Evaluación de parámetros de obtención de piezas en acero inoxidable 17-4PH fabricados mediante Filamento Fundido
dc.contributor.advisor | Herrera Quintero, Liz Karen | spa |
dc.contributor.advisor | Rodriguez Baracaldo, Rodolfo | spa |
dc.contributor.author | Mongui Muñoz, Daniel Alejandro | |
dc.contributor.researchgroup | Grupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies) | spa |
dc.date.accessioned | 2025-07-21T12:52:08Z | |
dc.date.available | 2025-07-21T12:52:08Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | La manufactura aditiva ha revolucionado la industria de manufactura en los últimos años, gracias a su capacidad de generar piezas con alta complejidad geométrica, reduciendo a su vez el material necesario, en comparación con la manufactura sustractiva. De distintas técnicas que se han desarrollado de manufactura aditiva, la fabricación por fundición de filamento presenta características llamativas para su investigación y aplicación; gracias a que, el proceso brinda una gran libertad geométrica para las piezas fabricadas, así como una alta gama de materiales aptos para este proceso, sin mencionar el bajo requerimiento tanto económico, por el uso de equipos más económicos que otras técnicas, así como de materiales y energía. Sin embargo, el proceso presenta una limitante que no se puede ignorar, a diferencia de otras técnicas de manufactura aditiva, la fabricación por fundición de filamento requiere definir un alto número de parámetros, desde el diseño del material compuesto hasta los parámetros de sinterizado, los cuales influencian las propiedades finales de las piezas. Por lo anterior, este proyecto busca definir un grupo de parámetros que permitan generar probetas metálicas de acero 17-4PH a partir de la fundición de un filamento de carga de polvos del 52% en volumen, además de evaluar como diferentes temperaturas y atmósferas de sinterizado llegan a influenciar las propiedades finales de las piezas como lo son su densidad relativa, microdureza y las microestructuras que se generen en el metal. El trabajo realizado presenta seis capítulos, en los primeros tres se explora la parametrización del proceso, desde la composición de la mezcla hasta las variables que se trabajarán; seguido del desarrollo de una prueba piloto, la cual logró identificar el comportamiento del compuesto y los efectos de una de las atmósferas, para culminar en el desarrollo experimental y caracterización de los efectos de los distintos parámetros explorados en la densidad microdureza y microestructura de las piezas (Texto tomado de la fuente). | spa |
dc.description.abstract | Additive manufacturing (AM) has revolutionized the manufacturing industry in recent years, thanks to its ability to produce parts with high geometric complexity while reducing the amount of material required, compared to subtractive manufacturing. Among the various additive manufacturing techniques that have been developed, Fused Filament Fabrication (FFF) presents attractive characteristics for both research and application. This is due to the process offering great geometric freedom for the fabricated parts, as well as a wide range of suitable materials, not to mention the low economic requirements, stemming from the use of more affordable equipment compared to other techniques and reduced material and energy consumption. However, the process also presents a significant limitation that cannot be overlooked. Unlike other additive manufacturing techniques, FFF requires the definition of many parameters, ranging from the design of the composite material to the sintering parameters, all of which influence the final properties of the produced parts. Given this context, the present project aims to define a set of parameters that allow the fabrication of 17-4PH stainless steel specimens using a filament loaded with 52% metallic powder by volume. Additionally, the study seeks to evaluate how different sintering temperatures and atmospheres influence the final properties of the parts, including their relative density, microhardness, and the resulting microstructures within the metal. The work presented is structured into six chapters. The first three cover the parameterization of the process, from the composition of the feedstock to the definition of the experimental variables. This is followed by the development of a pilot test, which enabled the identification of the composite’s behavior and the effects of one of the sintering atmospheres. The study concludes with the experimental development and characterization of the influence of the explored parameters on the density, microhardness, and microstructure of the fabricated parts. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Mecánica | spa |
dc.description.researcharea | Pulvimetalurgia y manufactura aditiva | spa |
dc.format.extent | xvii, 82 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88361 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | spa |
dc.relation.references | S. Singh, G. Singh, C. Prakash, S. Ramakrishna, Current status and future directions of fused filament fabrication, J. Manuf. Process. 55 (2020) 288–306, https://doi. org/10.1016/j.jmapro.2020.04.049. | spa |
dc.relation.references | ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, vol. 10.04 | spa |
dc.relation.references | Zhai, Y., Lados, D.A. & LaGoy, J.L. Additive Manufacturing: Making Imagination the Major Limitation. JOM 66, 808–816 (2014). https://doi.org/10.1007/s11837-014 0886-2. | spa |
dc.relation.references | Yaozhong Zhang, Aljoscha Roch, Fused filament fabrication and sintering of 17 4PH stainless steel, Manufacturing Letters, Volume 33,2022, Pages 29-32, ISSN 2213-8463, https://doi.org/10.1016/j.mfglet.2022.06.004 | spa |
dc.relation.references | Juan Alfonso Naranjo, Cristina Berges, Roberto Campana, Gemma Herranz, Rheological and mechanical assessment for formulating hybrid feedstock to be used in MIM & FFF, Results in Engineering, Volume 19, 2023, 101258, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2023.101258. | spa |
dc.relation.references | Naveen Kumar Bankapalli, Vishal Gupta, Prateek Saxena, Ankur Bajpai, Christian Lahoda, Julian Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B: Engineering, Volume 264, 2023, 110915, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110915. | spa |
dc.relation.references | Gurminder Singh, Jean-Michel Missiaen, Didier Bouvard, Jean-Marc Chaix, Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: Analysis of 3D extrusion printing, debinding and sintering, Additive Manufacturing, Volume 47, 2021, 102287, https://doi.org/10.1016/j.addma.2021.102287. | spa |
dc.relation.references | Lena Ammosova, Santiago Cano Cano, Stephan Schuschnigg, Christian Kukla, Kari Mönkkönen, Mika Suvanto, Joamin Gonzalez-Gutierrez, Effect of metal particle size and powder volume fraction on the filling performance of powder injection moulded parts with a microtextured surface, Precision Engineering, Volume 72, 2021, Pages 604-612, ISSN https://doi.org/10.1016/j.precisioneng.2021.06.014. | spa |
dc.relation.references | “Mecanizado CNC de componentes de acero inoxidable 17-4 PH de alta resistencia Mecanizado AT,” AT-Machining, 2017. https://at-machining.com/es/metal-cnc machining/stainless-steel/ss17-4ph/(accessed Mar. 11, 2025). | spa |
dc.relation.references | Joamin Gonzalez-Gutierrez, Florian Arbeiter, Thomas Schlauf, Christian Kukla, Clemens Holzer, Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing, Materials Letters, Volume 248, 2019, Pages 165-168, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2019.04.024. | spa |
dc.relation.references | Stanislav Roshchupkin, Alexander Kolesov, Alexey Tarakhovskiy, Ivan Tishchenko, A brief review of main ideas of metal fused filament fabrication, Materials Today: Proceedings, Volume 38, Part 4, 2021, Pages 2063-2067, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.10.142. | spa |
dc.relation.references | I. C. Sierra Calderon, “Influencia del tiempo y temperatura de sinterización en la calidad superficial de componentes de acero obtenidos mediante manufactura aditiva basada en extrusión”, Universidad Nacional de Colombia, Bogotá, 2023. | spa |
dc.relation.references | Kan, Xinfeng & Yang, Dengcui & Zhao, Z.Z. & Sun, Jiquan. (2021). 316L FFF binder development and debinding optimization. Materials Research Express. 8. 10.1088/2053-1591/ac3b15. | spa |
dc.relation.references | “Impresora 3D Creality Ender 3,” Impresora 3D Bogotá - Creality, Artillery, Zortrax Colombia, 2024.https://arrowti3d.com/impresora-3d-creality-ender 3?srsltid=AfmBOoq0OQJBwLhdcC4df407XHX6JTQfl8z6d4bs2aQd2BM-xecnHhuO (accessed Mar. 14, 2025). | spa |
dc.relation.references | J.G. Tirado González, “Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva”, Universidad Nacional de Colombia, Bogotá, 2023. | spa |
dc.relation.references | Naveen Kumar Bankapalli, Vishal Gupta, Prateek Saxena, Ankur Bajpai, Christian Lahoda, Julian Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B: Engineering, Volume 264, 2023, 110915, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110915. | spa |
dc.relation.references | R. M. German, P. Suri y. S. J. Park, “Review: liquid phase sintering,” Journal of Materials Science, vol. 44, nº 1, pp. 1-39, 2009. | spa |
dc.relation.references | Wenbing Huang, Haojie Yu, Li Wang, Xudong Wu, Chenguang Ouyang, Yanhui Zhang, Jiawen He, State of the art and prospects in sliver- and copper-matrix composite electrical contact materials, Materials Today Communications, Volume 37, 2023, 107256, SSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2023.107256. | spa |
dc.relation.references | Suk-Joong L. Kang, 1 - SINTERING PROCESSES, Editor(s): Suk-Joong L. Kang, Sintering, Butterworth-Heinemann, 2005, Pages 3-8, ISBN 9780750663854, https://doi.org/10.1016/B978-075066385-4/50001-7. | spa |
dc.relation.references | G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, T.B. Sercombe, the effect of the atmosphere and the role of pore filling on the sintering of aluminium, Acta Materialia, Volume 54, Issue 1, 2006, Pages 131-138, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2005.08.032. | spa |
dc.relation.references | Dewidar, Montasser. (2012). Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications. International Journal of Mechanical and Mechanics Engineering. 12. 10-24. | spa |
dc.relation.references | Hezhou Ye, Xing Yang Liu, Hanping Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Materials Letters, Volume 62, Issue 19, 2008, Pages 3334-3336, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2008.03.027. | spa |
dc.relation.references | A. Simchi, A. Rota, P. Imgrund, An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites, Materials Science and Engineering: A, Volume 424, Issues 1–2, 2006, Pages 282-289, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2006.03.032. | spa |
dc.relation.references | Yimin Li, Liujun Li, K.A. Khalil, Effect of powder loading on metal injection molding stainless steels, Journal of Materials Processing Technology, Volume 183, Issues 2-3, 2007, Pages 432-439, https://doi.org/10.1016/j.jmatprotec.2006.10.039. | spa |
dc.relation.references | Schroeder, Renan & Hammes, Gisele & Binder, R. & Klein, Aloisio. (2011). Plasma Debinding and Sintering of Metal Injection Moulded 17-4PH Stainless Steel. Materials Research. 14. Pages 564-568. 10.1590/S1516-14392011005000082. | spa |
dc.relation.references | Bruce G. Dionne, Phil McCalla, Akin Malas, Jessica Rothstein, Grzegorz Moroz, An approach to carbon control of sintering furnace atmosphere: theory and practice, Metal Powder Report, Volume 70, Issue 5, 2015, Pages 247-252, ISSN 0026-0657, https://doi.org/10.1016/j.mprp.2015.08.078. | spa |
dc.relation.references | Zhaoyun Chen, Guijuan Zhou, Zhonghua Chen, Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching, Materials Science and Engineering: A, Volume 534, 2012, Pages 536-541, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2011.12.004. | spa |
dc.relation.references | Dawei Guo, Chi Tat Kwok, Lap Mou Tam, Dawei Zhang, Xiaogang Li, Hardness, microstructure and texture of friction surfaced 17-4PH precipitation hardening stainless steel coatings with and without subsequent aging, Surface and Coatings Technology, Volume 402, 2020, 126302, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2020.126302. | spa |
dc.relation.references | Naveen Kumar Bankapalli, Vishal Gupta, Prateek Saxena, Ankur Bajpai, Christian Lahoda, Julian Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B: Engineering, Volume 264, 2023, 110915, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110915. | spa |
dc.relation.references | Alberto Boschetto, Luana Bottini, Fabio Miani, Francesco Veniali, Roughness investigation of steel 316L parts fabricated by Metal Fused Filament Fabrication, Journal of Manufacturing Processes, Volume 81, 2022, Pages 261-280, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2022.06.077. | spa |
dc.relation.references | Zhang, X. & He, H. & Li, Y.-M & Liu, C. & Man, L.-M & Hu, Y.-H. (2015). Effect of carbon content on microstructure and mechanical properties of metal injection molded 17-4PH stainless steel. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals. 25. 945-951 | spa |
dc.relation.references | Mikó, T., Markatos, D., Török, T. I., Szabó, G., & Gácsi, Z. (2024). Minimizing Porosity in 17-4 PH Stainless Steel Compacts in a Modified Powder Metallurgical Process. Journal of Composites Science, 8(7), 277. https://doi.org/10.3390/jcs8070277 | spa |
dc.relation.references | Wu, Yunxin & Blaine, Deborah & Marx, B. & Schlaefer, C.. (2002). Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel. Journal of Materials Science. 37. 3573-3583. 10.1023/A:1016532418920. | spa |
dc.relation.references | J. E. Haley, "Thinking about Metal Binder Jetting or FFF? Here is (almost) everything you need to know about sintering," Metal Additive Manufacturing, Mar. 2024. [Online]. Available: https://www.metal-am.com/articles/thinking-about-metalbinder-jetting-or-fff-here-is-almost-everything-you-need-to-know-about-sintering/. [Accessed: Apr. 01, 2025]. | spa |
dc.relation.references | Ye, Hezhou & Liu, Xing Yang & Hong, Hanping. (2008). Sintering of 17-4PH stainless steel feedstock for metal injection molding. Materials Letters - MATER LETT. 62. 3334-3336. 10.1016/j.matlet.2008.03.027. | spa |
dc.relation.references | ZCMIM, "MIM 17-4," ZCMIM, 2025. [Online]. Available: https://www.zcmim.com/mim-17-4/. [Accessed: Apr. 01, 2025]. | spa |
dc.relation.references | Suharno, Bambang & Ferdian, Deni & Saputro, Hantoro & Suharno, Lingga & Baek, E. & Supriadi, Sugeng. (2017). Vacuum Sintering Process in Metal Injection Molding for 17-4 PH Stainless Steel as Material for Orthodontic Bracket. Solid State Phenomena. 266. 231-237. 10.4028/www.scientific.net/SSP.266.231. | spa |
dc.relation.references | Kazior, J. (2023). Influence of Sintering Atmosphere, Temperature and the Solution-Annealing Treatment on the Properties of Precipitation-Hardening Sintered 17-4 PH Stainless Steel. Materials, 16(2), 760. https://doi.org/10.3390/ma16020760 | spa |
dc.relation.references | Huang, Xiang-Lin & Shu, Guo-Jiun & Wang, Hsin-Tzu & Yang, Tan-Ju & Lan, Yin Ping & Fan, Yang-Liang. (2025). Impact of Sintering Parameters on Sintering Densification and Mechanical Properties of High-Performance Powder Metallurgy (HPM) 17-4PH Compacts. Journal of the Japan Society of Powder and Powder Metallurgy. 72. 10.2497/jjspm.16P-T10-03. | spa |
dc.relation.references | Hezhou Ye, Xing Yang Liu, Hanping Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Materials Letters, Volume 62, Issue 19, 2008, Pages 3334-3336, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2008.03.027. | spa |
dc.relation.references | Gigović-Gekić, Almaida & Avdusinovic, Hasan & Hodžić, Amna & Mandžuka, Ermina. (2020). Effect of Temperature and Time on Decomposition of δ-ferrite in Austenitic Stainless Steel. Materials and Geoenvironment. 67. 10.2478/rmzmag 2020-0007. | spa |
dc.relation.references | Pellegrini, A., Lavecchia, F., Guerra, M.G. et al. Influence of aging treatments on 17–4 PH stainless steel parts realized using material extrusion additive manufacturing technologies. Int J Adv Manuf Technol 126, 163–178 (2023). https://doi.org/10.1007/s00170-023-11136-3 | spa |
dc.relation.references | ASTMA564/A564M-19AH900; Standard Specification for Hot-Rolled and Cold Finished Age-Hardening Stainless Steel Bars and Shapes. ASTM International: West Conshohocken, PA, USA, 2017. | spa |
dc.relation.references | Marius A. Wagner, Amir Hadian, Tutu Sebastian, Frank Clemens, Thomas Schweizer, Mikel Rodriguez-Arbaizar, Efrain Carreño-Morelli, Ralph Spolenak, Fused filament fabrication of stainless steel structures - from binder development to sintered properties, Additive Manufacturing, Volume 49, 2022, 102472, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2021.102472. | spa |
dc.relation.references | Pellegrini, A., Lavecchia, F., Guerra, M.G. et al. Influence of aging treatments on 17–4 PH stainless steel parts realized using material extrusion additive manufacturing technologies. Int J Adv Manuf Technol 126, 163–178 (2023). https://doi.org/10.1007/s00170-023-11136-3 | spa |
dc.relation.references | Desktop Metal Inc. (2021) 17–4PH-stainless-steel. https://www.desktopmetal.com/uploads/BMD-SPC-MDS-17-4ph-211112_c. pdf[Accessed: Apr.09, 2025]. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.lemb | ACERO INOXIDABLE | spa |
dc.subject.lemb | Steel, stainless | eng |
dc.subject.lemb | PROCESOS DE MANUFACTURA | spa |
dc.subject.lemb | Manufacturing processes | eng |
dc.subject.lemb | MECANIZADO | spa |
dc.subject.lemb | Machining | eng |
dc.subject.lemb | COMPUESTOS METALICOS | spa |
dc.subject.lemb | Metallic composites | eng |
dc.subject.lemb | MATERIALES COMPUESTOS | spa |
dc.subject.lemb | Composite materials | eng |
dc.subject.proposal | Manufactura aditiva | spa |
dc.subject.proposal | Fabricación por fundición de filamento | spa |
dc.subject.proposal | Acero inoxidable | spa |
dc.subject.proposal | Microdureza | spa |
dc.subject.proposal | Sinterizado | spa |
dc.subject.proposal | Additive manufacturing | eng |
dc.subject.proposal | Fused Filament Fabrication | eng |
dc.subject.proposal | Stainless steel | eng |
dc.subject.proposal | Microhardness | eng |
dc.subject.proposal | Sintering | eng |
dc.title | Evaluación de parámetros de obtención de piezas en acero inoxidable 17-4PH fabricados mediante Filamento Fundido | spa |
dc.title.translated | Parameter evaluation to produce 17-4PH stainless steel parts produced by Fused Filament fabrication | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010243717.2025.pdf
- Tamaño:
- 3.7 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: