En 5 día(s), 6 hora(s) y 30 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Study of the spatial evolution of the ferromagnetic phase transition and magnetocaloric effect in an exchange graded film: a computational approach

dc.contributor.advisorRestrepo Parra, Elisabeth
dc.contributor.advisorAlzate Cardona, Juan David
dc.contributor.authorSalcedo Gallo, Juan Sebastián
dc.contributor.researchgroupPCM Computational Applicationsspa
dc.date.accessioned2021-07-01T21:10:35Z
dc.date.available2021-07-01T21:10:35Z
dc.date.issued2021
dc.descriptionFiguraseng
dc.description.abstractIn this master thesis, it was carried out a numerical and experimental approach for studying the magnetic properties of exchange graded ferromagnets, by using the Monte Carlo method and VSM magnetometry. Specifically, it was studied the spatial evolution of the ferromagnetic phase transition, that emerges when considering a depth-dependent magnetic exchange profile. Numerical and experimental results corroborate prior findings, showing the dominance of the localized thermodynamic nature on the overall measured and simulated net magnetic behavior of the samples. Based on simulation results, it was estimated the length scale at which collective effects can be suppressed in the system, i.e., the length scale to which the effect of the interlayer exchange coupling strength between neighboring layers can be massively reduced. Then, it was derived an analytical expression, only in terms of local material properties, to predict the spatial evolution of the ferromagnetic phase transition in these materials. It was possible to find out that the temperature range of the phase transition can be precisely adapted by controlling the rate of change of the magnetic exchange strength along the gradient direction. Therefore, numerical and predictive modeling, accompanied by experimental observations in samples with epitaxial growth, make explicit how the temperature range of the ferro-paramagnetic phase transition in exchange graded materials depends on the ability to control and manipulate magnetism at the nanoscale. This is important to recognize since, in real materials, this temperature span could scale up to tens or even hundreds of degrees, as corroborated by experiments. To assess the magnetocaloric properties of wave-like modulated exchange graded materials, it was performed simulations of the field-dependent magnetization at several constant temperatures. Overall, it was possible to observe that the magnetocaloric properties can be tailored precisely by inducing depth-dependent exchange strength modulations in the sample. This thesis includes comparisons with actual experimental magnetic characterization of epitaxial samples, featuring depth-dependent variations in the concentration of non-magnetic ions along the growth direction. These experimental observations, exhibit an outstanding qualitative agreement with simulations results, validating the predictive powers of the local magnetic properties description, and the realization of the precise tailoring of the net magnetic response of the samples. Furthermore, numerical estimations corroborate that the magnetic entropy change exhibits a universal and scaling behavior, for the explored magnetic exchange profile, regarding the exchange strength of individual layers within the graded sample. The results presented in this thesis, bring forward the potential suitability of exchange graded thin films for the development and fundamental study of magnetic refrigeration techniques.eng
dc.description.abstractEn la presente tesis de maestría, se desarrolló un enfoque numérico y experimental para describir las propiedades magnéticas de películas delgadas con intercambio graduado, usando el método Monte Carlo y magnetometría VSM. Específicamente, se estudió la evolución espacial de la transición de fase ferromagnética, que surge al considerar un perfil de intercambio magnético en función de propiedades estructurales de la muestra. Los resultados numéricos corroboran hallazgos experimentales previos, mostrando el dominio de la naturaleza termodinámica localizada sobre el comportamiento magnético neto, medido y simulado, de las muestras exploradas en esta tesis. Con base en los resultados de las simulaciones, se calculó la escala de longitud a la que se pueden suprimir los efectos colectivos en el sistema, es decir, la longitud de escala a la que se puede reducir enormemente el efecto de la fuerza de acoplamiento de intercambio entre capas vecinas. Con esto, se derivó una expresión analítica, sólo en términos de propiedades locales del material, para predecir la evolución espacial de la transición de fase ferromagnética en estos materiales. Fue posible descubrir que el intervalo de temperatura de la transición de fase, se puede adaptar con precisión controlando la tasa de cambio de la fuerza de intercambio magnético a lo largo de la dirección del gradiente. Por lo tanto, el modelado numérico y predictivo, acompañado de observaciones experimentales en muestras con crecimiento epitaxial, hacen explícito cómo el rango de temperatura de la transición de fase ferro-paramagnética en materiales con intercambio graduado dependen de la capacidad de controlar y manipular el magnetismo en una longitud de escala nanométrica. Es importante reconocer esto, ya que, en materiales reales, este intervalo de temperatura podría escalar hasta decenas o incluso cientos de grados, como fue comprobado experimentalmente. Para evaluar, numérica y experimentalmente, las propiedades magnéticas y magnetocalóricas de estas muestras, se usaron muestras que exhibían perfiles de intercambio simétricos, modulados en forma de onda, y se realizaron simulaciones y medidas experimentales de la magnetización en función de la temperatura y, posteriormente, de la magnetización dependiente del campo magnético a varias temperaturas constantes. En general, el excelente acuerdo cualitativo entre las medidas de caracterización magnética y resultados numéricos, valida la capacidad predictiva de la descripción de las propiedades magnéticas locales, y la realización del preciso control de la respuesta magnética neta de las muestras, empleando la formulación obtenida en esta tesis. En el caso de las propiedades magnetocalóricas, los resultados numéricos y experimentales presentados muestran que es posible controlar activamente el rango de temperatura de operación en materiales magnéticos. Además, los resultados de simulación corroboraron que el cambio de entropía magnética exhibe un comportamiento de escalamiento y universalidad para el perfil explorado, con respecto a la fuerza de intercambio de capas individuales dentro de la muestra graduada. Los resultados presentados en esta tesis muestran la potencial aplicación de los sistemas estudiados para el desarrollo y el estudio fundamental de las técnicas de refrigeración magnética y el entendimiento del magnetismo a escala nanométrica. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Físicaspa
dc.description.researchareamagnetismspa
dc.description.researchareacomputational physicsspa
dc.description.researchareacomputational condensed matterspa
dc.description.researchareacondensed matter physicsspa
dc.description.researchareananomagnetismspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79752
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesL. Fallarino, P. Riego, B. Kirby, C. Miller, and A. Berger, “Modulation of Magnetic Properties at the Nanometer Scale in Continuously Graded Ferromagnets,” Materials, vol. 11, no. 2, p. 251, 2018.spa
dc.relation.referencesE. F. Kneller and R. Hawig, “The exchange-spring magnet: A new material principle for permanent magnets,” IEEE Trans. Magn., vol. 27, no. 4, pp. 3588–3600, 1991.spa
dc.relation.referencesE. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayers,” Phys. Rev. B, vol. 58, no. 18, p. 12193, 1998.spa
dc.relation.referencesR. H. Victora and X. Shen, “Exchange coupled composite media for perpendicular magnetic recording,” IEEE Trans. Magn., vol. 41, no. 10, pp. 2828–2833, 2005.spa
dc.relation.referencesB. J. Kirby, J. E. Davies, K. Liu, S. M. Watson, G. T. Zimanyi, R. D. Shull, P. A. Kienzle, and J. A. Borchers, “Vertically graded anisotropy in Co/Pd multilayers,” Phys. Rev. B, vol. 81, no. 10, p. 100405(R), 2010.spa
dc.relation.referencesS. M. Mohseni, R. K. Dumas, Y. Fang, J. W. Lau, S. R. Sani, J. Persson, and J. Akerman, “Temperature-dependent interlayer coupling in Ni/Co perpendicular pseudo-spin-valve structures,” Phys, vol. 84, no. 17, p. 174432, 2011.spa
dc.relation.referencesB. J. Kirby, H. F. Belliveau, D. D. Belyea, P. A. Kienzle, A. J. Grutter, P. Riego, A. Berger, and C. W. Miller, “Spatial evolution of the ferromagnetic phase transition in an exchange graded film,” Phys. Rev. Lett., vol. 116, no. 04, p. 047203, oct 2016.spa
dc.relation.referencesB. J. Kirby, L. Fallarino, P. Riego, B. B. Maranville, C. W. Miller, and A. Berger, “Nanoscale magnetic localization in exchange strength modulated ferromagnets,” Phys. Rev. B, vol. 98, no. 06, p. 064404, 2018.spa
dc.relation.referencesL. Fallarino, B. J. Kirby, M. Pancaldi, P. Riego, A. L. Balk, C. W. Miller, P. Vavassori, and A. Berger, “Magnetic properties of epitaxial CoCr films with depthdependent exchange-coupling profiles,” Phys. Rev. B, vol. 95, p. 134445, 2017.spa
dc.relation.referencesV. Franco, J. Blázquez, B. Ingale, and A. Conde, “The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models,” Annual Review of Materials Research, vol. 42, no. 1, pp. 305–342, 2012.spa
dc.relation.referencesW. F. Giauque and D. P. MacDougall, “Attainment of temperatures below 1K absolute by demagnetization of Gd2(SO4)38H2O” Physical Review, vol. 43, no. 9, p. 768, 1933.spa
dc.relation.referencesK. A. Gschneidner and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” International Journal of Refrigeration, vol. 31, no. 6, pp. 945–961, 2008.spa
dc.relation.referencesJ. Romero Gómez, R. Ferreiro Garcia, A. De Miguel Catoira, and M. Romero Gómez, “Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration,” Renewable and Sustainable Energy Reviews, vol. 17, pp. 74–82, 2013.spa
dc.relation.referencesR. A. Gallardo, T. Schneider, and K. Lenz, “Spin-wave non-reciprocity in magnetization-graded ferromagnetic films,” 2019.spa
dc.relation.referencesA. Smaïli and R. Chahine, “Composite materials for Ericsson-like magnetic refrigeration cycle,” Journal of Applied Physics, vol. 81, no. 2, pp. 824–829, 1997.spa
dc.relation.referencesI. G. De Oliveira, P. J. Von Ranke, and E. P. Nóbrega, “Understanding the tablelike magnetocaloric effect,” Journal of Magnetism and Magnetic Materials, vol. 261, no. 1-2, pp. 112–117, 2003.spa
dc.relation.referencesL. Fallarino, “Fabrication and characterization of magnetic thin films and multilayers,” vol. 2017, no. cc, 2017.spa
dc.relation.referencesN. A. Spaldin and J. Mansbridge, Magnetic materials: fundamentals and applications, 2010, vol. 7, no. 5.spa
dc.relation.referencesE. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Zeitschrift für Physik, vol. 31, no. 1, pp. 253–258, 1925.spa
dc.relation.referencesS. Blundell, “Magnetism in Condensed Matter,” The effects of brief mindfulness intervention on acute pain experience: An examination of individual difference, vol. 1, pp. 1689–1699, 2015.spa
dc.relation.referencesR. Skomski, Simple Models os Magnetism, 1st ed. Oxford University Press, 2008.spa
dc.relation.referencesA. Maitre, D. Ledue, and R. Patte, “Interfacial roughness and temperature effects on exchange bias properties in coupled ferromagnetic/antiferromagnetic bilayers,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 4, pp. 403–409, 2012.spa
dc.relation.referencesJ. S. Salcedo-Gallo, C. C. Galindo-González, and E. Restrepo-Parra, “Deep learning approach for image classification of magnetic phases in chiral magnets,” Journal of Magnetism and Magnetic Materials, vol. 501, p. 166482, 2020.spa
dc.relation.referencesR. F. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. Ellis, and R. W. Chantrell, “Atomistic spin model simulations of magnetic nanomaterials,” J. Phys.: Condens. Matter, vol. 26, no. 10, p. 103202, 2014.spa
dc.relation.referencesG. T. B. M. E. J. Newman, Monte Carlo Methods in Statistical Physics, clarendon ed. Utrecht: Clarendon Press, 199.spa
dc.relation.referencesJ. D. Alzate-Cardona, Efecto de la region interfacial en el comportamiento magnético de nanoestructuras core / shell, 2018.spa
dc.relation.referencesN. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.spa
dc.relation.referencesJ. D. Alzate-Cardona, D. Sabogal-Suárez, R. F. Evans, and E. Restrepo-Parra, “Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems,” J. Phys.: Condens. Matter, vol. 31, no. 09, p. 095802, 2019.spa
dc.relation.referencesJ. S. Salcedo-Gallo, D. F. Rodríguez-Patiño, J. D. Alzate-Cardona, H. Barco- Ríos, and E. Restrepo-Parra, “Magnetocaloric effect and magnetic properties in NdMnO3 perovskite: A Monte Carlo Approach,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 382, no. 31, pp. 2069–2074, 2018.spa
dc.relation.referencesR. Caballero Flores, “Efecto magnetocalórico en materiales con transiciones de fase de segundo orden: Optimización de la capacidad de refrigeración,” mar 2011.spa
dc.relation.referencesV. Franco, “Determination of the Magnetic Entropy Change from Magnetic Measurements: the Importance of the Measurement Protocol,” pp. 1–19, 2014.spa
dc.relation.referencesC. W. Miller, D. D. Belyea, and B. J. Kirby, “Magnetocaloric effect in nanoscale thin films and heterostructures,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 4, p. 040802, 2014.spa
dc.relation.referencesY. Nanba, T. Ishimoto, and M. Koyama, “Structural Stability of Ruthenium Nanoparticles: A Density Functional Theory Study,” Journal of Physical Chemistry C, vol. 121, no. 49, pp. 27 445–27 452, 2017.spa
dc.relation.referencesJ. D. Alzate-Cardona, D. Sabogal-Suárez, O. D. Arbeláez-Echeverri, and E. Restrepo-Parra, “Vegas: Software package for the atomistic simulation of magnetic materials,” Rev. Mex. Fis., vol. 64, no. October, pp. 490–497, 2018.spa
dc.relation.referencesA. Chame and E. V. De Mello, “The fluctuation-dissipation theorem in the framework of the Tsallis statistics,” Journal of Physics A: Mathematical and General, vol. 27, no. 11, pp. 3663–3670, 1994.spa
dc.relation.referencesK. Nishimura, N. Hatakeyama, L. Li, T. Hashizume, and K. Mori, “Magnetic and Transport Properties of GdNi1-x Cux,” Japanese Journal of Applied Physics, vol. 10, no. 38, pp. 8553–8558, 1999.spa
dc.relation.referencesO. Idigoras, U. Palomares, A. K. Suszka, L. Fallarino, and A. Berger, “Magnetic properties of room temperature grown epitaxial Co1-xRux-alloy films,” Appl. Phys. Lett., vol. 103, no. 10, p. 102410, 2013.spa
dc.relation.referencesE. Liu, “Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications,” no. November, 2018.spa
dc.relation.referencesK. Binder and H. Rauch, “Calculation of spin-correlation functions in a ferromagnet with a Monte Carlo method,” Physics Letters A, vol. 27, no. 4, pp. 247–248, 1968.spa
dc.relation.referencesM. D. Kuz’min, “Shape of temperature dependence of spontaneous magnetization of ferromagnets: Quantitative analysis,” Phys. Rev. Lett., vol. 94, p. 107204, 2005.spa
dc.relation.referencesK. Binder, “The Monte Carlo method for the study of phase transitions: A review of some recent progress,” J. Comput. Phys., vol. 59, no. 1, pp. 1–55, 1985.spa
dc.relation.referencesP. J. Jensen, H. Dreyssé, and K. H. Bennemann, “Thickness dependence of the magnetization and the Curie temperature of ferromagnetic thin films,” Surf. Sci., vol. 269-270, pp. 627–631, 1992.spa
dc.relation.referencesL. Szunyogh and L. Udvardi, “Ab initio calculation of Heisenberg parameters and Curie temperatures in thin magnetic films,” J. Magn. Magn. Mater.., vol. 198-199, pp. 537–539, 1999.spa
dc.relation.referencesV. Franco, J. S. Blázquez, and A. Conde, “Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change,” Applied Physics Letters, vol. 89, no. 22, pp. 9–12, 2006.spa
dc.relation.referencesV. Franco and A. Conde, “Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials,” International Journal of Refrigeration, vol. 33, no. 3, pp. 465–473, 2010.spa
dc.relation.referencesS. K. Banerjee, “On a Generalised Approach to First and Second Order Magnetic Transitions,” Physics Letters, vol. 12, no. 1, pp. 16–17, 1964.spa
dc.relation.referencesA. Smith, K. K. Nielsen, and C. R. Bahl, “Scaling and universality in magnetocaloric materials,” Physical Review B - Condensed Matter and Materials Physics, vol. 90, no. 10, pp. 1–17, 2014.spa
dc.relation.referencesY. Liu and C. Petrovic, “Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr0.62Te,” Physical Review B, vol. 96, no. 13, pp. 1–7, 2017.spa
dc.relation.referencesV. Franco, A. Conde, and L. F. Kiss, “Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott-Noakes equation of state,” Journal of Applied Physics, vol. 104, no. 3, 2008.spa
dc.relation.referencesV. Franco, A. Conde, M. D. Kuz’Min, and J. M. Romero-Enrique, “The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?” Journal of Applied Physics, vol. 105, no. 7, pp. 1–4, 2009.spa
dc.relation.referencesK. Binder, “A Monte-Carlo method for the calculation of the magnetization of the classical Heisenberg model,” Phys. Lett., vol. 30A, no. 5, pp. 273–274, 1969.spa
dc.relation.referencesR. E. Watson, M. Blume, and G. H. Vineyard, “Spin motions in a classical ferromagnet,” Phys. Rev., vol. 181, no. 2, pp. 811–823, 1969.spa
dc.relation.referencesP. H. Eilers, “A perfect smoother,” Analytical Chemistry, vol. 75, no. 14, pp. 3631–3636, 2003.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.lcshThin films
dc.subject.lcshNanostructured materials--Magnetic properties
dc.subject.lembPelículas delgadas
dc.subject.lembMateriales nanoestructurados
dc.subject.proposalExchange graded ferromagnetseng
dc.subject.proposalMagnetic propertieseng
dc.subject.proposalMonte Carlo methodeng
dc.subject.proposalMagnetocaloric effecteng
dc.subject.proposalNanomagnetismeng
dc.subject.proposalPelículas delgadas con intercambio graduadospa
dc.subject.proposalPropiedades magnéticasspa
dc.subject.proposalMétodo Monte Carlospa
dc.subject.proposalEfecto magneto calóricospa
dc.subject.proposalNanomagnetismospa
dc.titleStudy of the spatial evolution of the ferromagnetic phase transition and magnetocaloric effect in an exchange graded film: a computational approacheng
dc.title.translatedEstudio de la evolución espacial de la transición de fase ferromagnética y efecto magnetocalórico en películas con intercambio graduado: una aproximación computacionalspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovacion - MINCIENCIASspa
oaire.fundernameUniversidad Nacional de Colombia - Sede Manizales, Facultad de Ciencias Exactas y Naturalesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053850643.2021.pdf
Tamaño:
6.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: