Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.authorRodríguez Durán, Juan David
dc.contributor.researcherRestrepo Cuartas Juan Pablo
dc.contributor.researchgroupGRUPO DE SUPERCONDUCTIVIDAD Y NUEVOS MATERIALESspa
dc.date.accessioned2021-10-12T17:37:18Z
dc.date.available2021-10-12T17:37:18Z
dc.date.issued2020
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractThis work is pretended to carry out an extensive review of concepts regarding Bose-Einstein condensates, polaritonics and vortex identification methods in order to theoretically grasp on the fundamentals of vortex dynamics developed in a two-dimensional quantum well placed in an optical microresonator wherein strong coupling regime among light and matter is assumed to be present. Through the use of some techniques widely employed in quantum optics, the problem of understanding the vortex dynamics in a polariton condensate exhibiting superfluidity is studied starting from an idealized model that has already been proposed and which doesn’t include energy dissipation processes. However, as shown subsequently, mean-field treatment puts aside effects that are evidenced once a model of finite system is considered, generating new possible phenomenologies. Moreover, it is also shown that inclusion of dissipative processes is relevant when it comes to compare with experimental results.eng
dc.description.abstractEste trabajo pretende llevar a cabo una revisión extensa de conceptos relacionados con los condensados de Bose-Einstein, polaritónica y métodos de identificación de vórtices con la finalidad de ahondar en las bases de la dinámica de vórtices que se encuentran en un pozo cuántico bidimensional ubicado a su vez en un micro-resonador óptico en el cual el régimen de interacción fuerte se asume presente. Mediante el uso de algunas técnicas ampliamente usadas en la óptica cuántica, se estudia el problema de entender la dinámica de vórtices en un condensado de polaritones que exhibe superfluidez partiendo de un modelo idealizado que ya ha sido propuesto, el cual no incluye procesos de disipación de energía. Sin embargo, como se muestra posteriormente, el tratamiento de campo medio deja de lado efectos que se evidencian una vez es considerado un modelo de sistema finito, generando posibilidades fenomenológicas nuevas. Asimismo, se muestra que la inclusión de los procesos disipativos es relevante a la hora de comparar con resultados experimentales. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.methodsModelamiento teórico y simulación.spa
dc.description.researchareaDinámica de vórtices y óptica cuántica.spa
dc.format.extentXV, 96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80517
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.references[Alaways, 1998] Alaways, L. (1998). Aerodynamics of the curve-ball: An investigation of the effects of angular velocity on baseball trajectories.spa
dc.relation.references[Allen, 2018] Allen, J. (2018). Dynamics of an exciton-polariton condensate.spa
dc.relation.references[Anderson et al., 1995] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of bose-einstein condensation in a dilute atomic vapor. science, 269(5221):198–201.spa
dc.relation.references[Bagnato et al., 2008] Bagnato, V., Farias, K., Seman, J., Henn, E., and Ramos, E. (2008). Introduction to the basic-concepts of bose-einstein condensation. AIP Conference Proceedings, 994.spa
dc.relation.references[Bao and Cai, 2012] Bao, W. and Cai, Y. (2012). Mathematical theory and numerical methods for bose-einstein condensation. arXiv preprint arXiv:1212.5341.spa
dc.relation.references[Barenghi, 2008] Barenghi, C. F. (2008). Is the reynolds number infinite in superfluid turbulence? Physica D: Nonlinear Phenomena, 237(14-17):2195–2202.spa
dc.relation.references[Barenghi and Parker, 2016] Barenghi, C. F. and Parker, N. G. (2016). A primer on quantum fluids. Number arXiv: 1605.09580. Springer.spa
dc.relation.references[Barenghi et al., 2014] Barenghi, C. F., Skrbek, L., and Sreenivasan, K. R. (2014). Introduction to quantum turbulence. Proceedings of the National Academy of Sciences, 111(Supplement 1):4647–4652.spa
dc.relation.references[Baumberg et al., 2000] Baumberg, J., Savvidis, P., Stevenson, R., Tartakovskii, A., Skolnick, M., Whittaker, D., and Roberts, J. (2000). Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 62(24):R16247.spa
dc.relation.references[Benedikter, 2015] Benedikter, N. (2015). Deriving the gross-pitaevskii equation. In Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference, pages 207–212. World Scientific.spa
dc.relation.references[Berne and Pecora, 1974] Berne, B. and Pecora, R. (1974). Laser light scattering from liquids. Annual review of physical chemistry, 25(1):233–253.spa
dc.relation.references[Bonesi et al., 2007] Bonesi, M., Churmakov, D., Ritchie, L., and Meglinski, I. (2007). Turbulence monitoring with doppler optical coherence tomography. Laser Physics Letters, 4(4):304–307.spa
dc.relation.references[Boulier et al., 2016] Boulier, T., Cancellieri, E., Sangouard, N. D., Hivet, R., Glorieux, Q., Giacobino, E., and Bramati, A. (2016). Lattices of quantized vortices in polariton super-fluids. Comptes Rendus Physique, 17(8):893–907.spa
dc.relation.references[Boyd, 2018] Boyd, J. P. (2018). Dynamics of the equatorial ocean. Springer.spa
dc.relation.references[Brown and Arnold, 2010] Brown, M. S. and Arnold, C. B. (2010). Fundamentals of laser material interaction and application to multiscale surface modification. In Laser precision microfabrication, pages 91–120. Springer.spa
dc.relation.references[Carusotto and Ciuti, 2013] Carusotto, I. and Ciuti, C. (2013). Quantum fluids of light. Reviews of Modern Physics, 85(1):299.spa
dc.relation.references[Chalker, 2013] Chalker, J. (2013). Quantum theory of condensed matter. Lecture Notes, Physics Department, Oxford University, page 2.spa
dc.relation.references[Ciuti et al., 2003] Ciuti, C., Schwendimann, P., and Quattropani, A. (2003). Theory of polariton parametric interactions in semiconductor microcavities. Semiconductor science and technology, 18(10):S279.spa
dc.relation.references[Davis et al., 1995] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D., and Ketterle, W. (1995). Bose-einstein condensation in a gas of sodium atoms. Physical review letters, 75(22):3969.spa
dc.relation.references[De La Peña, 2014] De La Peña, L. (2014). Introducción a la mecánica cuántica. Fondo de Cultura económica.spa
dc.relation.references[Delville et al., 2009] Delville, J.-P., de Saint Vincent, M. R., Schroll, R. D., Chraibi, H., Issenmann, B., Wunenburger, R., Lasseux, D., Zhang, W. W., and Brasselet, E. (2009). Laser microfluidics: fluid actuation by light. Journal of Optics A: Pure and Applied Optics, 11(3):034015.spa
dc.relation.references[Derksen, 2019] Derksen, A. (2019). Numerical simulation of a forced and freely-vibrating cylinder at supercritical Reynolds numbers. PhD thesis, Master’s thesis, TU Delft and Siemens.spa
dc.relation.references[Dominici et al., 2018] Dominici, L., Voronova, N., Colas, D., Gianfrate, A., Rahmani, A., Ardizzone, V., Ballarini, D., De Giorgi, M., Gigli, G., Laussy, F. P., et al. (2018). Realisation of full-bloch beams with ultrafast rabi-rotating vortices. arXiv preprint arXiv:1801.02580.spa
dc.relation.references[Echeverri-Arteaga et al., 2018] Echeverri-Arteaga, S., Vinck-Posada, H., and Gómez, E. A. (2018). Explanation of the quantum phenomenon of off-resonant cavity-mode emission. Physical Review A, 97(4):043815.spa
dc.relation.references[Ford et al., 2006] Ford, A. D., Morris, S. M., and Coles, H. J. (2006). Photonics and lasing in liquid crystals. Materials Today, 9(7-8):36–42.spa
dc.relation.references[Franz, 2015] Franz, T. (2015). Quantum fluids of light.spa
dc.relation.references[Ganapathy, 2016] Ganapathy, R. (2016). Basic concept of exciton. Technical report, SASTRA University.spa
dc.relation.references[Goldstein et al., 2002] Goldstein, H., Poole, C., and Safko, J. (2002). Classical mechanics.spa
dc.relation.references[Grynberg et al., 2010] Grynberg, G., Aspect, A., and Fabre, C. (2010). Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press.spa
dc.relation.references[Grynberg et al., 2010] Grynberg, G., Aspect, A., and Fabre, C. (2010). Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press.spa
dc.relation.references[Ha et al., 2017] Ha, D. T., Thuy, D. T., Hoa, V. T., Van, T. T. T., and Viet, N. (2017). On the theory of three types of polaritons (phonon, exciton and plasmon polaritons). In J. Phys. Conf. Ser, volume 865, page 012007.spa
dc.relation.references[Haegeman et al., 2017] Haegeman, J., Draxler, D., Stojevic, V., Cirac, J. I., Osborne, T. J., and Verstraete, F. (2017). Quantum gross-pitaevskii equation. Scipost Physics 3 (2017), Nr. 1, 3(1):6.spa
dc.relation.references[Hallanger et al., 2005] Hallanger, A., Brevik, I., Haaland, S., and Sollie, R. (2005). Nonli near deformations of liquid-liquid interfaces induced by electromagnetic radiation pressure. Physical Review E, 71(5):056601.spa
dc.relation.references[Hecht, 2002] Hecht, E. (2002). Optics-addison.spa
dc.relation.references[Hérard and Hurisse, 2005] H´erard, J.-M. and Hurisse, O. (2005). A simple method to compute standard two-fluid models. International Journal of Computational Fluid Dynamics, 19(7):475–482.spa
dc.relation.references[Hess and Fairbank, 1967] Hess, G. B. and Fairbank, W. (1967). Measurements of angular momentum in superfluid helium. Physical Review Letters, 19(5):216.spa
dc.relation.references[Holmén, 2012] Holmén, V. (2012). Methods for vortex identification. Master’s Theses in Mathematical Sciences.spa
dc.relation.references[Hopfield, 1958] Hopfield, J. (1958). Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review, 112(5):1555.spa
dc.relation.references[Jackson, 2007] Jackson, J. D. (2007). Classical electrodynamics. John Wiley & Sons.spa
dc.relation.references[Juggins et al., 2018] Juggins, R., Keeling, J., and Szymánska, M. (2018). Coherently driven microcavity-polaritons and the question of superfluidity. Nature communications, 9(1):1–8.spa
dc.relation.references[Kalt and Hetterich, 2011] Kalt, H. and Hetterich, M. (2011). Optical microcavities. Technical report, Karlsruhe Institute of Technology (KIT).spa
dc.relation.references[Kasprzak, 2006] Kasprzak, J. (2006). Condensation of exciton polaritons. PhD thesis.spa
dc.relation.references[Kasprzak et al., ] Kasprzak, J., Richard, M., André, R., and Dang, L. S. Introduction to boseeinstein condensation of microcavity polaritons.spa
dc.relation.references[Kavokin et al., 2017] Kavokin, A., Baumberg, J. J., Malpuech, G., and Laussy, F. P. (2017). Microcavities. Oxford university press.spa
dc.relation.references[Klaers et al., 2010] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. (2010). Bose– einstein condensation of photons in an optical microcavity. Nature, 468(7323):545–548.spa
dc.relation.references[Kumar, 2002] Kumar, N. (2002). Bosonic stimulation and the irreproducibility of condensate fragmentation. arXiv preprint cond-mat/0204443.spa
dc.relation.references[Lagoudakis and Berloff, 2017] Lagoudakis, P. G. and Berloff, N. G. (2017). A polariton graph simulator. New Journal of Physics, 19(12):125008.spa
dc.relation.references[Laikhtman, 2007] Laikhtman, B. (2007). Are excitons really bosons? Journal of Physics: Condensed Matter, 19(29):295214.spa
dc.relation.references[Liu et al., 2018] Liu, C., Gao, Y., Tian, S., and Dong, X. (2018). Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3):035103.spa
dc.relation.references[L’vov et al., 2014] L’vov, V. S., Skrbek, L., and Sreenivasan, K. R. (2014). Viscosity of liquid 4he and quantum of circulation: Are they related? Physics of Fluids, 26(4):041703.spa
dc.relation.references[Manni et al., 2013] Manni, F., Léger, Y., Rubo, Y. G., André, R., and Deveaud, B. (2013). Hyperbolic spin vortices and textures in exciton–polariton condensates. Nature communications, 4(1):1–7.spa
dc.relation.references[Manzano, 2020] Manzano, D. (2020). A short introduction to the lindblad master equation. AIP Advances, 10(2):025106.spa
dc.relation.references[Marcus, 1990] Marcus, P. S. (1990). Vortex dynamics in a shearing zonal flow. Journal of Fluid Mechanics, 215:393–430.spa
dc.relation.references[Moffatt, 2011] Moffatt, H. K. (2011). A brief introduction to vortex dynamics and turbulence. In Environmental Hazards: The Fluid Dynamics and Geophysics of Extreme Events, pages 1–27. World Scientific.spa
dc.relation.references[Myrvold, 2014] Myrvold, W. C. (2014). Probabilities in statistical mechanics.spa
dc.relation.references[Nagle et al., 1996] Nagle, R. K., Saff, E. B., Snider, A. D., and West, B. (1996). Fundamentals of differential equations and boundary value problems. Addison-Wesley Reading.spa
dc.relation.references[Ortega, 2007] Ortega, D. (2007). Bose-einstein condensation. National Tsing Hua University.spa
dc.relation.references[Padgett, 2014] Padgett, M. (2014). Light’s twist. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2172):20140633.spa
dc.relation.references[Padgett et al., 2004] Padgett, M., Courtial, J., and Allen, L. (2004). Light’s orbital angular momentum. Physics today, 57(5):35–40.spa
dc.relation.references[Pagano, 2009] Pagano, G. (2009). Bogoliubov-de gennes normal-modes analysis of a cylindrically symmetric bose-einstein condensate. Technical report, Universitá degli Studi di Milano.spa
dc.relation.references[Pieri and Strinati, 2003] Pieri, P. and Strinati, G. (2003). Derivation of the gross-pitaevskii equation for condensed bosons from the bogoliubov–de gennes equations for superfluid fermions. Physical review letters, 91(3):030401.spa
dc.relation.references[Pitaevskii and Stringari, 2016] Pitaevskii, L. and Stringari, S. (2016). Bose-Einstein condensation and superfluidity, volume 164. Oxford University Press.spa
dc.relation.references[Polonyi, 2012] Polonyi, J. (2012). Many-body theory.spa
dc.relation.references[Rahmani and Dominici, 2019] Rahmani, A. and Dominici, L. (2019). Detuning control of rabi vortex oscillations in light-matter coupling. Physical Review B, 100(9):094310.spa
dc.relation.references[Reeves et al., 2015] Reeves, M., Billam, T., Anderson, B. P., and Bradley, A. (2015). Identifying a superfluid reynolds number via dynamical similarity. Physical Review Letters, 114(15):155302.spa
dc.relation.references[Reeves et al., 2015] Reeves, M., Billam, T., Anderson, B. P., and Bradley, A. (2015). Identifying a superfluid reynolds number via dynamical similarity. Physical Review Letters, 114(15):155302.spa
dc.relation.references[Rogel-Salazar, 2013] Rogel-Salazar, J. (2013). The gross–pitaevskii equation and bose– einstein condensates. European Journal of Physics, 34(2):247.spa
dc.relation.references[Rogel-Salazar, 2013] Rogel-Salazar, J. (2013). The gross–pitaevskii equation and bose– einstein condensates. European Journal of Physics, 34(2):247.spa
dc.relation.references[Sakurai, 2014] Sakurai, J. (2014). Modern quantum mechanics 2nd edition. Pearson New International edition.spa
dc.relation.references[Salasnich, 2018] Salasnich, L. (2018). Self-consistent derivation of the modified gross– pitaevskii equation with lee–huang–yang correction. Applied Sciences, 8(10):1998.spa
dc.relation.references[Sarchi, 2007] Sarchi, D. (2007). Bose-einstein condensation of microcavity polaritons. Technical report, EPFL.spa
dc.relation.references[Sasaki, 2020] Sasaki, S. (2020). New energy form and some advice.spa
dc.relation.references[Sasaki and Hidenobu, 2008] Sasaki, S. and Hidenobu, H. (2008). Bose-Einstein Condensation and Superfluidity. JAIST repository.spa
dc.relation.references[Sauls, 2018] Sauls, J. A. (2018). Half-quantum vortices in superfluid helium. arXiv preprint arXiv:1806.09024.spa
dc.relation.references[Savona, 2007] Savona, V. (2007). Fifteen years of microcavity polaritons. The Physics of Semiconductor Microcavities.spa
dc.relation.references[Savona et al., 1999] Savona, V., Piermarocchi, C., Quattropani, A., Schwendimann, P., and Tassone, F. (1999). Optical properties of microcavity polaritons. Phase transitions, 68(1):169–279.spa
dc.relation.references[Schmitt, 2015] Schmitt, A. (2015). Introduction to superfluidity. Lect. Notes Phys, 888(1).spa
dc.relation.references[Schoepe, 2015] Schoepe, W. (2015). Superfluid reynolds number and the transition from potential flow to turbulence in superfluid 4 he at millikelvin temperatures. JETP letters, 102(2):105–107.spa
dc.relation.references[Stetina, 2014] Stetina, S. (2014). From field theory to the hydrodynamics of relativistic superfluids.spa
dc.relation.references[Sun et al., 2017] Sun, Y., Yoon, Y., Steger, M., Liu, G., Pfeiffer, L. N., West, K., Snoke, D. W., and Nelson, K. A. (2017). Direct measurement of polariton–polariton interaction strength. Nature Physics, 13(9):870–875.spa
dc.relation.references[Szriftgiser and Cheb-Terrab, 2016] Szriftgiser, P. and Cheb-Terrab, E. (2016). The gross pitaevskii equation and bogoliubov spectrum.spa
dc.relation.references[Tian et al., 2017] Tian, S., Gao, Y., Dong, X., and Liu, C. (2017). A definition of vortex vector and vortex. arXiv preprint arXiv:1712.03887.spa
dc.relation.references[Usami, 2015] Usami, K. (2015). Harmonic oscillators, coupled harmonic oscillators, and bosonic fields.spa
dc.relation.references[Vinen, 2004] Vinen, W. (2004). The physics of superfluid helium.spa
dc.relation.references[Von-Oppen, 2018] Von-Oppen, F. (2018). Many-body theory and quantum field theory.spa
dc.relation.references[Wilson, 2020] Wilson, A. (2020). Semi-classical or fully quantum: the fundamentals of modelling light-matter interactionspa
dc.relation.references[Wizza, 2010] Wizza, G. (2010). Quantum dot-cavity coupling with phonon-assisted cavity feeding.spa
dc.relation.references[Yongyong, 2011] Yongyong, C. (2011). Mathematical Theory and Numerical Methods for Gross-Pitaevskii Equations and Applications. PhD thesis.spa
dc.relation.references[Yoshitake et al., 2005] Yoshitake, Y., Mitani, S., Sakai, K., and Takagi, K. (2005). Measurement of high viscosity with laser induced surface deformation technique. Journal of applied physics, 97(2):024901.spa
dc.relation.references[Yue et al., 2019] Yue, Y., Huang, H., Ren, Y., Pan, Z., and Willner, A. E. (2019). Special issue on novel insights into orbital angular momentum beams: From fundamentals, devices to applications.spa
dc.relation.references[Yunus, 2006] Yunus, A. (2006). Cengel fluid mechanics.spa
dc.relation.references[Zayko, 2006] Zayko, Y. (2006). Application of two-fluid model for flow investigation in pipes of circle profile.spa
dc.relation.references[Zhang and Chang, 1988] Zhang, J.-Z. and Chang, R. K. (1988). Shape distortion of a single water droplet by laser-induced electrostriction. Optics letters, 13(10):916–918.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalPhotoneng
dc.subject.proposalExcitoneng
dc.subject.proposalPolaritoneng
dc.subject.proposalBose-Einstein Condensateeng
dc.subject.proposalVortexeng
dc.subject.proposalSuperfluidityeng
dc.subject.proposalLight-matter interactioneng
dc.subject.proposalHamiltonianeng
dc.subject.proposalDensity Operatoreng
dc.subject.proposalFotónspa
dc.subject.proposalExcitónspa
dc.subject.proposalPolaritónspa
dc.subject.proposalCondensado de Bose-Einsteinspa
dc.subject.proposalVórticespa
dc.subject.proposalSuperfluidezspa
dc.subject.proposalInteracción radiación-materiaspa
dc.subject.proposalHamiltonianospa
dc.subject.proposalOperador Densidadspa
dc.subject.spinesPartículas elementalesspa
dc.subject.spineselementary particleseng
dc.subject.spinesTeoría cuánticaspa
dc.subject.spinesQuantum theoryeng
dc.titleTheoretical study of the vortex dynamics in a polariton condensate beyond the mean field theoryeng
dc.title.translatedEstudio teórico de la dinámica de vórtices en un condensado de polaritones más allá de la teoría de campo mediospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019042231.2021.pdf
Tamaño:
6.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: