Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas

dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.advisorMéndez Córdoba, Luis Carlos
dc.contributor.authorPérez Martínez, Vanesa
dc.contributor.researchgroupGrupo de Investigación en Macromoléculasspa
dc.contributor.researchgroupGrupo de Investigación en Ciencia, Ingeniería y Salud - Gicis.spa
dc.date.accessioned2023-07-27T15:23:03Z
dc.date.available2023-07-27T15:23:03Z
dc.date.issued2022-06-09
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractPara el área de la salud, en la distribución, almacenamiento y transporte de medicamentos, existen diversos envases poliméricos comercializados en Colombia. Para el caso específico del envase de soluciones salinas intravenosas, el material polimérico más utilizado es el poli cloruro de vinilo (PVC). Desafortunadamente, no hay información clara sobre la composición exacta de estos envases, ni los efectos sobre el material y la solución salina al exponer estos a calentamiento por microondas, proceso normalmente usado para acondicionar el líquido antes de suministrarlo a un paciente. Por tal motivo, envases de soluciones salinas comercializados en Colombia se caracterizaron por espectroscopia infrarroja (IR), termogravimetría (TGA), calorimetría diferencial de barrido (DSC), prueba de esfuerzo-deformación y cromatografía de gases acoplada a espectrómetro de masas (GC-MS). Caracterizaciones realizadas antes y después de someter el empaque junto a su solución salina a calentamiento con microondas. Los resultados indican que el material polimérico en el envase es PVC con un alto contenido de DEP como plastificante. Adicionalmente, y teniendo en cuenta que los resultados muestran que el plastificante está migrando desde el empaque hacia la solución y al ser estas soluciones empleadas en mujeres en estado de embarazo, se generó un protocolo adecuado de calentamiento para ser implementado en el instituto materno infantil de la ciudad de Bogotá. Por último, se planteó una alternativa de envase libre de plastificante con un material biodegradable, el cual es poli 3-hidroxibutirato-co-3-hidroxivalerato (PHBV). (Texto tomado de la fuente)spa
dc.description.abstractFor the health sector, in the distribution, storage and transport of medicines, there are various options of polymeric packaging available in Colombia. For the specific case of intravenous saline solution containers, the most commonly used polymeric material is polyvinyl chloride (PVC). Unfortunately, there is no clear information on the exact composition of these packaging materials, nor the effects on the material and saline when exposed to microwave heating, a process typically used to condition liquid before administration to a patient. . For this reason, the saline solution containers marketed in Colombia were characterized by infrared spectroscopy (IR), thermogravimetry (TGA), differential scanning calorimetry (DSC), stress-strain tests and gas chromatography-mass spectrometry (GC-MS). The characterizations were carried out before and after submitting the container and the saline solution to microwave heating. The results indicate that the polymeric material of the packaging is PVC with a high content of DEP as a plasticizer. Additionally, considering that the results show that the plasticizer is migrating from the container to the solution and since these solutions used in pregnant women, an adequate heating protocol developed to be implemented in the maternal and child institute of the city of Bogota. Finally, an alternative packaging option proposed that does not contain plasticizers and is made from a biodegradable material called poly 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMateriales poliméricos usados en la industria médicaspa
dc.format.extent127 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84304
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesMcGee, S. R. EVIDENCE–BASED PHYSICAL DIAGNOSIS , 3rd ed.; ELSEVIER: Philadelphia, 2012.spa
dc.relation.referencesFleisher, G. R.; Ludwig, S. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010spa
dc.relation.referencesBachur, R. G.; Shaw, K. N.; Chamberlain, J. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010spa
dc.relation.referencesNagami, G. T. Hyperchloremia – Why and How. Nefrología 2016, 36 (4), 347–353. https://doi.org/10.1016/j.nefro.2016.04.001spa
dc.relation.referencesThomas, D. L.; Lythgoe, M. F.; Pell, G. S.; Calamante, F.; Ordidge, R. J. The Measurement of Diffusion and Perfusion in Biological Systems Using Magnetic Resonance Imaging. Phys Med Biol 2000, 45 (8), R97–R138. https://doi.org/10.1088/0031-9155/45/8/201spa
dc.relation.referencesGamundi Planas, M. C.; Gaspar Carreño, M. Influencia Del Producto Sanitario Sobre El Medicamento y Su Efecto. El Farmacéutico Hospitales. 2011, pp 25–spa
dc.relation.referencesBorja Orantes, J. M.; Eva Hernández, S. J. RECOPILACIÓN BIBLIOGRAFICA DE MATERIALES DE ENVASE PRIMARIO, SECUNDARIO Y TERCIARIO, PARA LAS FORMAS FARMACÉUTICAS LIQUIDAS, SÓLIDAS Y SEMISÓLIDAS. , Universidad de el Salvador, San Salvador, 2006spa
dc.relation.referencesFarmaceutica, P. La evolución y caracteristicas de los contenedores de las soluciones inyectables de gran volumenspa
dc.relation.referencesTextos cientificos. Propiedades del polietileno. https://www.textoscientificos.com/polimeros/polietileno/propiedades (accessed 2022-09-07)spa
dc.relation.referencesVan Dooren, A. A. PVC as Pharmaceutical Packaging Material. Pharm Weekbl 1991, 13 (3), 109–118. https://doi.org/10.1007/BF01981526spa
dc.relation.referencesPVCMED ALLIANCE. Why PVC Should Remain the Preferred Material in Healthcare and Elsewhere. Brussels 2022, pp 1–24spa
dc.relation.referencesParisian, S. The Potential for Adverse Reactions Due to the Presence of Additives and Preservatives in Intravenous Solutions and Medications. Journal of Vascular Access Devices 1996, 1 (4), 5–14. https://doi.org/10.2309/108300896778225194spa
dc.relation.referencesMadrigal-Cadavid, J.; Amariles, P. Incompatibilidad de Medicamentos Intravenosos: Revisión Estructuradaurada. Ces Medicina 2017, 31 (1), 58–69. https://doi.org/10.21615/cesmedicina.31.1.6spa
dc.relation.referencesThomas, J. A.; Darby, T. D.; Wallin, R. F.; Garvin, P. J.; Martis, L. A Review of the Biological Effects of Di-(2-Ethylhexyl) Phthalate. Toxicol Appl Pharmacol 1978, 45 (1), 1–27. https://doi.org/10.1016/0041-008X(78)90024-8spa
dc.relation.referencesRodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, Universidad de Guadalajara, Jalisco, 2015. https://riudg.udg.mx/visor/pdfjs/viewer.jsp?in=j&pdf=20.500.12104/84787/1/MCUCBA10171FT.pdf (accessed 2022-09-07)spa
dc.relation.referencesPlastivida. Esteres de Ftalatos su Relación con el PVC y sus Diferentes. https://studylib.es/doc/7849646/esteres-de-ftalatos-su-relaci%C3%B3n-con-el-pvc-y-sus-diferentes (accessed 2022-09-07)spa
dc.relation.referencesHahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J Hazard Mater 2018, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.spa
dc.relation.referencesKleydisSuárez, V.; Rodríguez, A. L. Modelización Termodinámica Del Calentamiento de Soluciones Intravenosas; 2017spa
dc.relation.referencesŠtrac, I. V.; Pušić, M.; Gajski, G.; Garaj-Vrhovac, V. Presence of Phthalate Esters in Intravenous Solution Evaluated Using Gas Chromatography-Mass Spectrometry Method. Journal of Applied Toxicology 2013, 33 (3), 214–219. https://doi.org/10.1002/jat.1741spa
dc.relation.referencesVenkatasubrahmanayam, K.; Ram Babu, B.; Poornaiah, B.; Srinivasa Rao, Y. The Effect of Microwave Radiation on Polyvinyl Chloride-Graphite Thick Film Resistors. Microelectronics International 2014, 31 (2), 99–103. https://doi.org/10.1108/MI-09-2013-0041spa
dc.relation.referencesSalwa Abdel Sadic Khalil. Effect of Ionizing Radiation on the Properties of Prepared Plastic/Starch Blends and Their Applications as Biodegradable Materials, University College for Women Ain Shams University, El cairo, 2010spa
dc.relation.referencesCIEMTO. Centro de información y estudio de medicamentos y tóxicos. Calentamiento de soluciones para administración intravenosa. Universidad de Antioquia. Facultad de medicina. https://ciemto.medicinaudea.co/system/comfy/cms/files/files/000/000/332/original/caso_clínico_4.pdf (accessed 2023-01-14)spa
dc.relation.referencesMrkić, S.; Galić, K.; Ivanković, M. Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film & Sheeting 2007, 23 (3), 239–256. https://doi.org/10.1177/8756087907086102spa
dc.relation.referencesGalotto, M. J.; Ulloa, P. A.; Hernández, D.; Fernández-Martín, F.; Gavara, R.; Guarda, A. Mechanical and Thermal Behaviour of Flexible Food Packaging Polymeric Films Materials under High Pressure/Temperature Treatments. Packaging Technology and Science 2008, 21 (5), 297–308. https://doi.org/10.1002/pts.807spa
dc.relation.referencesHaji Harunarashid, N. Z. I.; Lim, L. H.; Harunsani, M. H. Phthalate Sample Preparation Methods and Analysis in Food and Food Packaging: A Review. Food Anal Methods 2017, 10 (12), 3790–3814. https://doi.org/10.1007/s12161-017-0938-7spa
dc.relation.referencesExcellence. Intravenous Fluid Therapy in Adults in Hospital; National Institute for Health and Care, 2017spa
dc.relation.referencesEpstein EM, W. M. Crystalloid Fluids. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed 2022-11-15)spa
dc.relation.referencesRudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front Vet Sci 2021, 8. https://doi.org/10.3389/fvets.2021.spa
dc.relation.referencesCenters for disease control and prevention. Intravenous Fluids. Module 3. Intravenous Fluids and The Dengue Patient — A Closer Lookspa
dc.relation.referencesWesley, J. R. Intravenous Containers and Solution Packaging. Nutrition 2000, 16 (7–8), 597–598. https://doi.org/10.1016/S0899-9007(00)00330-0spa
dc.relation.referencesBenavides Cuellar, M. A. PROYECTO DE INVESTIGACION APLICADA: Aplicaciones de Los Polimeros En La Medicina . INFORMADOR TECNICO. Cali 2000, pp 31–36spa
dc.relation.referencesMcKeen, L. W. Plastics Used in Medical Devices. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2014; pp 21–53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7spa
dc.relation.referencesCorpaul. Solución cloruro de sodio al 0,9%. Corpaulspa
dc.relation.referencesPlastics Europe; EPRO. Plásticos – Situación en 2020. Plastics Europespa
dc.relation.referencesJohnsen, T. When plastics revolutionised healthcare – medical devices in a historical perspective. PVCMed Alliancespa
dc.relation.referencesGavrila, D. E. Studies of Degradation of Plasticized Polyvinyl Chloride. Int J Eng Res Appl 2016, 6 (1), 56–63spa
dc.relation.referencesHerbert, C. G.; de Andrade Lima, L. R.; Gonçalves, C. Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel; 2017. https://doi.org/10.4271/2017-01-0482spa
dc.relation.referencesErythropel, H. C.; Maric, M.; Nicell, J. A.; Leask, R. L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl Microbiol Biotechnol 2014, 98 (24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8spa
dc.relation.referencesAutian, J. Toxicity and Health Threats of Phthalate Esters: Review of the Literature. Environ Health Perspect 1973, 4, 3–26. https://doi.org/10.1289/ehp.73043spa
dc.relation.referencesHaned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011spa
dc.relation.referencesCenter for Devices and Radiological Health U.S. Food and Drug Administration. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Rockville, 2001spa
dc.relation.referencesMalarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S. C. A. T.; Joosten, K. F. M.; van den Berghe, G.; Jorens, P. G.; Covaci, A. Phthalate and Alternative Plasticizers in Indwelling Medical Devices in Pediatric Intensive Care Units. J Hazard Mater 2019, 363, 64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087spa
dc.relation.referencesMarkarian, J. PVC Additives – What Lies Ahead? Plastics, Additives and Compounding 2007, 9 (6), 22–25. https://doi.org/10.1016/S1464-391X(07)70153-8spa
dc.relation.referencesRodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, UNIVERSIDAD DE GUADALAJARA, Zapopan, 2015spa
dc.relation.referencesPlastivida. Esteres de Ftalatos: Su Relación Con El PVC y Sus Diferentes Aplicaciones . Entidad Técnica Profesional Especializada en Plásticos y Medio Ambiente. Reconquista 2007, pp 8–12spa
dc.relation.referencesShea, K. M. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. Pediatrics 2003, 111 (6), 1467–1474. https://doi.org/10.1542/peds.111.6.1467spa
dc.relation.referencesDen Braver-Sewradj, S. P.; Piersma, A.; Hessel, E. V. S. An Update on the Hazard of and Exposure to Diethyl Hexyl Phthalate (DEHP) Alternatives Used in Medical Devices. Crit Rev Toxicol 2020, 50 (8), 650–672. https://doi.org/10.1080/10408444.2020.1816896spa
dc.relation.referencesReport Linker. Non-PVC IV Bags Market Size, Share & Trends Analysis Report By Product, By Material, By Content And Segment Forecasts, 2022 - 2030. Grand View Research. San Francisco May 18, 2022spa
dc.relation.referencesTüzüm Demir, A. P.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers out of Plasticized PVC Films into Air. J Appl Polym Sci 2012, n/a-n/a. https://doi.org/10.1002/app.38291spa
dc.relation.referencesAouachria, K.; Quintard, G.; Massardier-Nageotte, V.; Belhaneche-Bensemra, N. The Effect of Di-(-2-Ethyl Hexyl) Phthalate (Dehp) as Plasticizer on the Thermal and Mechanical Properties of Pvc/Pmma Blends. Polímeros 2014, 24 (4), 428–433. https://doi.org/10.1590/0104-1428.1588spa
dc.relation.referencesSatapathy, S.; Palanisamy, A. Mechanical and Barrier Properties of Polyvinyl Chloride Plasticized with Dioctyl Phthalate, Epoxidized Soybean Oil, and Epoxidized Cardanol. Journal of Vinyl and Additive Technology 2021, 27 (3), 599–611. https://doi.org/10.1002/vnl.21831spa
dc.relation.referencesRijavec, T. Plastics in Heritage Collections: Poly(Vinyl Chloride) Degradation and Characterization. Acta Chim Slov 2020, 67 (4), 993–1013. https://doi.org/10.17344/acsi.2020.6479spa
dc.relation.referencesChiellini, F.; Ferri, M.; Latini, G. Physical–Chemical Assessment of Di-(2-Ethylhexyl)-Phthalate Leakage from Poly(Vinyl Chloride) Endotracheal Tubes after Application in High Risk Newborns. Int J Pharm 2011, 409 (1–2), 57–61. https://doi.org/10.1016/j.ijpharm.2011.02.024spa
dc.relation.referencesKeller, P. E.; Kouzes, R. T. Water Vapor Permeation in Plastics; Richland, WA (United States), 2017. https://doi.org/10.2172/1411940spa
dc.relation.referencesHaned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011spa
dc.relation.referencesCastillo, C.; Candia, C.; Marroquín, H. Manejo de La Temperatura En El Perioperatorio y Frecuencia de Hipotermia Inadvertida En Un Hospital General. Revista Colombiana de Anestesiología 2013, 41, 97–103.spa
dc.relation.referencesJohn, M.; Ford, J.; Harper, M. Peri-Operative Warming Devices: Performance and Clinical Application. Anaesthesia 2014, 69 (6), 623–638. https://doi.org/10.1111/anae.12626spa
dc.relation.referencesYokoyama, K.; Suzuki, M.; Shimada, Y.; Matsushima, T.; Bito, H.; Sakamoto, A. Effect of Administration of Pre-Warmed Intravenous Fluids on the Frequency of Hypothermia Following Spinal Anesthesia for Cesarean Delivery. J Clin Anesth 2009, 21 (4), 242–248. https://doi.org/10.1016/j.jclinane.2008.12.010spa
dc.relation.referencesLópez, Á.; Suárez, K. MODELIZACIÓN TERMODINÁMICA DEL CALENTAMIENTO DE SOLUCIONES INTRAVENOSAS. Vita Scientiis 2018, 1, 34–45spa
dc.relation.referencesChittawatanarat, K.; Akanitthaphichat, S. Microwave Oven: How to Use It as a Crystalloid Fluid Warmer. J Med Assoc Thai 2009, 92 (11), 1428–1433spa
dc.relation.referencesRischall, M. L.; Rowland-Fisher, A. Evidence-Based Management Of Accidental Hypothermia In The Emergency Department. Emerg Med Pract 2016, 18 (1), 1–18; quiz 18–19spa
dc.relation.referencesSieunarine, K.; White, G. H. Full-Thickness Burn and Venous Thrombosis Following Intravenous Infusion of Microwave-Heated Crystalloid Fluids. Burns 1996, 22 (7), 568–569. https://doi.org/10.1016/0305-4179(96)00020-4spa
dc.relation.referencesLeaman, P. L.; Martyak, G. G. Microwave Warming of Resuscitation Fluids. Ann Emerg Med 1985, 14 (9), 876–879. https://doi.org/10.1016/S0196-0644(85)80637-5spa
dc.relation.referencesAnshus, J. S.; Endahl, G. L.; Mottley, J. L. Microwave Heating of Intravenous Fluids. Am J Emerg Med 1985, 3 (4), 316–319. https://doi.org/10.1016/0735-6757(85)90054-3spa
dc.relation.referencesy, A. Reliability of Modern Microwave Ovens to Safely Heat Intravenous Fluids for Resuscitation. Emergency Medicine Australasia 2001, 13 (2), 181–185. https://doi.org/10.1046/j.1442-2026.2001.00207.xspa
dc.relation.referencesMartucci, J. Medication Delivery. 2004/0104271 A1, June 3, 2004spa
dc.relation.referencesPlastics Europe - Association of Plastics Manufactures. Plastics – the Facts 2020. PLASTICS EUROPEspa
dc.relation.referencesGotlib, E. M.; Grinberg, L. P.; Chakirov, R. R. Composition of Incineration Products of Plasticized PVC Materials. React Funct Polym 2001, 48 (1–3), 209–213. https://doi.org/10.1016/S1381-5148(01)00051-7spa
dc.relation.referencesBaxter. PVC EN MOVIMIENTO. Memoria de responsabilidad corporativa 2020. Cali June 9, 2021spa
dc.relation.referencesChiulan, I.; Mihaela Panaitescu, D.; Nicoleta Frone, A.; Teodorescu, M.; Andi Nicolae, C.; Căşărică, A.; Tofan, V.; Sălăgeanu, A. Biocompatible Polyhydroxyalkanoates/Bacterial Cellulose Composites: Preparation, Characterization, and in Vitro Evaluation. J Biomed Mater Res A 2016, 104 (10), 2576–2584. https://doi.org/10.1002/jbm.a.35800spa
dc.relation.referencesmexpolimeros. polihidroxibutirato-valerato. Biopolímerosspa
dc.relation.referencesEl-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym Test 2002, 21 (6), 665–674. https://doi.org/10.1016/S0142-9418(01)00142-8spa
dc.relation.referencesLindhoff, G. A.; MacG. Palmer, J. H. An Assessment of the Thermal Safety of Microwave Warming of Crystalloid Fluids. Anaesthesia 2000, 55 (3), 251–254. https://doi.org/10.1046/j.1365-2044.2000.01319.xspa
dc.relation.referencesBaxter Healthcare Corporation. Baxter Sodium Chloride Injection, USP in AVIVA Plastic Container. FDA. Deerfield September 2013, pp 1–6. https://doi.org/10.1016/0010-440x(88)90011-9spa
dc.relation.referencesSmith, B. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021, pp 24–29spa
dc.relation.referencesMERCK. TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA. Sigma Aldrich webpagespa
dc.relation.referencesKhalajmasoumi, M.; Koloor, S. S. R.; Arefnia, A.; Ibrahim, I. S.; Yatim, J. M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Applied Mechanics and Materials 2012, 229–231, 309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309spa
dc.relation.referencesPoitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–UV Detection: A Comparative Study. Toxics 2021, 9 (9), 200. https://doi.org/10.3390/toxics9090200spa
dc.relation.referencesYuan, X.; Liu, T.; Gao, L.; Xing, L.; Zhu, Y.; Li, S. A Convenient Separation Method for Di(2-Ethylhexyl)Phthalate by Novel Superparamagnetic Molecularly Imprinted Polymers. RSC Adv 2018, 8 (63). https://doi.org/10.1039/c8ra07316cspa
dc.relation.referencesHitachi High-Technologies Corporation. Analysis of Bis (2-Ethylhexyl) Phthalate (DEHP) in Drinking Water. Chromaster. Chiyoda 2022.spa
dc.relation.referencesCentro Nacional de Información Biotecnológica. Ftalato de dietilo. PubChemspa
dc.relation.referencesCentro Nacional de Información Biotecnológica. Ftalato de dibutilo. PubChemspa
dc.relation.referencesGreenFacts. Ftalatos Dibutilftalato. GreenFactsspa
dc.relation.referencesRastegari, F.; Amin, M. M.; Ebrahim, K. Risk of Phthalate Exposure among Hospitalized Patient via Intravenous Fluids Receiving. Iranian Jornal of Toxicology 2017, 11 (3), 33–38. https://doi.org/10.29252/arakmu.11.3.33spa
dc.relation.referencesRibeiro, F. A. dos S. V.; Cavalcante, M. de P.; Tavares, M. I. B.; Melo, A. R. A. Effect of Modified Microcrystalline Cellulose on Poly(3-Hydroxybutyrate) Molecular Dynamics by Proton Relaxometry. Polymers and Polymer Composites 2021, 29 (5), 553–560. https://doi.org/10.1177/0967391120926078spa
dc.relation.referencesASTDR. ToxFAQsTM sobre el cloroformo. ASTDR. Agencia para sustancias tóxicas y el registro de enfermedadesspa
dc.relation.referencesMofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim Acta 2015, 613, 41–53. https://doi.org/10.1016/j.tca.2015.05.019spa
dc.relation.referencesBledzki, A. K.; Jaszkiewicz, A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP. Compos Sci Technol 2010, 70 (12), 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005spa
dc.relation.referencesJost, V. Blending of Polyhydroxybutyrate-Co-Valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem Biochem Eng Q 2015, 29 (2), 221–246. https://doi.org/10.15255/CABEQ.2014.2257spa
dc.relation.referencesOlejnik, O.; Masek, A.; Zawadziłło, J. Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. Materials 2021, 14 (4), 898. https://doi.org/10.3390/ma14040898spa
dc.relation.referencesZhao, H.; Cui, Z.; Wang, X.; Turng, L.-S.; Peng, X. Processing and Characterization of Solid and Microcellular Poly(Lactic Acid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Compos B Eng 2013, 51, 79–91. https://doi.org/10.1016/j.compositesb.2013.02.034.spa
dc.relation.referencesBoufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol Mater Eng 2013, 298 (10), 1065–1073. https://doi.org/10.1002/mame.201200285spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.decsSolución Salinaspa
dc.subject.decsSaline Solutioneng
dc.subject.decsAdministración Intravenosaspa
dc.subject.decsAdministration, Intravenouseng
dc.subject.proposalEnvasespa
dc.subject.proposalSolución intravenosaspa
dc.subject.proposalPVCspa
dc.subject.proposalDEPspa
dc.subject.proposalMicroondasspa
dc.subject.proposalMujeres en embarazospa
dc.subject.proposalPHBVspa
dc.subject.proposalContainereng
dc.subject.proposalIntravenous saline solutioneng
dc.subject.proposalPVCeng
dc.subject.proposalDEPeng
dc.subject.proposalMicrowaveeng
dc.subject.proposalPregnant womeneng
dc.subject.proposalPHBVeng
dc.titleAnálisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondasspa
dc.title.translatedAnalysis of physicochemical and mechanical properties of intravenous saline solution containers subjected to microwave heating processeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10184719152023.pdf
Tamaño:
4.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ingeniería - Materiales y procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: