Estudio multiespectral de radiacion solar comprendido en el periodo 2003 – 2020 segun datos satelitales de SORCE y GOES

dc.contributor.advisorCalvo Mozo, Benjamin
dc.contributor.authorMoreno Roballo, Nestor Ivan
dc.contributor.educationalvalidatorMartinez Oliveros Juan Carlos
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologiaspa
dc.coverage.temporal2003-2020
dc.coverage.temporal2003 – 2020
dc.date.accessioned2023-11-30T14:02:50Z
dc.date.available2023-11-30T14:02:50Z
dc.date.issued2023-11-29
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl presente estudio se centró en analizar la radiacion solar en un periodo de tiempo que abarca desde 2003 hasta 2020, utilizando datos diarios satelitales proporcionados por SORCE (Solar Radiation and Climate Experiment) en diferentes bandas y GOES (Geostationary Operational Environmental Satellite) en rayos X; junto con los registros de numero de manchas solares y eventos clase C, M y X. Se realiza una comparacion analıtica para entender los posibles factores que producen la variabilidad del ciclo solar y otra con la ayuda de inteligencia artificial mas precisamente aprendizaje automatico con redes neuronales de clasificacion. Los datos se compilaron con una matriz de datos de entrada de 24 × 6075 y se etiquetan respecto a tres salidas binarias, A Sol calmo, B Sol con actividad moderada y C Sol con actividad fuerte. Los resultados obtenidos muestran una correlacion de 90.3% de concordancia de la totalidad de los datos. El 48.1% de los datos tienen un comportamiento de Sol calmo, 41.3% presentan una actividad solar moderada y el 1.0% con actividad solar fuerte. (Texto tomado de la fuente)
dc.description.abstracthe present study was focused on the analysis of the solar radiation in a period from 2003 to 2020, using daily satellite data provided by SORCE (Solar Radiation and Climate Expe- riment) in different bands and GOES (Geostationary Operational Environmental Satellite) in X-rays; together with the records of the number of sunspots and class C, M and X events. An analytical comparison is performed to understand the possible factors that produce the variability of the solar cycle and another with the help of artificial intelligence more preci- sely automatic learning with classification neural networks. The data were compiled with an input data matrix of 24 × 6075 and labeled with respect to three binary outputs, A quiet Sun, B Sun with moderate activity and C Sun with strong activity. The results obtained show a correlation of 90.3 % agreement of all the data. The 48.1 % of the data have a behavior of quiet Sun, 41.3 % present a moderate solar activity and 1.0 % sun with strong activity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Astronomíaspa
dc.description.researchareaAstrofısica Solarspa
dc.format.extentxi, 53 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85024
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesAbhyankar, K. D. (mar. de 1977). “A Survey of the Solar Atmospheric Models”. En: Bulletin of the Astronomical Society of India 5, pag. 40.spa
dc.relation.referencesAli, Aatiya et al. (mar. de 2023). “Predicting Solar Proton Events of Solar Cycles 22-24 using GOES Proton & Soft X-Ray Flux Statistics”. En: arXiv e-prints, arXiv:2303.05446, arXiv:2303.05446. doi: 10.48550/arXiv.2303.05446. arXiv: 2303.05446 [astro-ph.SR].spa
dc.relation.referencesAthay, R. Grant (1976). “Introduction”. En: The Solar Chromosphere and Corona: Quiet Sun. Dordrecht: Springer Netherlands, pags. 1-30. isbn: 978-94-010-1715-2. doi: 10.1007/978-94-010-1715-2_1. url: https://doi.org/10.1007/978-94-010-1715- 2_1.spa
dc.relation.referencesBenson, B. et al. (mayo de 2020). “Forecasting Solar Cycle 25 Using Deep Neural Networks”.En: Solar Phys. 295.5, 65, pag. 65. doi: 10 . 1007 / s11207 - 020 - 01634 - y. arXiv:2005.12406 [astro-ph.SR].spa
dc.relation.referencesBenz, Arnold O. (dic. de 2017). “Flare Observations”. En: Living Reviews in Solar Physics 14.1, 2, pag. 2. doi: 10.1007/s41116-016-0004-3.spa
dc.relation.referencesChamberlin, P. C., F. G. Eparvier et al. (dic. de 2020). “The Flare Irradiance Spectral Model-Version 2 (FISM2)”. En: Space Weather 18.12, e02588, e02588. doi: 10.1029/2020SW002588.spa
dc.relation.referencesChamberlin, P. C., G. Lu et al. (abr. de 2009). “Using the Flare Irradiance Spectral Model (FISM) to study the response of the Earth, Mars and Moon to Solar Flares”. En: EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, p ag. 5970.spa
dc.relation.referencesClette, Frederic et al. (dic. de 2014). “Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle”. En: Space Sci. Rev. 186.1-4, pags. 35-103. doi: 10.1007/ s11214-014-0074-2. arXiv: 1407.3231 [astro-ph.SR].spa
dc.relation.referencesDarnel, Jonathan M. et al. (2022). “The GOES-R Solar UltraViolet Imager”. En: Space Weather 20.4. e2022SW003044 2022SW003044, e2022SW003044. doi: https://doi.org/10.1029/2022SW003044. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022SW003044. url: https://agupubs.onlinelibrary.wiley. com/doi/abs/10.1029/2022SW003044.spa
dc.relation.referencesEngebretson, M. J. et al. (2018). “MMS, Van Allen Probes, GOES 13, and Ground-Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock”. En: Journal of Geophysical Research: Space Physics 123.10,pags. 8331-8357. doi: https : / / doi . org / 10 . 1029 / 2018JA025984. eprint: https :/ / agupubs . onlinelibrary . wiley . com / doi / pdf / 10 . 1029 / 2018JA025984. url:https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025984.spa
dc.relation.referencesGoodman, Steven J. (2020). “Chapter 1 - GOES-R Series Introduction”. En: The GOES-R Series. Ed. por Steven J. Goodman et al. Elsevier, pags. 1-3. isbn: 978-0-12-814327-8.doi: https://doi.org/10.1016/B978- 0- 12- 814327- 8.00001- 9. url: https: //www.sciencedirect.com/science/article/pii/B9780128143278000019.spa
dc.relation.referencesGoupil, M J et al. (ene. de 2011). “Open issues in probing interiors of solar-like oscillating main sequence stars 1. From the Sun to nearly suns”. En: Journal of Physics: Conference Series 271.1, pag. 012031. doi: 10.1088/1742- 6596/271/1/012031. url: https://dx.doi.org/10.1088/1742-6596/271/1/012031.spa
dc.relation.referencesGunshor, Mathew M. et al. (jul. de 2020). “GOES-R series ABI Imagery artifacts”. En:Journal of Applied Remote Sensing 14, 032411, pag. 032411. doi: 10.1117/1.JRS.14.032411.spa
dc.relation.referencesHanslmeier, Arnold (2010). The sun and space weather. Vol. 18. Springer.spa
dc.relation.referencesHarder, J. et al. (ene. de 2005). “Solar spectral irradiance variability comparisons of the SORCE SIM instrument with monitors of solar activity and spectral synthesis”. En:Mem. Societa Astronomica Italiana 76, pag. 735.spa
dc.relation.referencesHathaway, David (dic. de 2010). “The Solar Cycle”. En: Living Reviews in Solar Physics 7.doi: 10.12942/lrsp-2010-1.spa
dc.relation.referencesKopp, Greg y George Lawrence (ago. de 2005). “The Total Irradiance Monitor (TIM): Instrument Design”. En: Solar Phys. 230.1-2, pags. 91-109. doi: 10.1007/s11207-005-7446-4.spa
dc.relation.referencesKress, Brian T., Juan V. Rodriguez y Terrance G. Onsager (2020). “Chapter 20 - The GOES-R Space Environment In Situ Suite (SEISS): Measurement of Energetic Particles in Geospace”. En: The GOES-R Series. Ed. por Steven J. Goodman et al. Elsevier, pags. 243-250. isbn: 978-0-12-814327-8. doi: https://doi.org/10.1016/B978-0-12-814327-8.00020-2. url: https://www.sciencedirect.com/science/article/pii/B9780128143278000202.spa
dc.relation.referencesLin, Rong et al. (abr. de 2023). “Prediction of solar wind speed by applying convolutional neural network to potential field source surface (PFSS) magnetograms”. En: arXiv eprints, arXiv:2304.01234, arXiv:2304.01234. doi: 10.48550/arXiv.2304.01234. arXiv:2304.01234 [astro-ph.SR].spa
dc.relation.referencesPaluszek, M. y S. Thomas (2016). MATLAB Machine Learning. Apress. isbn: 9781484222492.url: https://books.google.com.co/books?id=jy75vQAACAAJ.spa
dc.relation.referencesPearlman, Aaron et al. (jul. de 2022). “Geostationary operational environmental satellite-R advanced baseline imager reflective solar band absolute validation using Sonoran desert scenes”. En: Journal of Applied Remote Sensing 16, 034530, pag. 034530. doi: 10.1117/1.JRS.16.034530.spa
dc.relation.referencesRaschka, Sebastian y Vahid Mirjalili (2019). Python Machine Learning, 3rd Ed. 3.a ed. Birmingham, UK: Packt Publishing. isbn: 978-1789955750.spa
dc.relation.referencesRottman, Gary (2002). SORCE: Solar Radiation and Climate Experiment. Goddard Space Flight Center.spa
dc.relation.referencesRouhiainen, L. (2018). Artificial Intelligence: 101 Things You Must Know Today About Our Future. CreateSpace Independent Publishing Platform. isbn: 9781982048808. url:https://books.google.com.co/books?id=P3fSDwAAQBAJ.spa
dc.relation.referencesSadykov, V. M. (dic. de 2019). “Predicting Solar Flares Using Machine Learning: Advances and Challenges”. En: AGU Fall Meeting Abstracts. Vol. 2019, SH34B-05, SH34B-05.spa
dc.relation.referencesSchwenn, Rainer (ago. de 2006). “SpaceWeather: The Solar Perspective”. En: Living Reviews in Solar Physics 3.1, 2, pag. 2. doi: 10.12942/lrsp-2006-2.spa
dc.relation.referencesSnow, Martin et al. (jul. de 2022). “SORCE SOLSTICE: Validation of Seventeen Years of UV Solar Spectral Irradiance Observations”. En: 44th COSPAR Scientific Assembly. Held 16-24 July. Vol. 44, pag. 1555.spa
dc.relation.referencesSpiegel, E. A. y J. -P. Zahn (nov. de 1992). “The solar tachocline.” En: Astron. Astrophys.265, pags. 106-114.spa
dc.relation.referencesVaquero, J.M. y M. Vazquez (2009). The Sun Recorded Through History. Astrophysics and Space Science Library. Springer New York. isbn: 9780387929514. url: https://books. google.com.co/books?id=lmj4sgEACAAJ.spa
dc.relation.referencesWoods, Thomas N. y Joshua Elliott (mayo de 2022). “Solar Radiation and Climate Experiment (SORCE) X-Ray Photometer System (XPS): Final Data-Processing Algorithms”.En: Solar Phys. 297.5, 64, pag. 64. doi: 10.1007/s11207-022-01997-4.spa
dc.relation.referencesWoods, Thomas N. y John W. Leibacher (feb. de 2023). “The Solar Radiation and Climate Experiment (SORCE) Mission: Final Calibrations and Data Products”. En: Solar Phys.298.2, 25, pag. 25. doi: 10.1007/s11207-023-02125-6.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcActividad solar
dc.subject.ddc520 - Astronomía y ciencias afinesspa
dc.subject.lembRadiación solarspa
dc.subject.lembSolar radiationeng
dc.subject.lembSolar activityspa
dc.subject.proposalSol calmo, Sol activo, ciclo solar, manchas solares, fulguracion solar, Satelite GOES, Satelite SORCE, aprendizaje automatico, correlacion de datos.spa
dc.subject.proposalSol calmospa
dc.subject.proposalSol activospa
dc.subject.proposalCiclo solarspa
dc.subject.proposalManchas solaresspa
dc.subject.proposalFulguracion solarspa
dc.subject.proposalSatelite GOESspa
dc.subject.proposalSatelite SORCEspa
dc.subject.proposalAprendizaje automaticospa
dc.subject.proposalCorrelacion de datosspa
dc.titleEstudio multiespectral de radiacion solar comprendido en el periodo 2003 – 2020 segun datos satelitales de SORCE y GOESspa
dc.title.translatedMultispectral radiation study solar included in the period 2003 – 2020 according to satellite data SORCE and GOESeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio multiespectral de radiacion solar comprendido en el periodo 2003 – 2020 segun datos satelitales de SORCE y GOESspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80215819.2023.pdf
Tamaño:
6.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: