Paleomagnetismo en la Provincia Volcano-tectónica San Diego – Cerro Machín
dc.contributor.advisor | Mejía Bernal, Victoria | |
dc.contributor.author | Gómez Colonia, Luis Felipe | |
dc.date.accessioned | 2024-10-28T21:02:44Z | |
dc.date.available | 2024-10-28T21:02:44Z | |
dc.date.issued | 2024 | |
dc.description | fotografías, graficas, tablas | spa |
dc.description.abstract | Se llevó a cabo un estudio paleomagnético al noroeste del Volcán Nevado del Ruiz, que abarcó 17 sitios, representando domos y flujos de lava. Se realizaron análisis de desmagnetización termal y por campo alterno, susceptibilidad magnética vs temperatura, curvas de histéresis, magnetización remanente isotermal y campo inverso, y anisotropía de susceptibilidad magnética (AMS). Los resultados del análisis direccional fueron interpretables para 13 sitios, evidenciando 7 con polaridad normal y 4 con polaridad inversa, en concordancia con las edades asignadas en estudios previos (<45 ka a 1.97 Ma) relacionadas con el cron Brunhes (7 sitios) y Matuyama (4 sitios). Adicionalmente, 2 polaridades intermedias también fueron encontradas. Los análisis de susceptibilidad versus temperatura revelaron dos rangos de temperaturas de transición: de 300°C a 350°C y de 400°C a 550°C. Estos indicaron la presencia de una (8 sitios) o dos (8 sitios) fases mineralógicas, consistentes con la presencia de titanomagnetitas y/o titanohematitas. Las curvas irreversibles indicaron la presencia de maghemita y titanomaghemita en sitios afectados por actividad hidrotermal, originada al sureste del segmento Termales de la falla Villamaría – Termales. Los resultados de AMS de 14 sitios proporcionaron información valiosa sobre las condiciones de emplazamiento de la lava, con anisotropía planar, indicando el plano de un flujo de lava (elipsoide oblado, 4 sitios), y anisotropía triaxial (7 sitios) y lineal (elipsoide prolato, 3 sitios), indicando la base de un domo y la parte alta de un domo o un flujo de lava, respectivamente (Texto tomado de la fuente) | spa |
dc.description.abstract | A paleomagnetic study was conducted northwest of the Nevado del Ruiz Volcano, covering 17 sites, representing domes and lava flows. Thermal and alternating field demagnetization analyses were performed, along with magnetic susceptibility vs temperature, hysteresis curves, isothermal remanent magnetization and backfield, and anisotropy of magnetic susceptibility (AMS). The directional analysis results were interpretable for 13 sites, revealing 7 with normal polarity, 4 with reverse polarity, consistent with previously assigned ages (<45 ka to 1.97 Ma) related to the Brunhes (7 sites) and Matuyama (4 sites) chrons. Additionally, 2 intermediate polarities were also found. The magnetic susceptibility vs temperature analyses revealed two transition temperature ranges: from 300°C to 350°C and from 400°C to 550°C. These indicated the presence of one (8 sites) or two (8 sites) mineralogical phases, consistent with the presence of titanomagnetites and/or titanohematites. The irreversible curves indicated the presence of maghemite and titanomaghemite in sites affected by hydrothermal activity, originating southeast of the Termales segment of the Villamaría–Termales fault. AMS results from 14 sites provided valuable information about the lava emplacement conditions, with planar anisotropy indicating the plane of a lava flow (oblate ellipsoid, 4 sites), while triaxial (7 sites) and linear (prolate ellipsoid, 3 sites) anisotropy indicated the base of a dome and the upper part of a dome or a lava flow, respectively. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Paleomagnetismo y geofísica ambiental | spa |
dc.format.extent | xvi, 75 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87085 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | Alva-Valdivia, L. M., Rivas, M. L., Goguitchaichvili, A., Urrutia-Fucugauchi, J., Gonzalez, J. A., Morales, J., Gómez, S., Henríquez, F., Nyström, J. O., & Naslund, R. H. (2003). Rock-Magnetic and Oxide Microscopic Studies of the El Laco Iron Ore Deposits, Chilean Andes, and Implications for Magnetic Anomaly Modeling. International Geology Review, 45(6), 533–547. https://doi.org/10.2747/0020-6814.45.6.533 | spa |
dc.relation.references | Arneitz, P., Egli, R., & Leonhardt, R. (2017). Unbiased analysis of geomagnetic data sets and comparison of historical data with paleomagnetic and archeomagnetic records. Reviews of Geophysics, 55(1), 5–39. https://doi.org/10.1002/2016RG000527 | spa |
dc.relation.references | Baag, C., Helsley, C. E., Xu, S., & Lienert, B. R. (1995). Deflection of paleomagnetic directions due to magnetization of the underlying terrain. Journal of Geophysical Research: Solid Earth, 100(B6), 10013–10027. https://doi.org/10.1029/95JB00148 | spa |
dc.relation.references | Blundell, S. (2001). Magnetism in Condensed Matter. Oxford University Press. | spa |
dc.relation.references | Borrero, C., Toro, L. M., Alvarán, M., & Castillo, H. (2009). Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofisica Internacional, 48(1), 149–169. https://doi.org/10.22201/igeof.00167169p.2009.48.1.105 | spa |
dc.relation.references | Botero-Gómez, L. A., Murcia, H., & Hincapié-Jaramillo, G. (2023). The effect of fault systems on volcanic activity: Insights from the subduction-related, Quaternary Villamaría-Termales monogenetic volcanic field in Colombia. Journal of Volcanology and Geothermal Research, 444, 107969. https://doi.org/10.1016/j.jvolgeores.2023.107969 | spa |
dc.relation.references | Botero-Gómez, L. A., Osorio, P., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte I): Características morfológicas y relaciones temporales. Boletín de Geología, 40(3), 85–102. https://doi.org/10.18273/revbol.v40n3-2018005 | spa |
dc.relation.references | Bourdon, E., Eissen, J.-P., Gutscher, M.-A., Monzier, M., Hall, M. L., & Cotten, J. (2003). Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth and Planetary Science Letters, 205(3–4), 123–138. https://doi.org/10.1016/S0012-821X(02)01024-5 | spa |
dc.relation.references | Butler, R. F. (2004). Paleomagnetism: magnetic domains to geologic terranes (Electronic). Blackwell Science Inc. https://doi.org/10.5860/choice.29-5708 | spa |
dc.relation.references | Ceballos–Hernández, J. A., Martínez–Tabares, L. M., Valencia–Ramírez, L. G., Pulgarín–Alzate, B. A., Correa–Tamayo, A. M., & Narváez–Marulanda, B. L. (2020). The Geology of Colombia, Volume 4 Quaternary. In J. Gómez-Tapias & A. O. Pinilla-Pachon (Eds.), Servicio Geológico Colombiano, Publicaciones Geológicas Especiales (Vol. 4, pp. 267–296). Servicio Geológico Colombiano. | spa |
dc.relation.references | Chadima, M., & Hrouda, F. (2006). Remasoft 3.0 – a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, XXVII, 20–21. | spa |
dc.relation.references | Clark, D. A. (2014). Methods for determining remanent and total magnetisations of magnetic sources – a review. Exploration Geophysics, 45(4), 271–304. https://doi.org/10.1071/EG14013 | spa |
dc.relation.references | Collinson, D. W. (1983). Methods in Rock Magnetism and Palaeomagnetism. Springer Netherlands. https://doi.org/10.1007/978-94-015-3979-1 | spa |
dc.relation.references | Constable, C., & Tauxe, L. (1990). The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research: Solid Earth, 95(B6), 8383–8395. https://doi.org/10.1029/JB095iB06p08383 | spa |
dc.relation.references | Cox, A. (1969). Confidence Limits for the Precision Parameter k. Geophysical Journal International, 17(5), 545–549. https://doi.org/10.1111/j.1365-246X.1969.tb00257.x | spa |
dc.relation.references | Cromwell, G., Johnson, C. L., Tauxe, L., Constable, C. G., & Jarboe, N. A. (2018). PSV10: A Global Data Set for 0–10 Ma Time‐Averaged Field and Paleosecular Variation Studies. Geochemistry, Geophysics, Geosystems, 19(5), 1533–1558. https://doi.org/10.1002/2017GC007318 | spa |
dc.relation.references | Cubides Gallego, Y. A. (2020). Variaciones paleoseculares y campo geomagnético promedio en lavas del volcán Cerro Bravo y cerro Gallinazo [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78207 | spa |
dc.relation.references | Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4), 260–267. https://doi.org/10.1016/0031-9201(77)90108-X | spa |
dc.relation.references | de Oliveira, W. P., Hartmann, G. A., Terra‐Nova, F., Brandt, D., Biggin, A. J., Engbers, Y. A., Bono, R. K., Savian, J. F., Franco, D. R., Trindade, R. I. F., & Moncinhatto, T. R. (2021). Paleosecular Variation and the Time‐Averaged Geomagnetic Field Since 10 Ma. Geochemistry, Geophysics, Geosystems, 22(10). https://doi.org/10.1029/2021GC010063 | spa |
dc.relation.references | Dunlop, D. J. (1979). On the use of Zijderveld vector diagrams in multicomponent paleomagnetic studies. Physics of the Earth and Planetary Interiors, 20(1), 12–24. https://doi.org/10.1016/0031-9201(79)90103-1 | spa |
dc.relation.references | Dunlop, D. J. (2002). Theory and application of the Day plot ( M rs / M s versus H cr / H c ) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107(B3), 2056. https://doi.org/10.1029/2001JB000486 | spa |
dc.relation.references | Dunlop, D. J., & Carter‐Stiglitz, B. (2006). Day plots of mixtures of superparamagnetic, single‐domain, pseudosingle‐domain, and multidomain magnetites. Journal of Geophysical Research: Solid Earth, 111(B12). https://doi.org/10.1029/2006JB004499 | spa |
dc.relation.references | Dunlop, D. J., & Özdemir, Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press. https://doi.org/10.1063/1.882466 | spa |
dc.relation.references | Dunlop, D. J., & Özdemir, Ö. (2015). Magnetizations in Rocks and Minerals. In Treatise on Geophysics (pp. 255–308). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00102-0 | spa |
dc.relation.references | Fabian, K. (2003). Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth and Planetary Science Letters, 213(3–4), 337–345. https://doi.org/10.1016/S0012-821X(03)00329-7 | spa |
dc.relation.references | Finlay, C. C. (2008). Historical variation of the geomagnetic axial dipole. Physics of the Earth and Planetary Interiors, 170(1–2), 1–14. https://doi.org/10.1016/j.pepi.2008.06.029 | spa |
dc.relation.references | Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130), 295–305. https://doi.org/10.1098/rspa.1953.0064 | spa |
dc.relation.references | García, R., Solano Cervantes, M., Goguitchaichvili, A., Reyes, D. S., Kravchinsky, V. A., Morales, J., Cejudo, R., & Elguera Rosas, J. (2021). Semicontinuous paleomagnetic record of the last 1 Ma from radiometrically dated igneous rocks (Trans-Mexican Volcanic Belt and surrounding areas). Journal of South American Earth Sciences, 108, 103195. https://doi.org/10.1016/j.jsames.2021.103195 | spa |
dc.relation.references | Gómez, J., Montes, N. E., & Nivia, Á. (2020). Atlas Geológico de Colombia. Escala 1:500 000. Servicio Geológico Colombiano. https://srvags.sgc.gov.co/JSViewer/Atlas_Geologico_colombiano_2020/ | spa |
dc.relation.references | González I., H., & Londoño G., A. C. (2002). Catálogo de las unidades litoestratigráficas de Colombia. Granodiorita de Manizales (K2E1gdm). Servicio Geológico Colombiano. https://adminmiig.sgc.gov.co/Lists/RecursosSGC/DispForm.aspx?ID=71099 | spa |
dc.relation.references | Graham, K. W. T. (1961). The Re-magnetization of a Surface Outcrop by Lightning Currents. Geophysical Journal International, 6(1), 85–102. https://doi.org/10.1111/j.1365-246X.1961.tb02963.x | spa |
dc.relation.references | Grajales, J. A., Nieto-Samaniego, Á. F., Barrero Lozano, D., Osorio, J. A., & Cuellar, M. A. (2020). Emplacement of Paleocene-Eocene magmatism under transtensional regime and its evolution to a dynamic equilibrium on the western edge of Colombia. Revista Mexicana de Ciencias Geológicas, 37(3), 250–268. https://doi.org/10.22201/cgeo.20072902e.2020.3.1570 | spa |
dc.relation.references | Gudmundsson, A., Drymoni, K., Browning, J., Acocella, V., Amelung, F., Bonali, F. L., Elshaafi, A., Galindo, I., Geshi, N., Geyer, A., Heap, M. J., Karaoğlu, Ö., Kusumoto, S., Marti, J., Pinel, V., Tibaldi, A., Thordarson, T., & Walter, T. R. (2022). Volcanotectonics: the tectonics and physics of volcanoes and their eruption mechanics. Bulletin of Volcanology, 84(8), 72. https://doi.org/10.1007/s00445-022-01582-4 | spa |
dc.relation.references | Harris, A. J. L., & Rowland, S. K. (2015). Lava Flows and Rheology. In The Encyclopedia of Volcanoes (pp. 321–342). Elsevier. https://doi.org/10.1016/B978-0-12-385938-9.00017-1 | spa |
dc.relation.references | Harrison, R. J., & Putnis, A. (1996). Magnetic properties of the magnetite-spinel solid solution; Curie temperatures, magnetic susceptibilities, and cation ordering. American Mineralogist, 81(3–4), 375–384. https://doi.org/10.2138/am-1996-3-412 | spa |
dc.relation.references | Hext, G. R. (1963). The estimation of second-order tensors, with related tests and designs. Biometrika, 50(3–4), 353–373. https://doi.org/10.1093/biomet/50.3-4.353 | spa |
dc.relation.references | Hulot, G., Finlay, C. C., Constable, C. G., Olsen, N., & Mandea, M. (2010). The magnetic field of planet earth. Space Science Reviews, 152(1–4), 159–222. https://doi.org/10.1007/s11214-010-9644-0 | spa |
dc.relation.references | Jackson, M., & Bowles, J. A. (2014). Curie temperatures of titanomagnetite in ignimbrites: Effects of emplacement temperatures, cooling rates, exsolution, and cation ordering. Geochemistry, Geophysics, Geosystems, 15(11), 4343–4368. https://doi.org/10.1002/2014GC005527 | spa |
dc.relation.references | Jelínek, V., & Kropáček, V. (1978). Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22(1), 50–62. https://doi.org/10.1007/BF01613632 | spa |
dc.relation.references | Juarez, M. T., & Tauxe, L. (2002). The intensity of the time-averaged geomagnetic field: the last 5 Myr. Earth and Planetary Science Letters, 175(3–4), 169–180. https://doi.org/10.1016/s0012-821x(99)00306-4 | spa |
dc.relation.references | Khokhlov, A., & Hulot, G. (2016). Principal component analysis of palaeomagnetic directions: converting a Maximum Angular Deviation (MAD) into an α 95 angle. Geophysical Journal International, 204(1), 274–291. https://doi.org/10.1093/gji/ggv451 | spa |
dc.relation.references | Kirschvink, J. L. (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x | spa |
dc.relation.references | Kolářová, K., Černý, J., Melichar, R., Schnabl, P., & Gaidzik, K. (2022). Reconstruction of ancient volcanic complexes using magnetic signature: A case study from Cambrian andesite lava flow, Bohemian Massif. Journal of Volcanology and Geothermal Research, 428, 107591. https://doi.org/10.1016/j.jvolgeores.2022.107591 | spa |
dc.relation.references | Kontny, A., Urrutia-Fucugauchi, J., Gogitchaishvili, A., Alva-Valdivia, L. M., González-Rangel, J. A., & Caballero-Miranda, C. I. (2016). Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows. Journal of Volcanology and Geothermal Research, 311, 9–28. https://doi.org/10.1016/j.jvolgeores.2016.01.003 | spa |
dc.relation.references | Kumari, M., Hirt, A. M., Uebe, R., Schüler, D., Tompa, É., Pósfai, M., Lorenz, W., Ahrentorp, F., Jonasson, C., & Johansson, C. (2015). Experimental mixtures of superparamagnetic and single‐domain magnetite with respect to Day‐Dunlop plots. Geochemistry, Geophysics, Geosystems, 16(6), 1739–1752. https://doi.org/10.1002/2015GC005744 | spa |
dc.relation.references | Lowrie, W. (2007). Fundamentals of Geophysics (2nd ed). Cambridge University Press. https://doi.org/10.15713/ins.mmj.3 | spa |
dc.relation.references | McElhinny, M. W., & McFadden, P. L. (1997). Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophysical Journal International, 131(2), 240–252. https://doi.org/10.1111/j.1365-246X.1997.tb01219.x | spa |
dc.relation.references | McFadden, P. L., & McElhinny, M. W. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3), 725–729. https://doi.org/10.1111/j.1365-246X.1990.tb05683.x | spa |
dc.relation.references | McFadden, P. L., Merrill, R. T., & McElhinny, M. W. (1988). Dipole/quadrupole family modeling of paleosecular variation. Journal of Geophysical Research: Solid Earth, 93(B10), 11583–11588. https://doi.org/10.1029/JB093iB10p11583 | spa |
dc.relation.references | Mejía, E. L., Velandia, F., Zuluaga, C. A., López, J. A., & Cramer, T. (2012). Análisis estructural al noreste del Volcán Nevado del Ruíz, Colombia - aporte a la exploración geotérmica. Boletin de Geologia, 34(1), 27–41. | spa |
dc.relation.references | Mejia, V., Böhnel, H., Opdyke, N. D., Ortega-Rivera, M. A., Lee, J. K. W., & Aranda-Gomez, J. J. (2005). Paleosecular variation and time-averaged field recorded in late Pliocene-Holocene lava flows from Mexico. Geochemistry, Geophysics, Geosystems, 6(7), n/a-n/a. https://doi.org/10.1029/2004GC000871 | spa |
dc.relation.references | Merrill, R. T., McElhinny, M. W., & McFadden, P. L. (1996). The Magnetic Field of the Earth Paleomagnetism, the Core, and the Deep Mantle. In International Geophysics Series, Vol 63. Academic Press. | spa |
dc.relation.references | Murcia, H., Borrero, C., & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77–87. https://doi.org/10.1016/j.jvolgeores.2018.06.013 | spa |
dc.relation.references | Muxworthy, A. R., Turney, J. N., Qi, L., Baker, E. B., Perkins, J. R., & Abdulkarim, M. A. (2023). Interpreting high-temperature magnetic susceptibility data of natural systems. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1171200 | spa |
dc.relation.references | Nikolaisen, E. S., Fabian, K., Harrison, R., & McEnroe, S. A. (2022). Micromagnetic Modes of Anisotropy of Magnetic Susceptibility in Natural Magnetite Particles. Geophysical Research Letters, 49(16). https://doi.org/10.1029/2022GL099758 | spa |
dc.relation.references | Oches, E. A., & Banerjee, S. K. (1996). Rock-magnetic proxies of climate change from loess -paleosol sediments of the Czech Republic. Studia Geophysica et Geodætica, 40(3), 287–300. https://doi.org/10.1007/BF02300744 | spa |
dc.relation.references | Ogg, J. G. (2020). Geomagnetic Polarity Time Scale. In Geologic Time Scale 2020 (pp. 159–192). Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00005-X | spa |
dc.relation.references | Osorio, P., Botero-Gómez, L. A., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40(3), 103–123. https://doi.org/10.18273/revbol.v40n3-2018006 | spa |
dc.relation.references | Robertson, D. J., & France, D. E. (1994). Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Physics of the Earth and Planetary Interiors, 82(3–4), 223–234. https://doi.org/10.1016/0031-9201(94)90074-4 | spa |
dc.relation.references | Rodríguez-Pintó, A., Ramón, M. J., Oliva-Urcia, B., Pueyo, E. L., & Pocoví, A. (2011). Errors in paleomagnetism: Structural control on overlapped vectors – mathematical models. Physics of the Earth and Planetary Interiors, 186(1–2), 11–22. https://doi.org/10.1016/j.pepi.2011.02.003 | spa |
dc.relation.references | Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008GC002332 | spa |
dc.relation.references | Salazar-Muñoz, N., Ríos de la Ossa, C. A., Murcia, H., Schonwalder-Ángel, D., Botero-Gómez, L. A., Hincapié, G., da Silva, J. C., & Sánchez-Torres, L. (2021). Andesitic (SiO2: ~60 wt%) monogenetic volcanism in the northern Colombian Andes: Crystallisation history of three Quaternary volcanoes. Journal of Volcanology and Geothermal Research, 412, 107194. https://doi.org/10.1016/j.jvolgeores.2021.107194 | spa |
dc.relation.references | Sánchez-Duque, A., Mejia, V., Opdyke, N. D., Huang, K., & Rosales-Rivera, A. (2016). Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia. Geochemistry Geophysics Geosystems, 17, 538–549. https://doi.org/10.1002/2015GC006149 | spa |
dc.relation.references | Santos, C. N., & Tauxe, L. (2019). Investigating the Accuracy, Precision, and Cooling Rate Dependence of Laboratory-Acquired Thermal Remanences During Paleointensity Experiments. Geochemistry, Geophysics, Geosystems, 20(1), 383–397. https://doi.org/10.1029/2018GC007946 | spa |
dc.relation.references | Schaefer, S. J., Sturchio, N. C., Murrell, M. T., & Stanley, W. N. (1993). Internal 238U-series systematics of pumice from the November 13, 1985, eruption of Nevado del Ruiz, Colombia. Geochimica et Cosmochimica Acta, 57(6), 1215–1219. https://doi.org/10.1016/0016-7037(93)90058-5 | spa |
dc.relation.references | Shaar, R., & Tauxe, L. (2015). Instability of thermoremanence and the problem of estimating the ancient geomagnetic field strength from non-single-domain recorders. Proceedings of the National Academy of Sciences, 112(36), 11187–11192. https://doi.org/10.1073/pnas.1507986112 | spa |
dc.relation.references | Tauxe, L. (2003). Paleomagnetic Principles and Practice (Vol. 17). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48128-6 | spa |
dc.relation.references | Tauxe, L. (2005). Inclination flattening and the geocentric axial dipole hypothesis. Earth and Planetary Science Letters, 233(3–4), 247–261. https://doi.org/10.1016/j.epsl.2005.01.027 | spa |
dc.relation.references | Tauxe, L., Mullender, T. A. T., & Pick, T. (1996). Potbellies, wasp‐waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research: Solid Earth, 101(B1), 571–583. https://doi.org/10.1029/95JB03041 | spa |
dc.relation.references | Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., … Zvereva, T. (2015). International geomagnetic reference field: The 12th generation international geomagnetic reference field - The twelfth generation. Earth, Planets and Space, 67(1). https://doi.org/10.1186/s40623-015-0228-9 | spa |
dc.relation.references | Thouret, J.-C., Cantagrel, J. M., Salinas, R., & Murcia, A. (1990). Quaternary eruptive history of Nevado del Ruiz (Colombia). Journal of Volcanology and Geothermal Research, 41(1–4), 225–251. | spa |
dc.relation.references | Vandamme, D. (1994). A new method to determine paleosecular variation. Physics of the Earth and Planetary Interiors, 85(1–2), 131–142. https://doi.org/10.1016/0031-9201(94)90012-4 | spa |
dc.relation.references | Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003 | spa |
dc.relation.references | Vinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007 | spa |
dc.relation.references | Wang, D., & Van der Voo, R. (2004). The hysteresis properties of multidomain magnetite and titanomagnetite/titanomaghemite in mid-ocean ridge basalts. Earth and Planetary Science Letters, 220(1–2), 175–184. https://doi.org/10.1016/S0012-821X(04)00052-4 | spa |
dc.relation.references | Wasilewski, P. J. (1973). Magnetic hysteresis in natural materials. Earth and Planetary Science Letters, 20(1), 67–72. https://doi.org/10.1016/0012-821X(73)90140-4 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.proposal | Paleomagnetismo | spa |
dc.subject.proposal | Vulcanismo monogenético | spa |
dc.subject.proposal | Remanencia magnética | spa |
dc.subject.proposal | Anisotropía de susceptibilidad magnética | spa |
dc.subject.proposal | Temperatura de transición | spa |
dc.subject.proposal | Paleomagnetism | eng |
dc.subject.proposal | Monogenetic volcanism | eng |
dc.subject.proposal | Magnetic remanence | eng |
dc.subject.proposal | Transition temperature | eng |
dc.subject.proposal | Anisotropy of magnetic susceptibility | eng |
dc.subject.unesco | Tectónica | spa |
dc.subject.unesco | Volcanología | spa |
dc.subject.unesco | Fallas geológicas | spa |
dc.title | Paleomagnetismo en la Provincia Volcano-tectónica San Diego – Cerro Machín | spa |
dc.title.translated | Paleomagnetism in the San Diego - Cerro Machin Volcano-tectonic Province | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053837369.2024.pdf
- Tamaño:
- 5.46 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: