Evaluación de parámetros de obtención de piezas en acero inoxidable 17-4PH fabricados mediante Filamento Fundido

dc.contributor.advisorHerrera Quintero, Liz Karenspa
dc.contributor.advisorRodriguez Baracaldo, Rodolfospa
dc.contributor.authorMongui Muñoz, Daniel Alejandro
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.date.accessioned2025-07-21T12:52:08Z
dc.date.available2025-07-21T12:52:08Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa manufactura aditiva ha revolucionado la industria de manufactura en los últimos años, gracias a su capacidad de generar piezas con alta complejidad geométrica, reduciendo a su vez el material necesario, en comparación con la manufactura sustractiva. De distintas técnicas que se han desarrollado de manufactura aditiva, la fabricación por fundición de filamento presenta características llamativas para su investigación y aplicación; gracias a que, el proceso brinda una gran libertad geométrica para las piezas fabricadas, así como una alta gama de materiales aptos para este proceso, sin mencionar el bajo requerimiento tanto económico, por el uso de equipos más económicos que otras técnicas, así como de materiales y energía. Sin embargo, el proceso presenta una limitante que no se puede ignorar, a diferencia de otras técnicas de manufactura aditiva, la fabricación por fundición de filamento requiere definir un alto número de parámetros, desde el diseño del material compuesto hasta los parámetros de sinterizado, los cuales influencian las propiedades finales de las piezas. Por lo anterior, este proyecto busca definir un grupo de parámetros que permitan generar probetas metálicas de acero 17-4PH a partir de la fundición de un filamento de carga de polvos del 52% en volumen, además de evaluar como diferentes temperaturas y atmósferas de sinterizado llegan a influenciar las propiedades finales de las piezas como lo son su densidad relativa, microdureza y las microestructuras que se generen en el metal. El trabajo realizado presenta seis capítulos, en los primeros tres se explora la parametrización del proceso, desde la composición de la mezcla hasta las variables que se trabajarán; seguido del desarrollo de una prueba piloto, la cual logró identificar el comportamiento del compuesto y los efectos de una de las atmósferas, para culminar en el desarrollo experimental y caracterización de los efectos de los distintos parámetros explorados en la densidad microdureza y microestructura de las piezas (Texto tomado de la fuente).spa
dc.description.abstractAdditive manufacturing (AM) has revolutionized the manufacturing industry in recent years, thanks to its ability to produce parts with high geometric complexity while reducing the amount of material required, compared to subtractive manufacturing. Among the various additive manufacturing techniques that have been developed, Fused Filament Fabrication (FFF) presents attractive characteristics for both research and application. This is due to the process offering great geometric freedom for the fabricated parts, as well as a wide range of suitable materials, not to mention the low economic requirements, stemming from the use of more affordable equipment compared to other techniques and reduced material and energy consumption. However, the process also presents a significant limitation that cannot be overlooked. Unlike other additive manufacturing techniques, FFF requires the definition of many parameters, ranging from the design of the composite material to the sintering parameters, all of which influence the final properties of the produced parts. Given this context, the present project aims to define a set of parameters that allow the fabrication of 17-4PH stainless steel specimens using a filament loaded with 52% metallic powder by volume. Additionally, the study seeks to evaluate how different sintering temperatures and atmospheres influence the final properties of the parts, including their relative density, microhardness, and the resulting microstructures within the metal. The work presented is structured into six chapters. The first three cover the parameterization of the process, from the composition of the feedstock to the definition of the experimental variables. This is followed by the development of a pilot test, which enabled the identification of the composite’s behavior and the effects of one of the sintering atmospheres. The study concludes with the experimental development and characterization of the influence of the explored parameters on the density, microhardness, and microstructure of the fabricated parts.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Mecánicaspa
dc.description.researchareaPulvimetalurgia y manufactura aditivaspa
dc.format.extentxvii, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88361
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesS. Singh, G. Singh, C. Prakash, S. Ramakrishna, Current status and future directions of fused filament fabrication, J. Manuf. Process. 55 (2020) 288–306, https://doi. org/10.1016/j.jmapro.2020.04.049.spa
dc.relation.referencesASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, vol. 10.04spa
dc.relation.referencesZhai, Y., Lados, D.A. & LaGoy, J.L. Additive Manufacturing: Making Imagination the Major Limitation. JOM 66, 808–816 (2014). https://doi.org/10.1007/s11837-014 0886-2.spa
dc.relation.referencesYaozhong Zhang, Aljoscha Roch, Fused filament fabrication and sintering of 17 4PH stainless steel, Manufacturing Letters, Volume 33,2022, Pages 29-32, ISSN 2213-8463, https://doi.org/10.1016/j.mfglet.2022.06.004spa
dc.relation.referencesJuan Alfonso Naranjo, Cristina Berges, Roberto Campana, Gemma Herranz, Rheological and mechanical assessment for formulating hybrid feedstock to be used in MIM & FFF, Results in Engineering, Volume 19, 2023, 101258, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2023.101258.spa
dc.relation.referencesNaveen Kumar Bankapalli, Vishal Gupta, Prateek Saxena, Ankur Bajpai, Christian Lahoda, Julian Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B: Engineering, Volume 264, 2023, 110915, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110915.spa
dc.relation.referencesGurminder Singh, Jean-Michel Missiaen, Didier Bouvard, Jean-Marc Chaix, Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: Analysis of 3D extrusion printing, debinding and sintering, Additive Manufacturing, Volume 47, 2021, 102287, https://doi.org/10.1016/j.addma.2021.102287.spa
dc.relation.referencesLena Ammosova, Santiago Cano Cano, Stephan Schuschnigg, Christian Kukla, Kari Mönkkönen, Mika Suvanto, Joamin Gonzalez-Gutierrez, Effect of metal particle size and powder volume fraction on the filling performance of powder injection moulded parts with a microtextured surface, Precision Engineering, Volume 72, 2021, Pages 604-612, ISSN https://doi.org/10.1016/j.precisioneng.2021.06.014.spa
dc.relation.references“Mecanizado CNC de componentes de acero inoxidable 17-4 PH de alta resistencia Mecanizado AT,” AT-Machining, 2017. https://at-machining.com/es/metal-cnc machining/stainless-steel/ss17-4ph/(accessed Mar. 11, 2025).spa
dc.relation.referencesJoamin Gonzalez-Gutierrez, Florian Arbeiter, Thomas Schlauf, Christian Kukla, Clemens Holzer, Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing, Materials Letters, Volume 248, 2019, Pages 165-168, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2019.04.024.spa
dc.relation.referencesStanislav Roshchupkin, Alexander Kolesov, Alexey Tarakhovskiy, Ivan Tishchenko, A brief review of main ideas of metal fused filament fabrication, Materials Today: Proceedings, Volume 38, Part 4, 2021, Pages 2063-2067, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.10.142.spa
dc.relation.referencesI. C. Sierra Calderon, “Influencia del tiempo y temperatura de sinterización en la calidad superficial de componentes de acero obtenidos mediante manufactura aditiva basada en extrusión”, Universidad Nacional de Colombia, Bogotá, 2023.spa
dc.relation.referencesKan, Xinfeng & Yang, Dengcui & Zhao, Z.Z. & Sun, Jiquan. (2021). 316L FFF binder development and debinding optimization. Materials Research Express. 8. 10.1088/2053-1591/ac3b15.spa
dc.relation.references“Impresora 3D Creality Ender 3,” Impresora 3D Bogotá - Creality, Artillery, Zortrax Colombia, 2024.https://arrowti3d.com/impresora-3d-creality-ender 3?srsltid=AfmBOoq0OQJBwLhdcC4df407XHX6JTQfl8z6d4bs2aQd2BM-xecnHhuO (accessed Mar. 14, 2025).spa
dc.relation.referencesJ.G. Tirado González, “Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva”, Universidad Nacional de Colombia, Bogotá, 2023.spa
dc.relation.referencesNaveen Kumar Bankapalli, Vishal Gupta, Prateek Saxena, Ankur Bajpai, Christian Lahoda, Julian Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B: Engineering, Volume 264, 2023, 110915, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110915.spa
dc.relation.referencesR. M. German, P. Suri y. S. J. Park, “Review: liquid phase sintering,” Journal of Materials Science, vol. 44, nº 1, pp. 1-39, 2009.spa
dc.relation.referencesWenbing Huang, Haojie Yu, Li Wang, Xudong Wu, Chenguang Ouyang, Yanhui Zhang, Jiawen He, State of the art and prospects in sliver- and copper-matrix composite electrical contact materials, Materials Today Communications, Volume 37, 2023, 107256, SSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2023.107256.spa
dc.relation.referencesSuk-Joong L. Kang, 1 - SINTERING PROCESSES, Editor(s): Suk-Joong L. Kang, Sintering, Butterworth-Heinemann, 2005, Pages 3-8, ISBN 9780750663854, https://doi.org/10.1016/B978-075066385-4/50001-7.spa
dc.relation.referencesG.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, T.B. Sercombe, the effect of the atmosphere and the role of pore filling on the sintering of aluminium, Acta Materialia, Volume 54, Issue 1, 2006, Pages 131-138, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2005.08.032.spa
dc.relation.referencesDewidar, Montasser. (2012). Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications. International Journal of Mechanical and Mechanics Engineering. 12. 10-24.spa
dc.relation.referencesHezhou Ye, Xing Yang Liu, Hanping Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Materials Letters, Volume 62, Issue 19, 2008, Pages 3334-3336, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2008.03.027.spa
dc.relation.referencesA. Simchi, A. Rota, P. Imgrund, An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites, Materials Science and Engineering: A, Volume 424, Issues 1–2, 2006, Pages 282-289, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2006.03.032.spa
dc.relation.referencesYimin Li, Liujun Li, K.A. Khalil, Effect of powder loading on metal injection molding stainless steels, Journal of Materials Processing Technology, Volume 183, Issues 2-3, 2007, Pages 432-439, https://doi.org/10.1016/j.jmatprotec.2006.10.039.spa
dc.relation.referencesSchroeder, Renan & Hammes, Gisele & Binder, R. & Klein, Aloisio. (2011). Plasma Debinding and Sintering of Metal Injection Moulded 17-4PH Stainless Steel. Materials Research. 14. Pages 564-568. 10.1590/S1516-14392011005000082.spa
dc.relation.referencesBruce G. Dionne, Phil McCalla, Akin Malas, Jessica Rothstein, Grzegorz Moroz, An approach to carbon control of sintering furnace atmosphere: theory and practice, Metal Powder Report, Volume 70, Issue 5, 2015, Pages 247-252, ISSN 0026-0657, https://doi.org/10.1016/j.mprp.2015.08.078.spa
dc.relation.referencesZhaoyun Chen, Guijuan Zhou, Zhonghua Chen, Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching, Materials Science and Engineering: A, Volume 534, 2012, Pages 536-541, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2011.12.004.spa
dc.relation.referencesDawei Guo, Chi Tat Kwok, Lap Mou Tam, Dawei Zhang, Xiaogang Li, Hardness, microstructure and texture of friction surfaced 17-4PH precipitation hardening stainless steel coatings with and without subsequent aging, Surface and Coatings Technology, Volume 402, 2020, 126302, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2020.126302.spa
dc.relation.referencesNaveen Kumar Bankapalli, Vishal Gupta, Prateek Saxena, Ankur Bajpai, Christian Lahoda, Julian Polte, Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review, Composites Part B: Engineering, Volume 264, 2023, 110915, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110915.spa
dc.relation.referencesAlberto Boschetto, Luana Bottini, Fabio Miani, Francesco Veniali, Roughness investigation of steel 316L parts fabricated by Metal Fused Filament Fabrication, Journal of Manufacturing Processes, Volume 81, 2022, Pages 261-280, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2022.06.077.spa
dc.relation.referencesZhang, X. & He, H. & Li, Y.-M & Liu, C. & Man, L.-M & Hu, Y.-H. (2015). Effect of carbon content on microstructure and mechanical properties of metal injection molded 17-4PH stainless steel. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals. 25. 945-951spa
dc.relation.referencesMikó, T., Markatos, D., Török, T. I., Szabó, G., & Gácsi, Z. (2024). Minimizing Porosity in 17-4 PH Stainless Steel Compacts in a Modified Powder Metallurgical Process. Journal of Composites Science, 8(7), 277. https://doi.org/10.3390/jcs8070277spa
dc.relation.referencesWu, Yunxin & Blaine, Deborah & Marx, B. & Schlaefer, C.. (2002). Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel. Journal of Materials Science. 37. 3573-3583. 10.1023/A:1016532418920.spa
dc.relation.referencesJ. E. Haley, "Thinking about Metal Binder Jetting or FFF? Here is (almost) everything you need to know about sintering," Metal Additive Manufacturing, Mar. 2024. [Online]. Available: https://www.metal-am.com/articles/thinking-about-metalbinder-jetting-or-fff-here-is-almost-everything-you-need-to-know-about-sintering/. [Accessed: Apr. 01, 2025].spa
dc.relation.referencesYe, Hezhou & Liu, Xing Yang & Hong, Hanping. (2008). Sintering of 17-4PH stainless steel feedstock for metal injection molding. Materials Letters - MATER LETT. 62. 3334-3336. 10.1016/j.matlet.2008.03.027.spa
dc.relation.referencesZCMIM, "MIM 17-4," ZCMIM, 2025. [Online]. Available: https://www.zcmim.com/mim-17-4/. [Accessed: Apr. 01, 2025].spa
dc.relation.referencesSuharno, Bambang & Ferdian, Deni & Saputro, Hantoro & Suharno, Lingga & Baek, E. & Supriadi, Sugeng. (2017). Vacuum Sintering Process in Metal Injection Molding for 17-4 PH Stainless Steel as Material for Orthodontic Bracket. Solid State Phenomena. 266. 231-237. 10.4028/www.scientific.net/SSP.266.231.spa
dc.relation.referencesKazior, J. (2023). Influence of Sintering Atmosphere, Temperature and the Solution-Annealing Treatment on the Properties of Precipitation-Hardening Sintered 17-4 PH Stainless Steel. Materials, 16(2), 760. https://doi.org/10.3390/ma16020760spa
dc.relation.referencesHuang, Xiang-Lin & Shu, Guo-Jiun & Wang, Hsin-Tzu & Yang, Tan-Ju & Lan, Yin Ping & Fan, Yang-Liang. (2025). Impact of Sintering Parameters on Sintering Densification and Mechanical Properties of High-Performance Powder Metallurgy (HPM) 17-4PH Compacts. Journal of the Japan Society of Powder and Powder Metallurgy. 72. 10.2497/jjspm.16P-T10-03.spa
dc.relation.referencesHezhou Ye, Xing Yang Liu, Hanping Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Materials Letters, Volume 62, Issue 19, 2008, Pages 3334-3336, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2008.03.027.spa
dc.relation.referencesGigović-Gekić, Almaida & Avdusinovic, Hasan & Hodžić, Amna & Mandžuka, Ermina. (2020). Effect of Temperature and Time on Decomposition of δ-ferrite in Austenitic Stainless Steel. Materials and Geoenvironment. 67. 10.2478/rmzmag 2020-0007.spa
dc.relation.referencesPellegrini, A., Lavecchia, F., Guerra, M.G. et al. Influence of aging treatments on 17–4 PH stainless steel parts realized using material extrusion additive manufacturing technologies. Int J Adv Manuf Technol 126, 163–178 (2023). https://doi.org/10.1007/s00170-023-11136-3spa
dc.relation.referencesASTMA564/A564M-19AH900; Standard Specification for Hot-Rolled and Cold Finished Age-Hardening Stainless Steel Bars and Shapes. ASTM International: West Conshohocken, PA, USA, 2017.spa
dc.relation.referencesMarius A. Wagner, Amir Hadian, Tutu Sebastian, Frank Clemens, Thomas Schweizer, Mikel Rodriguez-Arbaizar, Efrain Carreño-Morelli, Ralph Spolenak, Fused filament fabrication of stainless steel structures - from binder development to sintered properties, Additive Manufacturing, Volume 49, 2022, 102472, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2021.102472.spa
dc.relation.referencesPellegrini, A., Lavecchia, F., Guerra, M.G. et al. Influence of aging treatments on 17–4 PH stainless steel parts realized using material extrusion additive manufacturing technologies. Int J Adv Manuf Technol 126, 163–178 (2023). https://doi.org/10.1007/s00170-023-11136-3spa
dc.relation.referencesDesktop Metal Inc. (2021) 17–4PH-stainless-steel. https://www.desktopmetal.com/uploads/BMD-SPC-MDS-17-4ph-211112_c. pdf[Accessed: Apr.09, 2025].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosasspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembACERO INOXIDABLEspa
dc.subject.lembSteel, stainlesseng
dc.subject.lembPROCESOS DE MANUFACTURAspa
dc.subject.lembManufacturing processeseng
dc.subject.lembMECANIZADOspa
dc.subject.lembMachiningeng
dc.subject.lembCOMPUESTOS METALICOSspa
dc.subject.lembMetallic compositeseng
dc.subject.lembMATERIALES COMPUESTOSspa
dc.subject.lembComposite materialseng
dc.subject.proposalManufactura aditivaspa
dc.subject.proposalFabricación por fundición de filamentospa
dc.subject.proposalAcero inoxidablespa
dc.subject.proposalMicrodurezaspa
dc.subject.proposalSinterizadospa
dc.subject.proposalAdditive manufacturingeng
dc.subject.proposalFused Filament Fabricationeng
dc.subject.proposalStainless steeleng
dc.subject.proposalMicrohardnesseng
dc.subject.proposalSinteringeng
dc.titleEvaluación de parámetros de obtención de piezas en acero inoxidable 17-4PH fabricados mediante Filamento Fundidospa
dc.title.translatedParameter evaluation to produce 17-4PH stainless steel parts produced by Fused Filament fabricationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010243717.2025.pdf
Tamaño:
3.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: