. L. Ameta, N. S. Rathore, and B. Kumar, “Synthesis and preliminary evaluation of novel 1, 5-benzothiazepine derivatives as anti-lung cancer agents,” Int. J. Pharm., vol. 3, no. 2, pp. 328–333, 2013.spa
dc.relation.referencesA. P. Gaywood and H. McNab, “Methylene meldrums acid derivatives of indoxyl and their cyclization reactions under flash vacuum pyrolysis conditions,” Synthesis (Stuttg)., no. 8, pp. 1361–1364, 2010.spa
dc.relation.referencesW. Von Der Saal, J. peter Hoick, W. Kampe, A. Mertens, and B. Muller-beckmann, “Nonsteroidal Cardiotonics. 2. The Inotropic Activity of Linear, Tricyclic 5-6-5 Fused Heterocycles,” J. Med. Chem., vol. 32, no. 7, pp. 1481–1491, 1989.spa
dc.relation.referencesG. M. Karp, “Preparation and reactions of indolin-2(3H)-ones. A review,” Org. Prep. Proced. Int., vol. 25, no. 5, pp. 481–513, 1993.spa
dc.relation.referencesA. Mahamadi, P. Parimoo, W. G. Haney, and B. F. Grabowski, “Potential psychoactive indole derivatives II: Synthesis of 5‐alkoxyindolines via reduction of 5‐alkoxy‐2‐indolinones,” J. Pharm. Sci., vol. 62, no. 3, pp. 490–492, 1973.spa
dc.relation.referencesP. G. Gassman, T. J. Van Bergen, and G. Gruetzmacher, “Use of Halogen-Sulfide Complexes in the Synthesis of Indoles, Oxindoles, and Alkylated Aromatic Amines,” J. Am. Chem. Soc., vol. 95, no. 19, pp. 6508–6509, 1973.spa
dc.relation.referencesT. Takeda and A. Tsubouchi, Pummerer Reaction. 2007.spa
dc.relation.referencesY. M. Khetmalis, M. Shivani, S. Murugesan, and K. V. G. Chandra Sekhar, “Oxindole and its derivatives: A review on recent progress in biological activities,” Biomed. Pharmacother., vol. 141, no. June, p. 111842, 2021.spa
dc.relation.referencesS. Yagnam et al., “1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation,” Appl. Organomet. Chem., vol. 33, no. 4, pp. 1–15, 2019.spa
dc.relation.referencesM. Kaur, M. Singh, and O. Silakari, “Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: Designing, synthesis and biological evaluation,” Future Med. Chem., vol. 9, no. 11, pp. 1193–1211, 2017.spa
dc.relation.referencesM. Yousuf et al., “Synthesis and biological evaluation of polyhydroxylated oxindole derivatives as potential antileishmanial agent,” Bioorganic Med. Chem. Lett., vol. 28, no. 6, pp. 1056–1062, 2018spa
dc.relation.referencesY. Hirata et al., “Novel Oxindole-Curcumin Hybrid Compound for Antioxidative Stress and Neuroprotection,” ACS Chem. Neurosci., vol. 11, no. 1, pp. 76–85, 2020spa
dc.relation.referencesS. Chander et al., “Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents,” Bioorg. Chem., vol. 79, no. December 2017, pp. 212–222, 2018.spa
dc.relation.referencesN. L. Nam, I. I. Grandberg, V. I. Sorokin, K. A. T. Moscow, A. Academy, and G. Soedinenii, “Synthesis of N1 substituted 5-amino-3-methylpyrazoles,” Chem. Heterocycl. Compd., vol. 36, no. 3, pp. 342–344, 2000.spa
dc.relation.referencesM. Yu, K. Stevenson, and G. Zhou, “N-alkylation of lactams with secondary heterobenzylic bromides,” Tetrahedron Lett., vol. 55, no. 41, pp. 5591–5594, 2014.spa
dc.relation.referencesM. S. Shmidt, A. M. Reverdito, L. Kremenchuzky, and I. A. Perillo, “Simple and Efficient Microwave Assisted N-alkylation of isatin,” Molecules, vol. 13, pp. 831–840, 2008.spa
dc.relation.referencesV. F. Traven and I. V. Ivanov, “New reaction of photoaromatization of aryl- and hetarylpyrazolines,” Russ. Chem. Bull., vol. 57, no. 5, pp. 1063–1069, 2008.spa
dc.relation.referencesP. Mohanty and S. Bhatnagar, “In silico screening to identify inhibitors of growth factor receptor 2-focal adhesion kinase interaction for therapeutic treatment of pathological cardiac hypertrophy,” Assay Drug Dev. Technol., vol. 17, no. 2, pp. 58–67, 2019.spa
dc.relation.referencesH. Yang et al., “AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties,” Bioinformatics, vol. 35, no. 6, pp. 1067–1069, 2019.spa
dc.relation.referencesS. LLC., “PyMOL Molecular Graphic System.” Schrödinger LLC, 2015.spa
dc.relation.referencesM. D. Hanwell, D. E. Curtis, and D. C. Lonie, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform., vol. 4, p. 17, 2012.spa
dc.relation.referencesMichel F. Sanner., “AutoDock-Tools 1.5.6.” pp. 57–61, 1999.spa
dc.relation.referencesW. Allen et al., “DOCK 6: Impact of New Features and Current Docking Performance,” J. Comput. Chem., vol. 36, no. 15, pp. 1132–1156, 2015.spa
dc.relation.referencesI. P. Lanchero, “Estudio in silico e in vivo de compuestos inhibidores de la enzima lipasa pancreática: una contribución al reposicionamiento de fármcos antiobesidad,” Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesK. Palacio-Rodríguez, I. Lans, C. N. Cavasotto, and P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking,” Sci. Rep., vol. 9, no. 1, pp. 1–14, 2019.spa
dc.relation.referencesR. Silverstein, F. Webster, and D. Kiemle, Spectrometric identification of organic compunds - 7th ed silverstein 2005.pdf, 7th editio. John Wiley & Sons press, 2005.spa
dc.relation.referencesA. Rammohan, J. Satyanarayana, R. Gundala, S. Chittluri, and N. Rao, “Chalcone synthesis, properties and medicinal applications: a review,” Environ. Chem. Lett., no. 0123456789, 2020.spa
dc.relation.referencesJ. G. Schmidt, “Über die Einwirkung von Aceton Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge.,” Berichte der deustchen Chem. Gesellschaft., vol. 14, no. 1, pp. 1459–1461, 1881.spa
dc.relation.referencesD. M. Arnold, M. G. Laporte, S. M. Anderson, and P. Wipf, “Condensation reactions of guanidines with bis-electrophiles: Formation of highly nitrogenous heterocycles,” Tetrahedron, vol. 69, no. 36, pp. 7719–7731, 2013.spa
dc.relation.referencesA. S. Hecht et al., “MULTIFUNCTIONAL RADICAL QUENCHERS AND THEIR USES,” US 8,952,025 B2, 2015.spa
dc.relation.referencesM. Engelmann, “Über eine Synthese des 1-Methyl-xanthins.,” Berichte der deustchen Chem. Gesellschaft., vol. 42, no. 1, pp. 177–182, 1909.spa
dc.relation.referencesA. O. Pushechnikov, D. M. Volochnyuk, and A. A. Tolmachev, “Interaction of izatins with some five-membered aminoheterocycles,” Synlett, no. 7, pp. 1140–1142, 2002.spa
dc.relation.referencesM. Uematsu and E. U. Frank, “Static Dielectric Constant of Water and Steam,” J. Phys. Chem. Ref. Data, vol. 1291, no. 1980, pp. 1291–1306, 1997.spa
dc.relation.referencesA. H. Johnstone, CRC Handbook of Chemistry and Physics-69th Edition, 69 Edition., vol. 50, no. 2. 2007spa
dc.relation.referencesP. W. Khirade, A. Chaudhari, J. B. Shinde, S. N. Helambe, and S. C. Mehrotra, “Static dielectric constant and relaxation time measurements on binary mixtures of dimethyl sulfoxide with ethanol, 2-ethoxyethanol, and propan-1-ol at 293, 303, 313, and 323 K,” J. Chem. Eng. Data, vol. 44, no. 5, pp. 879–881, 1999.spa
dc.relation.referencesU. V. Mardolcar, C. a. Castro, and F. J. V. Nieto De Santos, “Dielectric Benzene Measurements of Toluene The measurements,” Fluid Phase Equilib., vol. 79, pp. 255–264, 1992.spa
dc.relation.referencesK. R. Srinivasan and R. L. Kay, “The Pressure Dependence of the Dielectric Constant and Density of Acetonitrile at Three Temperatures,” vol. 6, no. 5, pp. 357–367, 1977.spa
dc.relation.referencesS. M. Modell and M. H. Lehmann, “The long OT syndrome family of cardiac ion channelopathies: A HuGE review,” Genet. Med., vol. 8, no. 3, pp. 143–155, 2006.spa
dc.relation.referencesX. O. Deng, M. X. Song, S. Ben Wang, and Z. S. Quan, “Synthesis and evaluation of the anticonvulsant activity of 8-alkoxy-4,5-dihydrobenzo b 1,2,4 triazolo 4,3-d 1,4 thiazepine derivatives,” J. Enzyme Inhib. Med. Chem., vol. 29, no. 2, pp. 272–280, 2014.spa
dc.relation.referencesD. A. Paterson, R. A. Conradi, A. R. Hilgers, T. J. Vidmar, and P. S. Burton, “A Non‐aqueous Partitioning System for Predicting the Oral Absorption Potential of Peptides,” Quant. Struct. Relationships, vol. 13, no. 1, pp. 4–10, 1994.spa
dc.relation.referencesJ. Morelli, “PRESCRIPTION ANXIETY MEDICATIONS.” Online. Available: https://www.rxlist.com/anxiety_medications/drugs-condition.htm.spa
dc.relation.referencesI. Fleming, Orbital interaction theory of organic chemistry. Arvi Rauk. 2nd edn. John Wiley & Sons, Ltd, Chichester, 2001. xv?+?343 pages. 67.50. ISBN 0-471-35833-9, vol. 15, no. 10. 2001.spa
dc.relation.referencesG. Broggini, L. Garanti, G. Molteni, T. Pilati, A. Ponti, and G. Zecchi, “Stereoselective intramolecular cycloadditions of homochiral nitrile imines: Synthesis of enantiomerically pure 3,3a-dihydro-pyrazolo1,5-a 1,4 benzodiazepine-6(4H)-ones,” Tetrahedron Asymmetry, vol. 10, no. 11, pp. 2203–2212, 1999.spa
dc.relation.referencesM. F. El-zohry, I. M. A. Awad, and A. A. Abdel-hafez, “Spiroheterocycles Related to 1-oxa- 4-thiaspiro 4.4 nonan-2-one and 1-oxa-4-thiospiro 4.5 decan-2-one,” Arch. Pharm. (Weinheim)., vol. 326, pp. 115–118, 1993.spa
dc.relation.referencesY. Loidreau et al., “Synthesis and biological evaluation of N-arylbenzo b thieno 3,2-d pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors,” Eur. J. Med. Chem., vol. 58, pp. 171–183, 2012.spa
dc.relation.referencesE. Perspicace et al., “Design, synthesis and biological evaluation of new classes of thieno 3,2-d pyrimidinone and thieno 1,2,3 triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2),” Eur. J. Med. Chem., vol. 63, pp. 765–781, 2013.spa
dc.relation.referencesT. Michal, P. Radek, Y. X. Hao, C. Yen-Liang, Y. Fumiaki, and S. PeiYong, “Synthesis and Antiviral Activity of 4,6-Disubstituted Pyrimido 4,5-b indole Ribonucleosides,” Bioorg. Med. Chem., vol. 20, no. 20, pp. 6123–6133, 2012.spa
dc.relation.referencesP. D. Neuenfeldt, B. B. Drawanz, W. Cunico, E. R. T. Tiekink, J. L. Wardell, and S. M. S. V. Wardell, “4-(Pyrimidin-2-yl)-1-thia-4-azaspiro- 4.5 decan-3-one,” Acta Crystallogr. Sect. E Struct. Reports Online, vol. 65, no. 12, 2009.spa
dc.relation.referencesA. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant, and A. Loupy, “Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro indole-thiazolidinones as potent antifungal agents and crystal structure of spiro 3H-indole- 3,2-thiazolidine- 3(1,2,4-triazol-3-yl)-2,4 (1H)-dione,” Bioorganic Med. Chem., vol. 14, no. 7, pp. 2409–2417, 2006.spa
dc.relation.referencesL. Claisen and A. Claparede, “Condensationen von Ketonen mit Aldehyden" Condensations of ketones with aldehydes,” Berichte der Dtsch. Chem. Gesellschaft, vol. 14, no. 1, pp. 2460–2468, 1881.spa
dc.relation.referencesH. Chen and D. Shi, “Efficient one-pot synthesis of spiro[indoline-3,4-pyrazolo 3,4-e 1, 4 thiazepine dione via three-component reaction,” Tetrahedron, vol. 67, no. 31, pp. 5686– 5692, 2011.spa
dc.relation.referencesC. Becerra-Rivas, P. Cuervo-Prado, and F. Orozco-Lopez, “Efficient catalyst-free tricomponent synthesis of new spiro cyclohexane-1,4-pyrazolo 3,4-e 1, 4 thiazepin- 7(6H)-ones,” Synth. Commun., vol. 49, no. 3, pp. 367–376, Feb. 2019.spa
dc.relation.referencesU. R. Mane et al., “Pyrido 1,2-a pyrimidin-4-ones as antiplasmodial falcipain-2 inhibitors,” Bioorganic Med. Chem., vol. 20, no. 21, pp. 6296–6304, 2012.spa
dc.relation.referencesM. R. Shiradkar et al., “Synthesis and anticonvulsant activity of clubbed thiazolidinonebarbituric acid and thiazolidinone-triazole derivatives,” Arkivoc, vol. 2007, no. 14, pp. 58–74, 2007.spa
dc.relation.referencesA. A. Bekhit, H. M. A. Ashour, Y. S. Abdel Ghany, A. E. D. A. Bekhit, and A. Baraka, “Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1Hpyrazole as anti-inflammatory antimicrobial agents,” Eur. J. Med. Chem., vol. 43, no. 3, pp. 456–463, 2008.spa
dc.relation.referencesY. Motoyama, K. Kamo, and H. Nagashima, “Catalysis in polysiloxane gels: Platinumcatalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes,” Org. Lett., vol. 11, no. 6, pp. 1345–1348, 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.proposalPirazolesspa
dc.subject.proposalPirimidinasspa
dc.subject.proposalTiazolidin-4-onasspa
dc.subject.proposalGABA-Aspa
dc.subject.proposalCanal de sodiospa
dc.subject.proposalSíntesis orgánicaspa
dc.subject.proposalPyrazoleseng
dc.subject.proposalPyrimidineseng
dc.subject.proposalThiazolidin-4-oneseng
dc.subject.proposalGABA-Aeng
dc.subject.proposalSodium ion channeleng
dc.subject.proposalOrganic synthesiseng
dc.subject.wikidataheterocyclic compoundeng
dc.subject.wikidatacompuesto heterocíclicospa
dc.titleDiseño racional y síntesis de derivados heterocíclicos azufrados y nitrogenados con potencial actividad farmacológica sobre canales iónicos reguladores de las señales nerviosasspa
dc.title.translatedRational design and synthesis of sulfur and nitrogen heterocycles with potential pharmacological activity on ion channels as regulators of nervous signalseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSíntesis multicomponente, cribado virtual y evaluación de la actividad tranquilizante de nuevos compuestos tiacepínicos, tiazolidínicos y quinolínicosspa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación (Minciencias)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026276246 DQ2022-2.pdf
Tamaño:
12.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: