Estudio del comportamiento magnetoeléctrico y térmico del sistema de la aleación tipo Heusler Ni42Co8Mn39Sn11-XGeX con x = 0, 1, 2, 3, preparada por el método de melt-spinning

dc.contributor.advisorRosales-Rivera, Andrés
dc.contributor.authorJaimes Gómez, Diana Catalina
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001664195spa
dc.contributor.orcidJaimes Gómez, Diana Catalina [0000-0002-4038-7057]spa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2025-02-07T14:18:56Z
dc.date.available2025-02-07T14:18:56Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractEn esta tesis se estudió la influencia del germanio sobre el comportamiento magnetoeléctrico y térmico del sistema de aleaciones Heusler, en forma de cinta Ni42Co8Mn39Sn11-xGex para x = 0, 1, 2, 3 (% at.). El comportamiento magnetoeléctrico fue estudiado por medio de la resonancia de una pequeña bobina, por la cual, circula una corriente A.C. El rango de campo utilizado para el primer modo de medición (frecuencia constante) fue de -74 a 74 Oe para las siguientes frecuencias F = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15 y 20 MHz. El rango de frecuencia utilizado para el segundo modo de medición (campo magnético DC constante) fue de 0 a 30 MHz para los siguientes campos HDC = 0, 1.1, 2.5, 5, 10, 20, 30, 40, 50, 70 y 74 Oe. Se observó que las muestras presentan picos característicos, los cuales, se relacionan con el fenómeno de anisotropía longitudinal para las muestras de Ni42Co8Mn39Sn11 y Ni42Co8Mn39Sn10Ge1 y un comportamiento inductivo dado por la medición del ángulo. Se observó que las muestras presentan el fenómeno de resonancia. Se determinaron las componentes real e imaginaria de la impedancia y se observó que estas en función de la frecuencia angular conservan la resonancia. Además, en la componente real de la impedancia se observó un comportamiento relacionado con los diodos Gunn o Túnel. Se determinaron los parámetros para el circuito equivalente asociados a las muestras mediante la técnica experimental de magneto-impedancia. El pico y el cambio de fase en la resonancia son más evidentes en las muestras Ni42Co8Mn39Sn11 y Ni42Co8Mn39Sn10Ge1. El análisis térmico por calorimetría de barrido diferencial refleja que el sistema presenta una transformación estructural a martensita. Por medio de medidas de análisis termogravimétrico en presencia de un pequeño campo magnético, se observó una transición de fase magnética ferromagnética a paramagnética en todas las muestras, además, se asoció que las fases magnéticas de ferromagnetismo a paramagnetismo se deben a la estructura austenita para las muestras de Ni42Co8Mn39Sn9Ge2 y Ni42Co8Mn39Sn8Ge3. Se analizaron los posibles mecanismos físicos que están presentes en el comportamiento térmico y magnetoeléctrico de este sistema de aleaciones (Texto tomado de la fuente).spa
dc.description.abstractIn this thesis the influence of germanium on the magnetoelectric and thermal behavior of the Heusler alloy system in the form of Ni42Co8Mn39Sn11-xGex tape for x = 0, 1, 2, 3 (% at.) was studied. The magnetoelectric behavior was studied by means of the resonance of a small coil, through which, circulates an A.C. current. The field range used for the first measurement mode (constant frequency) was from -74 to 74 Oe for the following frequencies f = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15 and 20 MHz. The frequency range used for the second measurement mode (constant DC magnetic field) was from 0 to 30 MHz for the following HDC fields = 0, 1.1, 2.5, 5, 10, 20, 20, 30, 40, 50, 70 and 74 Oe. It was observed that the samples present characteristic peaks, which are related to the longitudinal anisotropy phenomenon for the Ni42Co8Mn39Sn11 and Ni42Co8Mn39Sn10Ge1 samples and an inductive behavior given by the angle measurement. It was observed that the samples present the resonance phenomenon. The real and imaginary components of the impedance were calculated, it was observed that these in function of the angular frequency conserve the resonance, however, in the real component of the impedance a behavior related to the Gunn or Tunnel diodes was observed. The parameters for the equivalent circuit associated with the samples were found by the magneto-impedance experimental technique. The peak and phase shift at resonance are more evident in the Ni42Co8Mn39Sn11 and Ni42Co8Mn39Sn10Ge1 samples Thermal analysis by differential scanning calorimetry shows that the system shows a structural transformation to martensite. By thermogravimetric analysis measurements in the presence of a small magnetic field, a ferromagnetic to paramagnetic magnetic phase transition was observed for all samples, furthermore, it was associated that the ferromagnetic to paramagnetic magnetic phases are due to the austenite structure for Ni42Co8Mn39Sn9Ge2 and Ni42Co8Mn39Sn8Ge3 samples. The possible physical mechanisms involved in the thermal and magnetoelectric behavior of this alloy system were analyzed.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.methodsLas aleaciones Heusler han demostrado ser un tópico de investigación de creciente interés debido a su potencial para ser usadas en una amplia variedad de aplicaciones, que van desde dispositivos magnéticos hasta materiales termoeléctricos y sensores. La caracterización de estas aleaciones es esencial para comprender sus propiedades y su potencial en diversas aplicaciones. En este capítulo, se presenta una descripción de la técnica de producción de cintas (melt spinning), las técnicas de análisis termogravimétrico (TGA), calorimetría de barrido diferencial (DSC) y magnetoimpedancia (resonancia ferromagnética), estas técnicas permiten estudiar las transiciones magnéticas, transiciones estructurales y propiedades magnetoeléctricas del material respectivamente.spa
dc.description.researchareaMagnetismospa
dc.format.extentxx, 92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87453
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesA. Planes, L. Mãosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys. Condens. Matter, vol. 21, no. 23, 2009, doi: 10.1088/0953-8984/21/23/233201.spa
dc.relation.referencesY. J. Huang, Q. D. Hu, J. Liu, L. Zeng, D. F. Zhang, and J. G. Li, “Banded-like morphology and martensitic transformation of dual-phase Ni-Mn-In magnetic shape memory alloy with enhanced ductility,” Acta Mater., vol. 61, no. 15, pp. 5702–5712, 2013, doi: 10.1016/j.actamat.2013.06.012.spa
dc.relation.referencesB. Emre, S. Yuce, N. M. Bruno, and I. Karaman, “Martensitic transformation and magnetocaloric properties of NiCoMnSn magnetic shape memory alloys,” Intermetallics, vol. 106, no. October 2017, pp. 65–70, 2019, doi: 10.1016/j.intermet.2018.12.011.spa
dc.relation.referencesZ. Guo, L. Pan, M. Y. Rafique, X. Zheng, H. Qiu, and Z. Liu, “Metamagnetic phase transformation and magnetocaloric effect in quinary Ni45Co5Mn40InxSn10-x heusler alloy,” J. Alloys Compd., vol. 577, pp. 174–178, 2013, doi: 10.1016/j.jallcom.2013.04.102.spa
dc.relation.referencesR. A. A. Khan, R. Ghomashchi, Z. Xie, and L. Chen, “Ferromagnetic shape memory Heusler materials: Synthesis, microstructure characterization and magnetostructural properties,” Materials (Basel)., vol. 11, no. 6, pp. 1–34, 2018, doi: 10.3390/ma11060988.spa
dc.relation.referencesJ. Enkovaara, O. Heczko, A. Ayuela, and R. M. Nieminen, “Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 67, no. 21, pp. 14–17, 2003, doi: 10.1103/PhysRevB.67.212405.spa
dc.relation.referencesV. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, C. Gómez-Polo, and J. A. Rodríguez-Velamazán, “Role of magnetism on the martensitic transformation in Ni-Mn-based magnetic shape memory alloys,” Acta Mater., vol. 60, no. 2, pp. 459–468, 2012, doi: 10.1016/j.actamat.2011.10.026.spa
dc.relation.referencesT. Krenke et al., “Electronic aspects of the martensitic transition in Ni-Mn based Heusler alloys,” J. Magn. Magn. Mater., vol. 310, no. 2 SUPPL. PART 3, pp. 2788–2789, 2007, doi: 10.1016/j.jmmm.2006.10.1139.spa
dc.relation.referencesD. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys,” Acta Mater., vol. 60, no. 13–14, pp. 5335–5351, 2012, doi: 10.1016/j.actamat.2012.06.034.spa
dc.relation.referencesK. Ito et al., “Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering,” Scr. Mater., vol. 61, no. 5, pp. 504–507, 2009, doi: 10.1016/j.scriptamat.2009.05.008.spa
dc.relation.referencesX. Zhang, H. Zhang, M. Qian, and L. Geng, “Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-26564-5.spa
dc.relation.referencesP. J. Webster, “Heusler alloys,” Contemp. Phys., vol. 10, no. 6, pp. 559–577, 1969, doi: 10.1080/00107516908204800.spa
dc.relation.referencesT. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011, doi: 10.1016/j.progsolidstchem.2011.02.001.spa
dc.relation.referencesA. Hirohata and D. C. Lloyd, “Heusler alloys for metal spintronics,” MRS Bull., vol. 47, no. 6, pp. 593–599, 2022, doi: 10.1557/s43577-022-00350-1.spa
dc.relation.referencesK. Inomata, S. Okamura, R. Goto, and N. Tezuka, “Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure,” Japanese J. Appl. Physics, Part 2 Lett., vol. 42, no. 4 B, Apr. 2003, doi: 10.1143/JJAP.42.L419/META.spa
dc.relation.referencesZ. He, T. Kyômen, and M. Itoh, “Spin-glass behavior in the ordered ribbon borate Cu 2 Co B 2 O 6,” Phys. Rev. B, vol. 70, no. 13, p. 134431, Oct. 2004, doi: 10.1103/PhysRevB.70.134431.spa
dc.relation.referencesT. Kojima, S. Kameoka, and A. P. Tsai, “Heusler Alloys: A Group of Novel Catalysts,” ACS Omega, vol. 2, no. 1, pp. 147–153, 2017, doi: 10.1021/acsomega.6b00299.spa
dc.relation.referencesN. Saenphum, J. Chureemart, R. F. L. Evans, R. W. Chantrell, and P. Chureemart, “Large magnetoresistance in Heusler alloy-based current perpendicular to plane giant magnetoresistance sensors,” J. Phys. D. Appl. Phys., vol. 54, no. 39, 2021, doi: 10.1088/1361-6463/ac0ca4.spa
dc.relation.referencesR. E. Hummel, Electronic properties of materials, Fourth. Springer, 2011. doi: 10.1007/978-1-4419-8164-6.spa
dc.relation.referencesS. Blundell, Magnetism in Condensed Matter by Stephen Blundell, no. 1. New York: Oxford University Press, 2001. [Online]. Available: https://books.google.com.co/books?hl=en&lr=&id=zP9QEAAAQBAJ&oi=fnd&pg=PR9&dq=S.+Blundell,+Magnetism+in+Condensed+Matter&ots=fYG45LDJKZ&sig=y89gFCrq-xADhFVmJnkaXbGnoNI&redir_esc=y#v=onepage&q=vol&f=falsespa
dc.relation.referencesA. Velásquez and A. Rosales-Rivera, “Estudio de las familias de cintas magnéticas blandas amorfas con aplicación en sensores, empleados en la correlación de variables ionosféricas con campo magnético terrestre,” Universidad Nacional de Colombia, Sede Manizales, 2017. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/63205spa
dc.relation.referencesN. W. Ashcroft and N. D. Mermin, Solid State Physics. New York: Harcourt College, 1976. Accessed: Oct. 11, 2024. [Online]. Available: https://www.google.com.co/books/edition/Solid_State_Physics/oXIfAQAAMAAJ?hl=en&gbpv=0&bsq=solid state physics nw ashcroft 1976spa
dc.relation.referencesG. Arenas S., Electricidad Y Magnetismo. 2011. [Online]. Available: http://dcb.fi-c.unam.mx/users/santiagogl/archivos/temauno.pdfspa
dc.relation.referencesK. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. Alternating current characteristics,” J. Chem. Phys., vol. 9, no. 4, pp. 341–351, 1941, doi: 10.1063/1.1750906.spa
dc.relation.referencesL. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett., vol. 65, no. 9, pp. 1189–1191, 1994, doi: 10.1063/1.112104.spa
dc.relation.referencesM. Knobel and K. R. Pirota, “Giant magnetoimpedance: Concepts and recent progress,” J. Magn. Magn. Mater., vol. 242–245, no. PART I, pp. 33–40, 2002, doi: 10.1016/S0304-8853(01)01180-5.spa
dc.relation.referencesM. Knobel, M. Vázquez, and L. Kraus, “Giant Magnetoimpedance,” Handb. Magn. Mater., vol. 15, no. 03, pp. 497–563, 2003, doi: 10.1016/S1567-2719(03)15005-6.spa
dc.relation.referencesA. Zhukov et al., “Giant magnetoimpedance in rapidly quenched materials,” J. Alloys Compd., vol. 814, 2020, doi: 10.1016/j.jallcom.2019.152225.spa
dc.relation.referencesR. B. Da Silva et al., “High frequency magnetoimpedance in Ni81 Fe19 / Fe50 Mn50 exchange biased multilayer,” Appl. Phys. Lett., vol. 94, no. 4, pp. 1–4, 2009, doi: 10.1063/1.3069275.spa
dc.relation.referencesD. F. Gómez-Montoya and A. Rosales-Rivera, “Estudio de las propiedades magneto – eléctricas de materiales magnéticamente blandos en forma de cintas, basados en hierro.,” 2015. Accessed: Oct. 11, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/56233spa
dc.relation.referencesT. Floyd, Principios de circuitos eléctricos, Octava. México: PEARSON EDUCACIÓN, 2007. Accessed: Oct. 11, 2024. [Online]. Available: https://dspace.itsjapon.edu.ec/jspui/bitstream/123456789/3539/1/Principios_de_circuitos_electricos.pdfspa
dc.relation.referencesP. Duwez, R. H. Willens, and W. J. . Klement, “Non-crystalline Structure in Solidified Gold–Silicon Alloys,” Nature, vol. 187, pp. 869–870, 1960.spa
dc.relation.referencesC. Suryanarayana, “Mechanical alloying and milling,” Mech. Alloy. Milling, vol. 46, pp. 1–472, 2004, doi: 10.1016/S0079-6425(99)00010-9.spa
dc.relation.referencesC. Suryanarayan and Inoue. A., Bulk Metallic Glasses. CRC Press, 2011. Accessed: Oct. 11, 2024. [Online]. Available: https://books.google.com.co/books?id=cEUDsKGtBBEC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=falsespa
dc.relation.referencesP. Diko, V. Kavečanský, T. Ryba, L. Frolová, R. Varga, and Z. Vargová, “The texture and structure of the melt-spun Co2MnAl-type heusler alloy,” Materials (Basel)., vol. 14, no. 3, pp. 1–8, 2021, doi: 10.3390/ma14030501.spa
dc.relation.referencesZ. C. Wang et al., “Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons,” J. Appl. Phys., vol. 87, no. 9 II, pp. 4819–4821, 2000, doi: 10.1063/1.373170.spa
dc.relation.referencesD. Fernando and A. Rosales-Rivera, “Estudio de las propiedades magneto – eléctricas de materiales magnéticamente blandos en forma de cintas, basados en hierro.,” Universidad Nacional de Colombia, Sede Manizales, 2015.spa
dc.relation.referencesM. H. Phan and H. X. Peng, “Giant magnetoimpedance materials: Fundamentals and applications,” Progress in Materials Science. 2008. doi: 10.1016/j.pmatsci.2007.05.003.spa
dc.relation.referencesY. Song, Z. Li, Q. Sun, Z. Tang, T. Zhang, and Y. Jiang, “Magnetic and electric property evolution of amorphous cobalt-rich alloys driven by field annealing,” J. Phys. D. Appl. Phys., vol. 45, no. 22, 2012, doi: 10.1088/0022-3727/45/22/225001.spa
dc.relation.referencesW. Lu, Y. Xu, J. Shi, Y. Song, and X. Li, “Soft magnetic properties and giant magnetoimpedance effect in thermally annealed amorphous Co68Fe4Cr3Si15B10 alloy ribbons,” J. Alloys Compd., vol. 638, pp. 233–238, 2015, doi: 10.1016/j.jallcom.2015.03.086.spa
dc.relation.referencesA. Zhukov, L. Gonzalez-Legarreta, M. Ipatov, P. Corte-Leon, J. M. Blanco, and V. Zhukova, “Giant magnetoimpedance effect at GHz frequencies in amorphous microwires,” AIP Adv., vol. 9, no. 12, 2019, doi: 10.1063/1.5129891.spa
dc.relation.referencesM. Vázquez, J. P. Sinnecker, and G. V. Kurlyandskaya, “Hysteretic Behavior and Anisotropy Fields in the Magneto-Impedance Effect,” Mater. Sci. Forum, vol. 302–303, pp. 209–218, 1999, doi: : 10.4028/www. scientific.net/MSF.302-303.209.spa
dc.relation.referencesA. Rosales-Rivera et al., “Magnetic Critical Behavior, Hall and Magneto-Impedance Effects in Fe-Co-Based Metallic Glasses,” IEEE Trans. Magn., vol. 57, no. 2, pp. 18–23, 2021, doi: 10.1109/TMAG.2020.3013294.spa
dc.relation.referencesA. Rosales-Rivera, V. H. Valencia, and P. Pineda-Gómez, “Three-peak behavior in giant magnetoimpedance effect in Fe73.5-xCrxNb3Cu1Si13.5B9 amorphous ribbons,” Phys. B Condens. Matter, vol. 398, no. 2, pp. 252–255, 2007, doi: 10.1016/j.physb.2007.04.026.spa
dc.relation.referencesA. Dadsetan, M. Almasi Kashi, and S. M. Mohseni, “ZnO thin layer/Fe-based ribbon/ZnO thin layer sandwich structure: Introduction of a new GMI optimization method,” J. Magn. Magn. Mater., vol. 493, no. May 2019, p. 165697, 2020, doi: 10.1016/j.jmmm.2019.165697.spa
dc.relation.referencesE. C. Passamani et al., “Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn,” J. Appl. Phys., vol. 105, no. 3, pp. 0–8, 2009, doi: 10.1063/1.3075835.spa
dc.relation.referencesI. Storozhenko and S. Sanin, “InN-based Gunn Diode with Graded GaInN Layer,” 2022 IEEE 2nd Ukr. Microw. Week, UkrMW 2022 - Proc., pp. 101–104, 2022, doi: 10.1109/UkrMW58013.2022.10037011.spa
dc.relation.referencesG. Kalyon, S. Mutlu, F. Kuruoglu, I. Pertikel, I. Demir, and A. Erol, “InGaAs-based Gunn light emitting diode,” Mater. Sci. Semicond. Process., vol. 159, no. December 2022, p. 107389, 2023, doi: 10.1016/j.mssp.2023.107389.spa
dc.relation.referencesD. J. Paul et al., “n-type Si/SiGe resonant tunnelling diodes,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 89, no. 1–3, pp. 26–29, 2002, doi: 10.1016/S0921-5107(01)00785-1.spa
dc.relation.referencesJ.-D. Patil, U. Nakate, S. Ekar, Y. Nakate, and Y. Khollam, “Determination of optical properties of quantum well with a structure of AlGaN/GaN resonant tunneling diodes (RTDs).” Materials Science & Engineering B, 2022. doi: https://doi.org/10.1016/j.mseb.2022.115986.spa
dc.relation.referencesA. Förster, J. Stock, S. Montanari, M. I. Lepsa, and H. Lüth, “Fabrication and characterisation of GaAs Gunn diode chips for applications at 77 GHz in automotive industry,” Sensors, vol. 6, no. 4, pp. 350–360, 2006, doi: 10.3390/S6040350.spa
dc.relation.referencesV. Zozulia, O. Botsula, K. Prykhodko, S. Sanin, G. Katrich, and S. Fedosova, “Planar GaAs-InGaAs Heterostructure for Generation in Long Wave Part of Terahertz Range,” in 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 2022, pp. 1–4. doi: 10.1109/KhPIWeek57572.2022.9916337.spa
dc.relation.referencesM. Asada and S. Suzuki, “Terahertz emitter using resonant-tunneling diode and applications,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–20, 2021, doi: 10.3390/s21041384.spa
dc.relation.referencesS. T. Bishay, “Numerical Methods for the Calculation of the Cole-Cole Parameters,” Egypt. J. Solids, vol. 23, no. 2, pp. 179–188, 2000, doi: 10.21608/ejs.2000.151486.spa
dc.relation.referencesJ. Xiang, D. Cheng, F. S. Schlindwein, and N. B. Jones, “On the adequacy of identified Cole-Cole models,” Comput. Geosci., vol. 29, no. 5, pp. 647–654, 2003, doi: 10.1016/S0098-3004(03)00032-3.spa
dc.relation.referencesM. A. Clavijo-Ceballos and A. Rosales-Rivera, “Estudio de las propiedades eléctricas de Materiales magnéticos basados en Fe por Medio de los modelos de Debye y Cole-Cole,” Universidad Nacional de Colombia, 2023. Accessed: Oct. 11, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/85706spa
dc.relation.referencesT. Bachaga et al., “Effects of Co Additions on the Martensitic Transformation and Magnetic Properties of Ni–Mn–Sn Shape Memory Alloys,” J. Supercond. Nov. Magn., vol. 28, no. 10, pp. 3087–3092, 2015, doi: 10.1007/s10948-015-3100-z.spa
dc.relation.referencesM. Halder, M. D. Mukadam, K. G. Suresh, and S. M. Yusuf, “Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z=Al, Ge, and Sn),” J. Magn. Magn. Mater., vol. 377, pp. 220–225, 2015, doi: 10.1016/j.jmmm.2014.10.107.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.proposalAleaciones Heuslerspa
dc.subject.proposalMagneto-impedanciaspa
dc.subject.proposalComportamiento Magnetoeléctricospa
dc.subject.proposalTGAspa
dc.subject.proposalDSCspa
dc.subject.proposalHeusler alloyseng
dc.subject.proposalMagneto-impedanceeng
dc.subject.proposalMagnetoelectric behavioreng
dc.subject.unescoElectromagnetismospa
dc.subject.unescoOnda electromagnéticaspa
dc.subject.unescoFísicaspa
dc.subject.unescoMagnetismeng
dc.subject.unescoElectromagnetic waveseng
dc.subject.unescoPhysicseng
dc.titleEstudio del comportamiento magnetoeléctrico y térmico del sistema de la aleación tipo Heusler Ni42Co8Mn39Sn11-XGeX con x = 0, 1, 2, 3, preparada por el método de melt-spinningspa
dc.title.translatedStudy of the magnetoelectric and thermal behavior of Ni42Co8Mn39Sn11-xGex type alloy system with x = 0, 1, 2, 3, prepared by melt-spinning methodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053839196.2024.pdf
Tamaño:
60.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: