Estudio del comportamiento magnetoeléctrico y térmico del sistema de la aleación tipo Heusler Ni42Co8Mn39Sn11-XGeX con x = 0, 1, 2, 3, preparada por el método de melt-spinning
dc.contributor.advisor | Rosales-Rivera, Andrés | |
dc.contributor.author | Jaimes Gómez, Diana Catalina | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001664195 | spa |
dc.contributor.orcid | Jaimes Gómez, Diana Catalina [0000-0002-4038-7057] | spa |
dc.contributor.researchgroup | Magnetismo y Materiales Avanzados | spa |
dc.date.accessioned | 2025-02-07T14:18:56Z | |
dc.date.available | 2025-02-07T14:18:56Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | En esta tesis se estudió la influencia del germanio sobre el comportamiento magnetoeléctrico y térmico del sistema de aleaciones Heusler, en forma de cinta Ni42Co8Mn39Sn11-xGex para x = 0, 1, 2, 3 (% at.). El comportamiento magnetoeléctrico fue estudiado por medio de la resonancia de una pequeña bobina, por la cual, circula una corriente A.C. El rango de campo utilizado para el primer modo de medición (frecuencia constante) fue de -74 a 74 Oe para las siguientes frecuencias F = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15 y 20 MHz. El rango de frecuencia utilizado para el segundo modo de medición (campo magnético DC constante) fue de 0 a 30 MHz para los siguientes campos HDC = 0, 1.1, 2.5, 5, 10, 20, 30, 40, 50, 70 y 74 Oe. Se observó que las muestras presentan picos característicos, los cuales, se relacionan con el fenómeno de anisotropía longitudinal para las muestras de Ni42Co8Mn39Sn11 y Ni42Co8Mn39Sn10Ge1 y un comportamiento inductivo dado por la medición del ángulo. Se observó que las muestras presentan el fenómeno de resonancia. Se determinaron las componentes real e imaginaria de la impedancia y se observó que estas en función de la frecuencia angular conservan la resonancia. Además, en la componente real de la impedancia se observó un comportamiento relacionado con los diodos Gunn o Túnel. Se determinaron los parámetros para el circuito equivalente asociados a las muestras mediante la técnica experimental de magneto-impedancia. El pico y el cambio de fase en la resonancia son más evidentes en las muestras Ni42Co8Mn39Sn11 y Ni42Co8Mn39Sn10Ge1. El análisis térmico por calorimetría de barrido diferencial refleja que el sistema presenta una transformación estructural a martensita. Por medio de medidas de análisis termogravimétrico en presencia de un pequeño campo magnético, se observó una transición de fase magnética ferromagnética a paramagnética en todas las muestras, además, se asoció que las fases magnéticas de ferromagnetismo a paramagnetismo se deben a la estructura austenita para las muestras de Ni42Co8Mn39Sn9Ge2 y Ni42Co8Mn39Sn8Ge3. Se analizaron los posibles mecanismos físicos que están presentes en el comportamiento térmico y magnetoeléctrico de este sistema de aleaciones (Texto tomado de la fuente). | spa |
dc.description.abstract | In this thesis the influence of germanium on the magnetoelectric and thermal behavior of the Heusler alloy system in the form of Ni42Co8Mn39Sn11-xGex tape for x = 0, 1, 2, 3 (% at.) was studied. The magnetoelectric behavior was studied by means of the resonance of a small coil, through which, circulates an A.C. current. The field range used for the first measurement mode (constant frequency) was from -74 to 74 Oe for the following frequencies f = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15 and 20 MHz. The frequency range used for the second measurement mode (constant DC magnetic field) was from 0 to 30 MHz for the following HDC fields = 0, 1.1, 2.5, 5, 10, 20, 20, 30, 40, 50, 70 and 74 Oe. It was observed that the samples present characteristic peaks, which are related to the longitudinal anisotropy phenomenon for the Ni42Co8Mn39Sn11 and Ni42Co8Mn39Sn10Ge1 samples and an inductive behavior given by the angle measurement. It was observed that the samples present the resonance phenomenon. The real and imaginary components of the impedance were calculated, it was observed that these in function of the angular frequency conserve the resonance, however, in the real component of the impedance a behavior related to the Gunn or Tunnel diodes was observed. The parameters for the equivalent circuit associated with the samples were found by the magneto-impedance experimental technique. The peak and phase shift at resonance are more evident in the Ni42Co8Mn39Sn11 and Ni42Co8Mn39Sn10Ge1 samples Thermal analysis by differential scanning calorimetry shows that the system shows a structural transformation to martensite. By thermogravimetric analysis measurements in the presence of a small magnetic field, a ferromagnetic to paramagnetic magnetic phase transition was observed for all samples, furthermore, it was associated that the ferromagnetic to paramagnetic magnetic phases are due to the austenite structure for Ni42Co8Mn39Sn9Ge2 and Ni42Co8Mn39Sn8Ge3 samples. The possible physical mechanisms involved in the thermal and magnetoelectric behavior of this alloy system were analyzed. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.methods | Las aleaciones Heusler han demostrado ser un tópico de investigación de creciente interés debido a su potencial para ser usadas en una amplia variedad de aplicaciones, que van desde dispositivos magnéticos hasta materiales termoeléctricos y sensores. La caracterización de estas aleaciones es esencial para comprender sus propiedades y su potencial en diversas aplicaciones. En este capítulo, se presenta una descripción de la técnica de producción de cintas (melt spinning), las técnicas de análisis termogravimétrico (TGA), calorimetría de barrido diferencial (DSC) y magnetoimpedancia (resonancia ferromagnética), estas técnicas permiten estudiar las transiciones magnéticas, transiciones estructurales y propiedades magnetoeléctricas del material respectivamente. | spa |
dc.description.researcharea | Magnetismo | spa |
dc.format.extent | xx, 92 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87453 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | A. Planes, L. Mãosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys. Condens. Matter, vol. 21, no. 23, 2009, doi: 10.1088/0953-8984/21/23/233201. | spa |
dc.relation.references | Y. J. Huang, Q. D. Hu, J. Liu, L. Zeng, D. F. Zhang, and J. G. Li, “Banded-like morphology and martensitic transformation of dual-phase Ni-Mn-In magnetic shape memory alloy with enhanced ductility,” Acta Mater., vol. 61, no. 15, pp. 5702–5712, 2013, doi: 10.1016/j.actamat.2013.06.012. | spa |
dc.relation.references | B. Emre, S. Yuce, N. M. Bruno, and I. Karaman, “Martensitic transformation and magnetocaloric properties of NiCoMnSn magnetic shape memory alloys,” Intermetallics, vol. 106, no. October 2017, pp. 65–70, 2019, doi: 10.1016/j.intermet.2018.12.011. | spa |
dc.relation.references | Z. Guo, L. Pan, M. Y. Rafique, X. Zheng, H. Qiu, and Z. Liu, “Metamagnetic phase transformation and magnetocaloric effect in quinary Ni45Co5Mn40InxSn10-x heusler alloy,” J. Alloys Compd., vol. 577, pp. 174–178, 2013, doi: 10.1016/j.jallcom.2013.04.102. | spa |
dc.relation.references | R. A. A. Khan, R. Ghomashchi, Z. Xie, and L. Chen, “Ferromagnetic shape memory Heusler materials: Synthesis, microstructure characterization and magnetostructural properties,” Materials (Basel)., vol. 11, no. 6, pp. 1–34, 2018, doi: 10.3390/ma11060988. | spa |
dc.relation.references | J. Enkovaara, O. Heczko, A. Ayuela, and R. M. Nieminen, “Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 67, no. 21, pp. 14–17, 2003, doi: 10.1103/PhysRevB.67.212405. | spa |
dc.relation.references | V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, C. Gómez-Polo, and J. A. Rodríguez-Velamazán, “Role of magnetism on the martensitic transformation in Ni-Mn-based magnetic shape memory alloys,” Acta Mater., vol. 60, no. 2, pp. 459–468, 2012, doi: 10.1016/j.actamat.2011.10.026. | spa |
dc.relation.references | T. Krenke et al., “Electronic aspects of the martensitic transition in Ni-Mn based Heusler alloys,” J. Magn. Magn. Mater., vol. 310, no. 2 SUPPL. PART 3, pp. 2788–2789, 2007, doi: 10.1016/j.jmmm.2006.10.1139. | spa |
dc.relation.references | D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys,” Acta Mater., vol. 60, no. 13–14, pp. 5335–5351, 2012, doi: 10.1016/j.actamat.2012.06.034. | spa |
dc.relation.references | K. Ito et al., “Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering,” Scr. Mater., vol. 61, no. 5, pp. 504–507, 2009, doi: 10.1016/j.scriptamat.2009.05.008. | spa |
dc.relation.references | X. Zhang, H. Zhang, M. Qian, and L. Geng, “Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-26564-5. | spa |
dc.relation.references | P. J. Webster, “Heusler alloys,” Contemp. Phys., vol. 10, no. 6, pp. 559–577, 1969, doi: 10.1080/00107516908204800. | spa |
dc.relation.references | T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011, doi: 10.1016/j.progsolidstchem.2011.02.001. | spa |
dc.relation.references | A. Hirohata and D. C. Lloyd, “Heusler alloys for metal spintronics,” MRS Bull., vol. 47, no. 6, pp. 593–599, 2022, doi: 10.1557/s43577-022-00350-1. | spa |
dc.relation.references | K. Inomata, S. Okamura, R. Goto, and N. Tezuka, “Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure,” Japanese J. Appl. Physics, Part 2 Lett., vol. 42, no. 4 B, Apr. 2003, doi: 10.1143/JJAP.42.L419/META. | spa |
dc.relation.references | Z. He, T. Kyômen, and M. Itoh, “Spin-glass behavior in the ordered ribbon borate Cu 2 Co B 2 O 6,” Phys. Rev. B, vol. 70, no. 13, p. 134431, Oct. 2004, doi: 10.1103/PhysRevB.70.134431. | spa |
dc.relation.references | T. Kojima, S. Kameoka, and A. P. Tsai, “Heusler Alloys: A Group of Novel Catalysts,” ACS Omega, vol. 2, no. 1, pp. 147–153, 2017, doi: 10.1021/acsomega.6b00299. | spa |
dc.relation.references | N. Saenphum, J. Chureemart, R. F. L. Evans, R. W. Chantrell, and P. Chureemart, “Large magnetoresistance in Heusler alloy-based current perpendicular to plane giant magnetoresistance sensors,” J. Phys. D. Appl. Phys., vol. 54, no. 39, 2021, doi: 10.1088/1361-6463/ac0ca4. | spa |
dc.relation.references | R. E. Hummel, Electronic properties of materials, Fourth. Springer, 2011. doi: 10.1007/978-1-4419-8164-6. | spa |
dc.relation.references | S. Blundell, Magnetism in Condensed Matter by Stephen Blundell, no. 1. New York: Oxford University Press, 2001. [Online]. Available: https://books.google.com.co/books?hl=en&lr=&id=zP9QEAAAQBAJ&oi=fnd&pg=PR9&dq=S.+Blundell,+Magnetism+in+Condensed+Matter&ots=fYG45LDJKZ&sig=y89gFCrq-xADhFVmJnkaXbGnoNI&redir_esc=y#v=onepage&q=vol&f=false | spa |
dc.relation.references | A. Velásquez and A. Rosales-Rivera, “Estudio de las familias de cintas magnéticas blandas amorfas con aplicación en sensores, empleados en la correlación de variables ionosféricas con campo magnético terrestre,” Universidad Nacional de Colombia, Sede Manizales, 2017. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/63205 | spa |
dc.relation.references | N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York: Harcourt College, 1976. Accessed: Oct. 11, 2024. [Online]. Available: https://www.google.com.co/books/edition/Solid_State_Physics/oXIfAQAAMAAJ?hl=en&gbpv=0&bsq=solid state physics nw ashcroft 1976 | spa |
dc.relation.references | G. Arenas S., Electricidad Y Magnetismo. 2011. [Online]. Available: http://dcb.fi-c.unam.mx/users/santiagogl/archivos/temauno.pdf | spa |
dc.relation.references | K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. Alternating current characteristics,” J. Chem. Phys., vol. 9, no. 4, pp. 341–351, 1941, doi: 10.1063/1.1750906. | spa |
dc.relation.references | L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett., vol. 65, no. 9, pp. 1189–1191, 1994, doi: 10.1063/1.112104. | spa |
dc.relation.references | M. Knobel and K. R. Pirota, “Giant magnetoimpedance: Concepts and recent progress,” J. Magn. Magn. Mater., vol. 242–245, no. PART I, pp. 33–40, 2002, doi: 10.1016/S0304-8853(01)01180-5. | spa |
dc.relation.references | M. Knobel, M. Vázquez, and L. Kraus, “Giant Magnetoimpedance,” Handb. Magn. Mater., vol. 15, no. 03, pp. 497–563, 2003, doi: 10.1016/S1567-2719(03)15005-6. | spa |
dc.relation.references | A. Zhukov et al., “Giant magnetoimpedance in rapidly quenched materials,” J. Alloys Compd., vol. 814, 2020, doi: 10.1016/j.jallcom.2019.152225. | spa |
dc.relation.references | R. B. Da Silva et al., “High frequency magnetoimpedance in Ni81 Fe19 / Fe50 Mn50 exchange biased multilayer,” Appl. Phys. Lett., vol. 94, no. 4, pp. 1–4, 2009, doi: 10.1063/1.3069275. | spa |
dc.relation.references | D. F. Gómez-Montoya and A. Rosales-Rivera, “Estudio de las propiedades magneto – eléctricas de materiales magnéticamente blandos en forma de cintas, basados en hierro.,” 2015. Accessed: Oct. 11, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/56233 | spa |
dc.relation.references | T. Floyd, Principios de circuitos eléctricos, Octava. México: PEARSON EDUCACIÓN, 2007. Accessed: Oct. 11, 2024. [Online]. Available: https://dspace.itsjapon.edu.ec/jspui/bitstream/123456789/3539/1/Principios_de_circuitos_electricos.pdf | spa |
dc.relation.references | P. Duwez, R. H. Willens, and W. J. . Klement, “Non-crystalline Structure in Solidified Gold–Silicon Alloys,” Nature, vol. 187, pp. 869–870, 1960. | spa |
dc.relation.references | C. Suryanarayana, “Mechanical alloying and milling,” Mech. Alloy. Milling, vol. 46, pp. 1–472, 2004, doi: 10.1016/S0079-6425(99)00010-9. | spa |
dc.relation.references | C. Suryanarayan and Inoue. A., Bulk Metallic Glasses. CRC Press, 2011. Accessed: Oct. 11, 2024. [Online]. Available: https://books.google.com.co/books?id=cEUDsKGtBBEC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false | spa |
dc.relation.references | P. Diko, V. Kavečanský, T. Ryba, L. Frolová, R. Varga, and Z. Vargová, “The texture and structure of the melt-spun Co2MnAl-type heusler alloy,” Materials (Basel)., vol. 14, no. 3, pp. 1–8, 2021, doi: 10.3390/ma14030501. | spa |
dc.relation.references | Z. C. Wang et al., “Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons,” J. Appl. Phys., vol. 87, no. 9 II, pp. 4819–4821, 2000, doi: 10.1063/1.373170. | spa |
dc.relation.references | D. Fernando and A. Rosales-Rivera, “Estudio de las propiedades magneto – eléctricas de materiales magnéticamente blandos en forma de cintas, basados en hierro.,” Universidad Nacional de Colombia, Sede Manizales, 2015. | spa |
dc.relation.references | M. H. Phan and H. X. Peng, “Giant magnetoimpedance materials: Fundamentals and applications,” Progress in Materials Science. 2008. doi: 10.1016/j.pmatsci.2007.05.003. | spa |
dc.relation.references | Y. Song, Z. Li, Q. Sun, Z. Tang, T. Zhang, and Y. Jiang, “Magnetic and electric property evolution of amorphous cobalt-rich alloys driven by field annealing,” J. Phys. D. Appl. Phys., vol. 45, no. 22, 2012, doi: 10.1088/0022-3727/45/22/225001. | spa |
dc.relation.references | W. Lu, Y. Xu, J. Shi, Y. Song, and X. Li, “Soft magnetic properties and giant magnetoimpedance effect in thermally annealed amorphous Co68Fe4Cr3Si15B10 alloy ribbons,” J. Alloys Compd., vol. 638, pp. 233–238, 2015, doi: 10.1016/j.jallcom.2015.03.086. | spa |
dc.relation.references | A. Zhukov, L. Gonzalez-Legarreta, M. Ipatov, P. Corte-Leon, J. M. Blanco, and V. Zhukova, “Giant magnetoimpedance effect at GHz frequencies in amorphous microwires,” AIP Adv., vol. 9, no. 12, 2019, doi: 10.1063/1.5129891. | spa |
dc.relation.references | M. Vázquez, J. P. Sinnecker, and G. V. Kurlyandskaya, “Hysteretic Behavior and Anisotropy Fields in the Magneto-Impedance Effect,” Mater. Sci. Forum, vol. 302–303, pp. 209–218, 1999, doi: : 10.4028/www. scientific.net/MSF.302-303.209. | spa |
dc.relation.references | A. Rosales-Rivera et al., “Magnetic Critical Behavior, Hall and Magneto-Impedance Effects in Fe-Co-Based Metallic Glasses,” IEEE Trans. Magn., vol. 57, no. 2, pp. 18–23, 2021, doi: 10.1109/TMAG.2020.3013294. | spa |
dc.relation.references | A. Rosales-Rivera, V. H. Valencia, and P. Pineda-Gómez, “Three-peak behavior in giant magnetoimpedance effect in Fe73.5-xCrxNb3Cu1Si13.5B9 amorphous ribbons,” Phys. B Condens. Matter, vol. 398, no. 2, pp. 252–255, 2007, doi: 10.1016/j.physb.2007.04.026. | spa |
dc.relation.references | A. Dadsetan, M. Almasi Kashi, and S. M. Mohseni, “ZnO thin layer/Fe-based ribbon/ZnO thin layer sandwich structure: Introduction of a new GMI optimization method,” J. Magn. Magn. Mater., vol. 493, no. May 2019, p. 165697, 2020, doi: 10.1016/j.jmmm.2019.165697. | spa |
dc.relation.references | E. C. Passamani et al., “Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn,” J. Appl. Phys., vol. 105, no. 3, pp. 0–8, 2009, doi: 10.1063/1.3075835. | spa |
dc.relation.references | I. Storozhenko and S. Sanin, “InN-based Gunn Diode with Graded GaInN Layer,” 2022 IEEE 2nd Ukr. Microw. Week, UkrMW 2022 - Proc., pp. 101–104, 2022, doi: 10.1109/UkrMW58013.2022.10037011. | spa |
dc.relation.references | G. Kalyon, S. Mutlu, F. Kuruoglu, I. Pertikel, I. Demir, and A. Erol, “InGaAs-based Gunn light emitting diode,” Mater. Sci. Semicond. Process., vol. 159, no. December 2022, p. 107389, 2023, doi: 10.1016/j.mssp.2023.107389. | spa |
dc.relation.references | D. J. Paul et al., “n-type Si/SiGe resonant tunnelling diodes,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 89, no. 1–3, pp. 26–29, 2002, doi: 10.1016/S0921-5107(01)00785-1. | spa |
dc.relation.references | J.-D. Patil, U. Nakate, S. Ekar, Y. Nakate, and Y. Khollam, “Determination of optical properties of quantum well with a structure of AlGaN/GaN resonant tunneling diodes (RTDs).” Materials Science & Engineering B, 2022. doi: https://doi.org/10.1016/j.mseb.2022.115986. | spa |
dc.relation.references | A. Förster, J. Stock, S. Montanari, M. I. Lepsa, and H. Lüth, “Fabrication and characterisation of GaAs Gunn diode chips for applications at 77 GHz in automotive industry,” Sensors, vol. 6, no. 4, pp. 350–360, 2006, doi: 10.3390/S6040350. | spa |
dc.relation.references | V. Zozulia, O. Botsula, K. Prykhodko, S. Sanin, G. Katrich, and S. Fedosova, “Planar GaAs-InGaAs Heterostructure for Generation in Long Wave Part of Terahertz Range,” in 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 2022, pp. 1–4. doi: 10.1109/KhPIWeek57572.2022.9916337. | spa |
dc.relation.references | M. Asada and S. Suzuki, “Terahertz emitter using resonant-tunneling diode and applications,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–20, 2021, doi: 10.3390/s21041384. | spa |
dc.relation.references | S. T. Bishay, “Numerical Methods for the Calculation of the Cole-Cole Parameters,” Egypt. J. Solids, vol. 23, no. 2, pp. 179–188, 2000, doi: 10.21608/ejs.2000.151486. | spa |
dc.relation.references | J. Xiang, D. Cheng, F. S. Schlindwein, and N. B. Jones, “On the adequacy of identified Cole-Cole models,” Comput. Geosci., vol. 29, no. 5, pp. 647–654, 2003, doi: 10.1016/S0098-3004(03)00032-3. | spa |
dc.relation.references | M. A. Clavijo-Ceballos and A. Rosales-Rivera, “Estudio de las propiedades eléctricas de Materiales magnéticos basados en Fe por Medio de los modelos de Debye y Cole-Cole,” Universidad Nacional de Colombia, 2023. Accessed: Oct. 11, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/85706 | spa |
dc.relation.references | T. Bachaga et al., “Effects of Co Additions on the Martensitic Transformation and Magnetic Properties of Ni–Mn–Sn Shape Memory Alloys,” J. Supercond. Nov. Magn., vol. 28, no. 10, pp. 3087–3092, 2015, doi: 10.1007/s10948-015-3100-z. | spa |
dc.relation.references | M. Halder, M. D. Mukadam, K. G. Suresh, and S. M. Yusuf, “Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z=Al, Ge, and Sn),” J. Magn. Magn. Mater., vol. 377, pp. 220–225, 2015, doi: 10.1016/j.jmmm.2014.10.107. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::538 - Magnetismo | spa |
dc.subject.proposal | Aleaciones Heusler | spa |
dc.subject.proposal | Magneto-impedancia | spa |
dc.subject.proposal | Comportamiento Magnetoeléctrico | spa |
dc.subject.proposal | TGA | spa |
dc.subject.proposal | DSC | spa |
dc.subject.proposal | Heusler alloys | eng |
dc.subject.proposal | Magneto-impedance | eng |
dc.subject.proposal | Magnetoelectric behavior | eng |
dc.subject.unesco | Electromagnetismo | spa |
dc.subject.unesco | Onda electromagnética | spa |
dc.subject.unesco | Física | spa |
dc.subject.unesco | Magnetism | eng |
dc.subject.unesco | Electromagnetic waves | eng |
dc.subject.unesco | Physics | eng |
dc.title | Estudio del comportamiento magnetoeléctrico y térmico del sistema de la aleación tipo Heusler Ni42Co8Mn39Sn11-XGeX con x = 0, 1, 2, 3, preparada por el método de melt-spinning | spa |
dc.title.translated | Study of the magnetoelectric and thermal behavior of Ni42Co8Mn39Sn11-xGex type alloy system with x = 0, 1, 2, 3, prepared by melt-spinning method | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053839196.2024.pdf
- Tamaño:
- 60.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: