Study of the spatial evolution of the ferromagnetic phase transition and magnetocaloric effect in an exchange graded film: a computational approach
| dc.contributor.advisor | Restrepo Parra, Elisabeth | |
| dc.contributor.advisor | Alzate Cardona, Juan David | |
| dc.contributor.author | Salcedo Gallo, Juan Sebastián | |
| dc.contributor.researchgroup | PCM Computational Applications | spa |
| dc.date.accessioned | 2021-07-01T21:10:35Z | |
| dc.date.available | 2021-07-01T21:10:35Z | |
| dc.date.issued | 2021 | |
| dc.description | Figuras | eng |
| dc.description.abstract | In this master thesis, it was carried out a numerical and experimental approach for studying the magnetic properties of exchange graded ferromagnets, by using the Monte Carlo method and VSM magnetometry. Specifically, it was studied the spatial evolution of the ferromagnetic phase transition, that emerges when considering a depth-dependent magnetic exchange profile. Numerical and experimental results corroborate prior findings, showing the dominance of the localized thermodynamic nature on the overall measured and simulated net magnetic behavior of the samples. Based on simulation results, it was estimated the length scale at which collective effects can be suppressed in the system, i.e., the length scale to which the effect of the interlayer exchange coupling strength between neighboring layers can be massively reduced. Then, it was derived an analytical expression, only in terms of local material properties, to predict the spatial evolution of the ferromagnetic phase transition in these materials. It was possible to find out that the temperature range of the phase transition can be precisely adapted by controlling the rate of change of the magnetic exchange strength along the gradient direction. Therefore, numerical and predictive modeling, accompanied by experimental observations in samples with epitaxial growth, make explicit how the temperature range of the ferro-paramagnetic phase transition in exchange graded materials depends on the ability to control and manipulate magnetism at the nanoscale. This is important to recognize since, in real materials, this temperature span could scale up to tens or even hundreds of degrees, as corroborated by experiments. To assess the magnetocaloric properties of wave-like modulated exchange graded materials, it was performed simulations of the field-dependent magnetization at several constant temperatures. Overall, it was possible to observe that the magnetocaloric properties can be tailored precisely by inducing depth-dependent exchange strength modulations in the sample. This thesis includes comparisons with actual experimental magnetic characterization of epitaxial samples, featuring depth-dependent variations in the concentration of non-magnetic ions along the growth direction. These experimental observations, exhibit an outstanding qualitative agreement with simulations results, validating the predictive powers of the local magnetic properties description, and the realization of the precise tailoring of the net magnetic response of the samples. Furthermore, numerical estimations corroborate that the magnetic entropy change exhibits a universal and scaling behavior, for the explored magnetic exchange profile, regarding the exchange strength of individual layers within the graded sample. The results presented in this thesis, bring forward the potential suitability of exchange graded thin films for the development and fundamental study of magnetic refrigeration techniques. | eng |
| dc.description.abstract | En la presente tesis de maestría, se desarrolló un enfoque numérico y experimental para describir las propiedades magnéticas de películas delgadas con intercambio graduado, usando el método Monte Carlo y magnetometría VSM. Específicamente, se estudió la evolución espacial de la transición de fase ferromagnética, que surge al considerar un perfil de intercambio magnético en función de propiedades estructurales de la muestra. Los resultados numéricos corroboran hallazgos experimentales previos, mostrando el dominio de la naturaleza termodinámica localizada sobre el comportamiento magnético neto, medido y simulado, de las muestras exploradas en esta tesis. Con base en los resultados de las simulaciones, se calculó la escala de longitud a la que se pueden suprimir los efectos colectivos en el sistema, es decir, la longitud de escala a la que se puede reducir enormemente el efecto de la fuerza de acoplamiento de intercambio entre capas vecinas. Con esto, se derivó una expresión analítica, sólo en términos de propiedades locales del material, para predecir la evolución espacial de la transición de fase ferromagnética en estos materiales. Fue posible descubrir que el intervalo de temperatura de la transición de fase, se puede adaptar con precisión controlando la tasa de cambio de la fuerza de intercambio magnético a lo largo de la dirección del gradiente. Por lo tanto, el modelado numérico y predictivo, acompañado de observaciones experimentales en muestras con crecimiento epitaxial, hacen explícito cómo el rango de temperatura de la transición de fase ferro-paramagnética en materiales con intercambio graduado dependen de la capacidad de controlar y manipular el magnetismo en una longitud de escala nanométrica. Es importante reconocer esto, ya que, en materiales reales, este intervalo de temperatura podría escalar hasta decenas o incluso cientos de grados, como fue comprobado experimentalmente. Para evaluar, numérica y experimentalmente, las propiedades magnéticas y magnetocalóricas de estas muestras, se usaron muestras que exhibían perfiles de intercambio simétricos, modulados en forma de onda, y se realizaron simulaciones y medidas experimentales de la magnetización en función de la temperatura y, posteriormente, de la magnetización dependiente del campo magnético a varias temperaturas constantes. En general, el excelente acuerdo cualitativo entre las medidas de caracterización magnética y resultados numéricos, valida la capacidad predictiva de la descripción de las propiedades magnéticas locales, y la realización del preciso control de la respuesta magnética neta de las muestras, empleando la formulación obtenida en esta tesis. En el caso de las propiedades magnetocalóricas, los resultados numéricos y experimentales presentados muestran que es posible controlar activamente el rango de temperatura de operación en materiales magnéticos. Además, los resultados de simulación corroboraron que el cambio de entropía magnética exhibe un comportamiento de escalamiento y universalidad para el perfil explorado, con respecto a la fuerza de intercambio de capas individuales dentro de la muestra graduada. Los resultados presentados en esta tesis muestran la potencial aplicación de los sistemas estudiados para el desarrollo y el estudio fundamental de las técnicas de refrigeración magnética y el entendimiento del magnetismo a escala nanométrica. (Texto tomado de la fuente) | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magister en Ciencias - Física | spa |
| dc.description.researcharea | magnetism | spa |
| dc.description.researcharea | computational physics | spa |
| dc.description.researcharea | computational condensed matter | spa |
| dc.description.researcharea | condensed matter physics | spa |
| dc.description.researcharea | nanomagnetism | spa |
| dc.format.extent | 112 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79752 | |
| dc.language.iso | eng | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
| dc.publisher.department | Departamento de Física y Química | spa |
| dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
| dc.publisher.place | Manizales, Colombia | spa |
| dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
| dc.relation.references | L. Fallarino, P. Riego, B. Kirby, C. Miller, and A. Berger, “Modulation of Magnetic Properties at the Nanometer Scale in Continuously Graded Ferromagnets,” Materials, vol. 11, no. 2, p. 251, 2018. | spa |
| dc.relation.references | E. F. Kneller and R. Hawig, “The exchange-spring magnet: A new material principle for permanent magnets,” IEEE Trans. Magn., vol. 27, no. 4, pp. 3588–3600, 1991. | spa |
| dc.relation.references | E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayers,” Phys. Rev. B, vol. 58, no. 18, p. 12193, 1998. | spa |
| dc.relation.references | R. H. Victora and X. Shen, “Exchange coupled composite media for perpendicular magnetic recording,” IEEE Trans. Magn., vol. 41, no. 10, pp. 2828–2833, 2005. | spa |
| dc.relation.references | B. J. Kirby, J. E. Davies, K. Liu, S. M. Watson, G. T. Zimanyi, R. D. Shull, P. A. Kienzle, and J. A. Borchers, “Vertically graded anisotropy in Co/Pd multilayers,” Phys. Rev. B, vol. 81, no. 10, p. 100405(R), 2010. | spa |
| dc.relation.references | S. M. Mohseni, R. K. Dumas, Y. Fang, J. W. Lau, S. R. Sani, J. Persson, and J. Akerman, “Temperature-dependent interlayer coupling in Ni/Co perpendicular pseudo-spin-valve structures,” Phys, vol. 84, no. 17, p. 174432, 2011. | spa |
| dc.relation.references | B. J. Kirby, H. F. Belliveau, D. D. Belyea, P. A. Kienzle, A. J. Grutter, P. Riego, A. Berger, and C. W. Miller, “Spatial evolution of the ferromagnetic phase transition in an exchange graded film,” Phys. Rev. Lett., vol. 116, no. 04, p. 047203, oct 2016. | spa |
| dc.relation.references | B. J. Kirby, L. Fallarino, P. Riego, B. B. Maranville, C. W. Miller, and A. Berger, “Nanoscale magnetic localization in exchange strength modulated ferromagnets,” Phys. Rev. B, vol. 98, no. 06, p. 064404, 2018. | spa |
| dc.relation.references | L. Fallarino, B. J. Kirby, M. Pancaldi, P. Riego, A. L. Balk, C. W. Miller, P. Vavassori, and A. Berger, “Magnetic properties of epitaxial CoCr films with depthdependent exchange-coupling profiles,” Phys. Rev. B, vol. 95, p. 134445, 2017. | spa |
| dc.relation.references | V. Franco, J. Blázquez, B. Ingale, and A. Conde, “The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models,” Annual Review of Materials Research, vol. 42, no. 1, pp. 305–342, 2012. | spa |
| dc.relation.references | W. F. Giauque and D. P. MacDougall, “Attainment of temperatures below 1K absolute by demagnetization of Gd2(SO4)38H2O” Physical Review, vol. 43, no. 9, p. 768, 1933. | spa |
| dc.relation.references | K. A. Gschneidner and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” International Journal of Refrigeration, vol. 31, no. 6, pp. 945–961, 2008. | spa |
| dc.relation.references | J. Romero Gómez, R. Ferreiro Garcia, A. De Miguel Catoira, and M. Romero Gómez, “Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration,” Renewable and Sustainable Energy Reviews, vol. 17, pp. 74–82, 2013. | spa |
| dc.relation.references | R. A. Gallardo, T. Schneider, and K. Lenz, “Spin-wave non-reciprocity in magnetization-graded ferromagnetic films,” 2019. | spa |
| dc.relation.references | A. Smaïli and R. Chahine, “Composite materials for Ericsson-like magnetic refrigeration cycle,” Journal of Applied Physics, vol. 81, no. 2, pp. 824–829, 1997. | spa |
| dc.relation.references | I. G. De Oliveira, P. J. Von Ranke, and E. P. Nóbrega, “Understanding the tablelike magnetocaloric effect,” Journal of Magnetism and Magnetic Materials, vol. 261, no. 1-2, pp. 112–117, 2003. | spa |
| dc.relation.references | L. Fallarino, “Fabrication and characterization of magnetic thin films and multilayers,” vol. 2017, no. cc, 2017. | spa |
| dc.relation.references | N. A. Spaldin and J. Mansbridge, Magnetic materials: fundamentals and applications, 2010, vol. 7, no. 5. | spa |
| dc.relation.references | E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Zeitschrift für Physik, vol. 31, no. 1, pp. 253–258, 1925. | spa |
| dc.relation.references | S. Blundell, “Magnetism in Condensed Matter,” The effects of brief mindfulness intervention on acute pain experience: An examination of individual difference, vol. 1, pp. 1689–1699, 2015. | spa |
| dc.relation.references | R. Skomski, Simple Models os Magnetism, 1st ed. Oxford University Press, 2008. | spa |
| dc.relation.references | A. Maitre, D. Ledue, and R. Patte, “Interfacial roughness and temperature effects on exchange bias properties in coupled ferromagnetic/antiferromagnetic bilayers,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 4, pp. 403–409, 2012. | spa |
| dc.relation.references | J. S. Salcedo-Gallo, C. C. Galindo-González, and E. Restrepo-Parra, “Deep learning approach for image classification of magnetic phases in chiral magnets,” Journal of Magnetism and Magnetic Materials, vol. 501, p. 166482, 2020. | spa |
| dc.relation.references | R. F. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. Ellis, and R. W. Chantrell, “Atomistic spin model simulations of magnetic nanomaterials,” J. Phys.: Condens. Matter, vol. 26, no. 10, p. 103202, 2014. | spa |
| dc.relation.references | G. T. B. M. E. J. Newman, Monte Carlo Methods in Statistical Physics, clarendon ed. Utrecht: Clarendon Press, 199. | spa |
| dc.relation.references | J. D. Alzate-Cardona, Efecto de la region interfacial en el comportamiento magnético de nanoestructuras core / shell, 2018. | spa |
| dc.relation.references | N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. | spa |
| dc.relation.references | J. D. Alzate-Cardona, D. Sabogal-Suárez, R. F. Evans, and E. Restrepo-Parra, “Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems,” J. Phys.: Condens. Matter, vol. 31, no. 09, p. 095802, 2019. | spa |
| dc.relation.references | J. S. Salcedo-Gallo, D. F. Rodríguez-Patiño, J. D. Alzate-Cardona, H. Barco- Ríos, and E. Restrepo-Parra, “Magnetocaloric effect and magnetic properties in NdMnO3 perovskite: A Monte Carlo Approach,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 382, no. 31, pp. 2069–2074, 2018. | spa |
| dc.relation.references | R. Caballero Flores, “Efecto magnetocalórico en materiales con transiciones de fase de segundo orden: Optimización de la capacidad de refrigeración,” mar 2011. | spa |
| dc.relation.references | V. Franco, “Determination of the Magnetic Entropy Change from Magnetic Measurements: the Importance of the Measurement Protocol,” pp. 1–19, 2014. | spa |
| dc.relation.references | C. W. Miller, D. D. Belyea, and B. J. Kirby, “Magnetocaloric effect in nanoscale thin films and heterostructures,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 4, p. 040802, 2014. | spa |
| dc.relation.references | Y. Nanba, T. Ishimoto, and M. Koyama, “Structural Stability of Ruthenium Nanoparticles: A Density Functional Theory Study,” Journal of Physical Chemistry C, vol. 121, no. 49, pp. 27 445–27 452, 2017. | spa |
| dc.relation.references | J. D. Alzate-Cardona, D. Sabogal-Suárez, O. D. Arbeláez-Echeverri, and E. Restrepo-Parra, “Vegas: Software package for the atomistic simulation of magnetic materials,” Rev. Mex. Fis., vol. 64, no. October, pp. 490–497, 2018. | spa |
| dc.relation.references | A. Chame and E. V. De Mello, “The fluctuation-dissipation theorem in the framework of the Tsallis statistics,” Journal of Physics A: Mathematical and General, vol. 27, no. 11, pp. 3663–3670, 1994. | spa |
| dc.relation.references | K. Nishimura, N. Hatakeyama, L. Li, T. Hashizume, and K. Mori, “Magnetic and Transport Properties of GdNi1-x Cux,” Japanese Journal of Applied Physics, vol. 10, no. 38, pp. 8553–8558, 1999. | spa |
| dc.relation.references | O. Idigoras, U. Palomares, A. K. Suszka, L. Fallarino, and A. Berger, “Magnetic properties of room temperature grown epitaxial Co1-xRux-alloy films,” Appl. Phys. Lett., vol. 103, no. 10, p. 102410, 2013. | spa |
| dc.relation.references | E. Liu, “Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications,” no. November, 2018. | spa |
| dc.relation.references | K. Binder and H. Rauch, “Calculation of spin-correlation functions in a ferromagnet with a Monte Carlo method,” Physics Letters A, vol. 27, no. 4, pp. 247–248, 1968. | spa |
| dc.relation.references | M. D. Kuz’min, “Shape of temperature dependence of spontaneous magnetization of ferromagnets: Quantitative analysis,” Phys. Rev. Lett., vol. 94, p. 107204, 2005. | spa |
| dc.relation.references | K. Binder, “The Monte Carlo method for the study of phase transitions: A review of some recent progress,” J. Comput. Phys., vol. 59, no. 1, pp. 1–55, 1985. | spa |
| dc.relation.references | P. J. Jensen, H. Dreyssé, and K. H. Bennemann, “Thickness dependence of the magnetization and the Curie temperature of ferromagnetic thin films,” Surf. Sci., vol. 269-270, pp. 627–631, 1992. | spa |
| dc.relation.references | L. Szunyogh and L. Udvardi, “Ab initio calculation of Heisenberg parameters and Curie temperatures in thin magnetic films,” J. Magn. Magn. Mater.., vol. 198-199, pp. 537–539, 1999. | spa |
| dc.relation.references | V. Franco, J. S. Blázquez, and A. Conde, “Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change,” Applied Physics Letters, vol. 89, no. 22, pp. 9–12, 2006. | spa |
| dc.relation.references | V. Franco and A. Conde, “Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials,” International Journal of Refrigeration, vol. 33, no. 3, pp. 465–473, 2010. | spa |
| dc.relation.references | S. K. Banerjee, “On a Generalised Approach to First and Second Order Magnetic Transitions,” Physics Letters, vol. 12, no. 1, pp. 16–17, 1964. | spa |
| dc.relation.references | A. Smith, K. K. Nielsen, and C. R. Bahl, “Scaling and universality in magnetocaloric materials,” Physical Review B - Condensed Matter and Materials Physics, vol. 90, no. 10, pp. 1–17, 2014. | spa |
| dc.relation.references | Y. Liu and C. Petrovic, “Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr0.62Te,” Physical Review B, vol. 96, no. 13, pp. 1–7, 2017. | spa |
| dc.relation.references | V. Franco, A. Conde, and L. F. Kiss, “Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott-Noakes equation of state,” Journal of Applied Physics, vol. 104, no. 3, 2008. | spa |
| dc.relation.references | V. Franco, A. Conde, M. D. Kuz’Min, and J. M. Romero-Enrique, “The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?” Journal of Applied Physics, vol. 105, no. 7, pp. 1–4, 2009. | spa |
| dc.relation.references | K. Binder, “A Monte-Carlo method for the calculation of the magnetization of the classical Heisenberg model,” Phys. Lett., vol. 30A, no. 5, pp. 273–274, 1969. | spa |
| dc.relation.references | R. E. Watson, M. Blume, and G. H. Vineyard, “Spin motions in a classical ferromagnet,” Phys. Rev., vol. 181, no. 2, pp. 811–823, 1969. | spa |
| dc.relation.references | P. H. Eilers, “A perfect smoother,” Analytical Chemistry, vol. 75, no. 14, pp. 3631–3636, 2003. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 530 - Física::538 - Magnetismo | spa |
| dc.subject.lcsh | Thin films | |
| dc.subject.lcsh | Nanostructured materials--Magnetic properties | |
| dc.subject.lemb | Películas delgadas | |
| dc.subject.lemb | Materiales nanoestructurados | |
| dc.subject.proposal | Exchange graded ferromagnets | eng |
| dc.subject.proposal | Magnetic properties | eng |
| dc.subject.proposal | Monte Carlo method | eng |
| dc.subject.proposal | Magnetocaloric effect | eng |
| dc.subject.proposal | Nanomagnetism | eng |
| dc.subject.proposal | Películas delgadas con intercambio graduado | spa |
| dc.subject.proposal | Propiedades magnéticas | spa |
| dc.subject.proposal | Método Monte Carlo | spa |
| dc.subject.proposal | Efecto magneto calórico | spa |
| dc.subject.proposal | Nanomagnetismo | spa |
| dc.title | Study of the spatial evolution of the ferromagnetic phase transition and magnetocaloric effect in an exchange graded film: a computational approach | eng |
| dc.title.translated | Estudio de la evolución espacial de la transición de fase ferromagnética y efecto magnetocalórico en películas con intercambio graduado: una aproximación computacional | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.fundername | Ministerio de Ciencia Tecnología e Innovacion - MINCIENCIAS | spa |
| oaire.fundername | Universidad Nacional de Colombia - Sede Manizales, Facultad de Ciencias Exactas y Naturales | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053850643.2021.pdf
- Tamaño:
- 6.46 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

