Paleomagnetismo en la Provincia Volcano-tectónica San Diego – Cerro Machín

dc.contributor.advisorMejía Bernal, Victoria
dc.contributor.authorGómez Colonia, Luis Felipe
dc.date.accessioned2024-10-28T21:02:44Z
dc.date.available2024-10-28T21:02:44Z
dc.date.issued2024
dc.descriptionfotografías, graficas, tablasspa
dc.description.abstractSe llevó a cabo un estudio paleomagnético al noroeste del Volcán Nevado del Ruiz, que abarcó 17 sitios, representando domos y flujos de lava. Se realizaron análisis de desmagnetización termal y por campo alterno, susceptibilidad magnética vs temperatura, curvas de histéresis, magnetización remanente isotermal y campo inverso, y anisotropía de susceptibilidad magnética (AMS). Los resultados del análisis direccional fueron interpretables para 13 sitios, evidenciando 7 con polaridad normal y 4 con polaridad inversa, en concordancia con las edades asignadas en estudios previos (<45 ka a 1.97 Ma) relacionadas con el cron Brunhes (7 sitios) y Matuyama (4 sitios). Adicionalmente, 2 polaridades intermedias también fueron encontradas. Los análisis de susceptibilidad versus temperatura revelaron dos rangos de temperaturas de transición: de 300°C a 350°C y de 400°C a 550°C. Estos indicaron la presencia de una (8 sitios) o dos (8 sitios) fases mineralógicas, consistentes con la presencia de titanomagnetitas y/o titanohematitas. Las curvas irreversibles indicaron la presencia de maghemita y titanomaghemita en sitios afectados por actividad hidrotermal, originada al sureste del segmento Termales de la falla Villamaría – Termales. Los resultados de AMS de 14 sitios proporcionaron información valiosa sobre las condiciones de emplazamiento de la lava, con anisotropía planar, indicando el plano de un flujo de lava (elipsoide oblado, 4 sitios), y anisotropía triaxial (7 sitios) y lineal (elipsoide prolato, 3 sitios), indicando la base de un domo y la parte alta de un domo o un flujo de lava, respectivamente (Texto tomado de la fuente)spa
dc.description.abstractA paleomagnetic study was conducted northwest of the Nevado del Ruiz Volcano, covering 17 sites, representing domes and lava flows. Thermal and alternating field demagnetization analyses were performed, along with magnetic susceptibility vs temperature, hysteresis curves, isothermal remanent magnetization and backfield, and anisotropy of magnetic susceptibility (AMS). The directional analysis results were interpretable for 13 sites, revealing 7 with normal polarity, 4 with reverse polarity, consistent with previously assigned ages (<45 ka to 1.97 Ma) related to the Brunhes (7 sites) and Matuyama (4 sites) chrons. Additionally, 2 intermediate polarities were also found. The magnetic susceptibility vs temperature analyses revealed two transition temperature ranges: from 300°C to 350°C and from 400°C to 550°C. These indicated the presence of one (8 sites) or two (8 sites) mineralogical phases, consistent with the presence of titanomagnetites and/or titanohematites. The irreversible curves indicated the presence of maghemite and titanomaghemite in sites affected by hydrothermal activity, originating southeast of the Termales segment of the Villamaría–Termales fault. AMS results from 14 sites provided valuable information about the lava emplacement conditions, with planar anisotropy indicating the plane of a lava flow (oblate ellipsoid, 4 sites), while triaxial (7 sites) and linear (prolate ellipsoid, 3 sites) anisotropy indicated the base of a dome and the upper part of a dome or a lava flow, respectively.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaPaleomagnetismo y geofísica ambientalspa
dc.format.extentxvi, 75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87085
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesAlva-Valdivia, L. M., Rivas, M. L., Goguitchaichvili, A., Urrutia-Fucugauchi, J., Gonzalez, J. A., Morales, J., Gómez, S., Henríquez, F., Nyström, J. O., & Naslund, R. H. (2003). Rock-Magnetic and Oxide Microscopic Studies of the El Laco Iron Ore Deposits, Chilean Andes, and Implications for Magnetic Anomaly Modeling. International Geology Review, 45(6), 533–547. https://doi.org/10.2747/0020-6814.45.6.533spa
dc.relation.referencesArneitz, P., Egli, R., & Leonhardt, R. (2017). Unbiased analysis of geomagnetic data sets and comparison of historical data with paleomagnetic and archeomagnetic records. Reviews of Geophysics, 55(1), 5–39. https://doi.org/10.1002/2016RG000527spa
dc.relation.referencesBaag, C., Helsley, C. E., Xu, S., & Lienert, B. R. (1995). Deflection of paleomagnetic directions due to magnetization of the underlying terrain. Journal of Geophysical Research: Solid Earth, 100(B6), 10013–10027. https://doi.org/10.1029/95JB00148spa
dc.relation.referencesBlundell, S. (2001). Magnetism in Condensed Matter. Oxford University Press.spa
dc.relation.referencesBorrero, C., Toro, L. M., Alvarán, M., & Castillo, H. (2009). Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofisica Internacional, 48(1), 149–169. https://doi.org/10.22201/igeof.00167169p.2009.48.1.105spa
dc.relation.referencesBotero-Gómez, L. A., Murcia, H., & Hincapié-Jaramillo, G. (2023). The effect of fault systems on volcanic activity: Insights from the subduction-related, Quaternary Villamaría-Termales monogenetic volcanic field in Colombia. Journal of Volcanology and Geothermal Research, 444, 107969. https://doi.org/10.1016/j.jvolgeores.2023.107969spa
dc.relation.referencesBotero-Gómez, L. A., Osorio, P., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte I): Características morfológicas y relaciones temporales. Boletín de Geología, 40(3), 85–102. https://doi.org/10.18273/revbol.v40n3-2018005spa
dc.relation.referencesBourdon, E., Eissen, J.-P., Gutscher, M.-A., Monzier, M., Hall, M. L., & Cotten, J. (2003). Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth and Planetary Science Letters, 205(3–4), 123–138. https://doi.org/10.1016/S0012-821X(02)01024-5spa
dc.relation.referencesButler, R. F. (2004). Paleomagnetism: magnetic domains to geologic terranes (Electronic). Blackwell Science Inc. https://doi.org/10.5860/choice.29-5708spa
dc.relation.referencesCeballos–Hernández, J. A., Martínez–Tabares, L. M., Valencia–Ramírez, L. G., Pulgarín–Alzate, B. A., Correa–Tamayo, A. M., & Narváez–Marulanda, B. L. (2020). The Geology of Colombia, Volume 4 Quaternary. In J. Gómez-Tapias & A. O. Pinilla-Pachon (Eds.), Servicio Geológico Colombiano, Publicaciones Geológicas Especiales (Vol. 4, pp. 267–296). Servicio Geológico Colombiano.spa
dc.relation.referencesChadima, M., & Hrouda, F. (2006). Remasoft 3.0 – a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, XXVII, 20–21.spa
dc.relation.referencesClark, D. A. (2014). Methods for determining remanent and total magnetisations of magnetic sources – a review. Exploration Geophysics, 45(4), 271–304. https://doi.org/10.1071/EG14013spa
dc.relation.referencesCollinson, D. W. (1983). Methods in Rock Magnetism and Palaeomagnetism. Springer Netherlands. https://doi.org/10.1007/978-94-015-3979-1spa
dc.relation.referencesConstable, C., & Tauxe, L. (1990). The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research: Solid Earth, 95(B6), 8383–8395. https://doi.org/10.1029/JB095iB06p08383spa
dc.relation.referencesCox, A. (1969). Confidence Limits for the Precision Parameter k. Geophysical Journal International, 17(5), 545–549. https://doi.org/10.1111/j.1365-246X.1969.tb00257.xspa
dc.relation.referencesCromwell, G., Johnson, C. L., Tauxe, L., Constable, C. G., & Jarboe, N. A. (2018). PSV10: A Global Data Set for 0–10 Ma Time‐Averaged Field and Paleosecular Variation Studies. Geochemistry, Geophysics, Geosystems, 19(5), 1533–1558. https://doi.org/10.1002/2017GC007318spa
dc.relation.referencesCubides Gallego, Y. A. (2020). Variaciones paleoseculares y campo geomagnético promedio en lavas del volcán Cerro Bravo y cerro Gallinazo [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78207spa
dc.relation.referencesDay, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4), 260–267. https://doi.org/10.1016/0031-9201(77)90108-Xspa
dc.relation.referencesde Oliveira, W. P., Hartmann, G. A., Terra‐Nova, F., Brandt, D., Biggin, A. J., Engbers, Y. A., Bono, R. K., Savian, J. F., Franco, D. R., Trindade, R. I. F., & Moncinhatto, T. R. (2021). Paleosecular Variation and the Time‐Averaged Geomagnetic Field Since 10 Ma. Geochemistry, Geophysics, Geosystems, 22(10). https://doi.org/10.1029/2021GC010063spa
dc.relation.referencesDunlop, D. J. (1979). On the use of Zijderveld vector diagrams in multicomponent paleomagnetic studies. Physics of the Earth and Planetary Interiors, 20(1), 12–24. https://doi.org/10.1016/0031-9201(79)90103-1spa
dc.relation.referencesDunlop, D. J. (2002). Theory and application of the Day plot ( M rs / M s versus H cr / H c ) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107(B3), 2056. https://doi.org/10.1029/2001JB000486spa
dc.relation.referencesDunlop, D. J., & Carter‐Stiglitz, B. (2006). Day plots of mixtures of superparamagnetic, single‐domain, pseudosingle‐domain, and multidomain magnetites. Journal of Geophysical Research: Solid Earth, 111(B12). https://doi.org/10.1029/2006JB004499spa
dc.relation.referencesDunlop, D. J., & Özdemir, Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press. https://doi.org/10.1063/1.882466spa
dc.relation.referencesDunlop, D. J., & Özdemir, Ö. (2015). Magnetizations in Rocks and Minerals. In Treatise on Geophysics (pp. 255–308). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00102-0spa
dc.relation.referencesFabian, K. (2003). Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth and Planetary Science Letters, 213(3–4), 337–345. https://doi.org/10.1016/S0012-821X(03)00329-7spa
dc.relation.referencesFinlay, C. C. (2008). Historical variation of the geomagnetic axial dipole. Physics of the Earth and Planetary Interiors, 170(1–2), 1–14. https://doi.org/10.1016/j.pepi.2008.06.029spa
dc.relation.referencesFisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130), 295–305. https://doi.org/10.1098/rspa.1953.0064spa
dc.relation.referencesGarcía, R., Solano Cervantes, M., Goguitchaichvili, A., Reyes, D. S., Kravchinsky, V. A., Morales, J., Cejudo, R., & Elguera Rosas, J. (2021). Semicontinuous paleomagnetic record of the last 1 Ma from radiometrically dated igneous rocks (Trans-Mexican Volcanic Belt and surrounding areas). Journal of South American Earth Sciences, 108, 103195. https://doi.org/10.1016/j.jsames.2021.103195spa
dc.relation.referencesGómez, J., Montes, N. E., & Nivia, Á. (2020). Atlas Geológico de Colombia. Escala 1:500 000. Servicio Geológico Colombiano. https://srvags.sgc.gov.co/JSViewer/Atlas_Geologico_colombiano_2020/spa
dc.relation.referencesGonzález I., H., & Londoño G., A. C. (2002). Catálogo de las unidades litoestratigráficas de Colombia. Granodiorita de Manizales (K2E1gdm). Servicio Geológico Colombiano. https://adminmiig.sgc.gov.co/Lists/RecursosSGC/DispForm.aspx?ID=71099spa
dc.relation.referencesGraham, K. W. T. (1961). The Re-magnetization of a Surface Outcrop by Lightning Currents. Geophysical Journal International, 6(1), 85–102. https://doi.org/10.1111/j.1365-246X.1961.tb02963.xspa
dc.relation.referencesGrajales, J. A., Nieto-Samaniego, Á. F., Barrero Lozano, D., Osorio, J. A., & Cuellar, M. A. (2020). Emplacement of Paleocene-Eocene magmatism under transtensional regime and its evolution to a dynamic equilibrium on the western edge of Colombia. Revista Mexicana de Ciencias Geológicas, 37(3), 250–268. https://doi.org/10.22201/cgeo.20072902e.2020.3.1570spa
dc.relation.referencesGudmundsson, A., Drymoni, K., Browning, J., Acocella, V., Amelung, F., Bonali, F. L., Elshaafi, A., Galindo, I., Geshi, N., Geyer, A., Heap, M. J., Karaoğlu, Ö., Kusumoto, S., Marti, J., Pinel, V., Tibaldi, A., Thordarson, T., & Walter, T. R. (2022). Volcanotectonics: the tectonics and physics of volcanoes and their eruption mechanics. Bulletin of Volcanology, 84(8), 72. https://doi.org/10.1007/s00445-022-01582-4spa
dc.relation.referencesHarris, A. J. L., & Rowland, S. K. (2015). Lava Flows and Rheology. In The Encyclopedia of Volcanoes (pp. 321–342). Elsevier. https://doi.org/10.1016/B978-0-12-385938-9.00017-1spa
dc.relation.referencesHarrison, R. J., & Putnis, A. (1996). Magnetic properties of the magnetite-spinel solid solution; Curie temperatures, magnetic susceptibilities, and cation ordering. American Mineralogist, 81(3–4), 375–384. https://doi.org/10.2138/am-1996-3-412spa
dc.relation.referencesHext, G. R. (1963). The estimation of second-order tensors, with related tests and designs. Biometrika, 50(3–4), 353–373. https://doi.org/10.1093/biomet/50.3-4.353spa
dc.relation.referencesHulot, G., Finlay, C. C., Constable, C. G., Olsen, N., & Mandea, M. (2010). The magnetic field of planet earth. Space Science Reviews, 152(1–4), 159–222. https://doi.org/10.1007/s11214-010-9644-0spa
dc.relation.referencesJackson, M., & Bowles, J. A. (2014). Curie temperatures of titanomagnetite in ignimbrites: Effects of emplacement temperatures, cooling rates, exsolution, and cation ordering. Geochemistry, Geophysics, Geosystems, 15(11), 4343–4368. https://doi.org/10.1002/2014GC005527spa
dc.relation.referencesJelínek, V., & Kropáček, V. (1978). Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22(1), 50–62. https://doi.org/10.1007/BF01613632spa
dc.relation.referencesJuarez, M. T., & Tauxe, L. (2002). The intensity of the time-averaged geomagnetic field: the last 5 Myr. Earth and Planetary Science Letters, 175(3–4), 169–180. https://doi.org/10.1016/s0012-821x(99)00306-4spa
dc.relation.referencesKhokhlov, A., & Hulot, G. (2016). Principal component analysis of palaeomagnetic directions: converting a Maximum Angular Deviation (MAD) into an α 95 angle. Geophysical Journal International, 204(1), 274–291. https://doi.org/10.1093/gji/ggv451spa
dc.relation.referencesKirschvink, J. L. (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.xspa
dc.relation.referencesKolářová, K., Černý, J., Melichar, R., Schnabl, P., & Gaidzik, K. (2022). Reconstruction of ancient volcanic complexes using magnetic signature: A case study from Cambrian andesite lava flow, Bohemian Massif. Journal of Volcanology and Geothermal Research, 428, 107591. https://doi.org/10.1016/j.jvolgeores.2022.107591spa
dc.relation.referencesKontny, A., Urrutia-Fucugauchi, J., Gogitchaishvili, A., Alva-Valdivia, L. M., González-Rangel, J. A., & Caballero-Miranda, C. I. (2016). Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows. Journal of Volcanology and Geothermal Research, 311, 9–28. https://doi.org/10.1016/j.jvolgeores.2016.01.003spa
dc.relation.referencesKumari, M., Hirt, A. M., Uebe, R., Schüler, D., Tompa, É., Pósfai, M., Lorenz, W., Ahrentorp, F., Jonasson, C., & Johansson, C. (2015). Experimental mixtures of superparamagnetic and single‐domain magnetite with respect to Day‐Dunlop plots. Geochemistry, Geophysics, Geosystems, 16(6), 1739–1752. https://doi.org/10.1002/2015GC005744spa
dc.relation.referencesLowrie, W. (2007). Fundamentals of Geophysics (2nd ed). Cambridge University Press. https://doi.org/10.15713/ins.mmj.3spa
dc.relation.referencesMcElhinny, M. W., & McFadden, P. L. (1997). Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophysical Journal International, 131(2), 240–252. https://doi.org/10.1111/j.1365-246X.1997.tb01219.xspa
dc.relation.referencesMcFadden, P. L., & McElhinny, M. W. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3), 725–729. https://doi.org/10.1111/j.1365-246X.1990.tb05683.xspa
dc.relation.referencesMcFadden, P. L., Merrill, R. T., & McElhinny, M. W. (1988). Dipole/quadrupole family modeling of paleosecular variation. Journal of Geophysical Research: Solid Earth, 93(B10), 11583–11588. https://doi.org/10.1029/JB093iB10p11583spa
dc.relation.referencesMejía, E. L., Velandia, F., Zuluaga, C. A., López, J. A., & Cramer, T. (2012). Análisis estructural al noreste del Volcán Nevado del Ruíz, Colombia - aporte a la exploración geotérmica. Boletin de Geologia, 34(1), 27–41.spa
dc.relation.referencesMejia, V., Böhnel, H., Opdyke, N. D., Ortega-Rivera, M. A., Lee, J. K. W., & Aranda-Gomez, J. J. (2005). Paleosecular variation and time-averaged field recorded in late Pliocene-Holocene lava flows from Mexico. Geochemistry, Geophysics, Geosystems, 6(7), n/a-n/a. https://doi.org/10.1029/2004GC000871spa
dc.relation.referencesMerrill, R. T., McElhinny, M. W., & McFadden, P. L. (1996). The Magnetic Field of the Earth Paleomagnetism, the Core, and the Deep Mantle. In International Geophysics Series, Vol 63. Academic Press.spa
dc.relation.referencesMurcia, H., Borrero, C., & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77–87. https://doi.org/10.1016/j.jvolgeores.2018.06.013spa
dc.relation.referencesMuxworthy, A. R., Turney, J. N., Qi, L., Baker, E. B., Perkins, J. R., & Abdulkarim, M. A. (2023). Interpreting high-temperature magnetic susceptibility data of natural systems. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1171200spa
dc.relation.referencesNikolaisen, E. S., Fabian, K., Harrison, R., & McEnroe, S. A. (2022). Micromagnetic Modes of Anisotropy of Magnetic Susceptibility in Natural Magnetite Particles. Geophysical Research Letters, 49(16). https://doi.org/10.1029/2022GL099758spa
dc.relation.referencesOches, E. A., & Banerjee, S. K. (1996). Rock-magnetic proxies of climate change from loess -paleosol sediments of the Czech Republic. Studia Geophysica et Geodætica, 40(3), 287–300. https://doi.org/10.1007/BF02300744spa
dc.relation.referencesOgg, J. G. (2020). Geomagnetic Polarity Time Scale. In Geologic Time Scale 2020 (pp. 159–192). Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00005-Xspa
dc.relation.referencesOsorio, P., Botero-Gómez, L. A., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40(3), 103–123. https://doi.org/10.18273/revbol.v40n3-2018006spa
dc.relation.referencesRobertson, D. J., & France, D. E. (1994). Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Physics of the Earth and Planetary Interiors, 82(3–4), 223–234. https://doi.org/10.1016/0031-9201(94)90074-4spa
dc.relation.referencesRodríguez-Pintó, A., Ramón, M. J., Oliva-Urcia, B., Pueyo, E. L., & Pocoví, A. (2011). Errors in paleomagnetism: Structural control on overlapped vectors – mathematical models. Physics of the Earth and Planetary Interiors, 186(1–2), 11–22. https://doi.org/10.1016/j.pepi.2011.02.003spa
dc.relation.referencesRyan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008GC002332spa
dc.relation.referencesSalazar-Muñoz, N., Ríos de la Ossa, C. A., Murcia, H., Schonwalder-Ángel, D., Botero-Gómez, L. A., Hincapié, G., da Silva, J. C., & Sánchez-Torres, L. (2021). Andesitic (SiO2: ~60 wt%) monogenetic volcanism in the northern Colombian Andes: Crystallisation history of three Quaternary volcanoes. Journal of Volcanology and Geothermal Research, 412, 107194. https://doi.org/10.1016/j.jvolgeores.2021.107194spa
dc.relation.referencesSánchez-Duque, A., Mejia, V., Opdyke, N. D., Huang, K., & Rosales-Rivera, A. (2016). Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia. Geochemistry Geophysics Geosystems, 17, 538–549. https://doi.org/10.1002/2015GC006149spa
dc.relation.referencesSantos, C. N., & Tauxe, L. (2019). Investigating the Accuracy, Precision, and Cooling Rate Dependence of Laboratory-Acquired Thermal Remanences During Paleointensity Experiments. Geochemistry, Geophysics, Geosystems, 20(1), 383–397. https://doi.org/10.1029/2018GC007946spa
dc.relation.referencesSchaefer, S. J., Sturchio, N. C., Murrell, M. T., & Stanley, W. N. (1993). Internal 238U-series systematics of pumice from the November 13, 1985, eruption of Nevado del Ruiz, Colombia. Geochimica et Cosmochimica Acta, 57(6), 1215–1219. https://doi.org/10.1016/0016-7037(93)90058-5spa
dc.relation.referencesShaar, R., & Tauxe, L. (2015). Instability of thermoremanence and the problem of estimating the ancient geomagnetic field strength from non-single-domain recorders. Proceedings of the National Academy of Sciences, 112(36), 11187–11192. https://doi.org/10.1073/pnas.1507986112spa
dc.relation.referencesTauxe, L. (2003). Paleomagnetic Principles and Practice (Vol. 17). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48128-6spa
dc.relation.referencesTauxe, L. (2005). Inclination flattening and the geocentric axial dipole hypothesis. Earth and Planetary Science Letters, 233(3–4), 247–261. https://doi.org/10.1016/j.epsl.2005.01.027spa
dc.relation.referencesTauxe, L., Mullender, T. A. T., & Pick, T. (1996). Potbellies, wasp‐waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research: Solid Earth, 101(B1), 571–583. https://doi.org/10.1029/95JB03041spa
dc.relation.referencesThébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., … Zvereva, T. (2015). International geomagnetic reference field: The 12th generation international geomagnetic reference field - The twelfth generation. Earth, Planets and Space, 67(1). https://doi.org/10.1186/s40623-015-0228-9spa
dc.relation.referencesThouret, J.-C., Cantagrel, J. M., Salinas, R., & Murcia, A. (1990). Quaternary eruptive history of Nevado del Ruiz (Colombia). Journal of Volcanology and Geothermal Research, 41(1–4), 225–251.spa
dc.relation.referencesVandamme, D. (1994). A new method to determine paleosecular variation. Physics of the Earth and Planetary Interiors, 85(1–2), 131–142. https://doi.org/10.1016/0031-9201(94)90012-4spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003spa
dc.relation.referencesVinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007spa
dc.relation.referencesWang, D., & Van der Voo, R. (2004). The hysteresis properties of multidomain magnetite and titanomagnetite/titanomaghemite in mid-ocean ridge basalts. Earth and Planetary Science Letters, 220(1–2), 175–184. https://doi.org/10.1016/S0012-821X(04)00052-4spa
dc.relation.referencesWasilewski, P. J. (1973). Magnetic hysteresis in natural materials. Earth and Planetary Science Letters, 20(1), 67–72. https://doi.org/10.1016/0012-821X(73)90140-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalPaleomagnetismospa
dc.subject.proposalVulcanismo monogenéticospa
dc.subject.proposalRemanencia magnéticaspa
dc.subject.proposalAnisotropía de susceptibilidad magnéticaspa
dc.subject.proposalTemperatura de transiciónspa
dc.subject.proposalPaleomagnetismeng
dc.subject.proposalMonogenetic volcanismeng
dc.subject.proposalMagnetic remanenceeng
dc.subject.proposalTransition temperatureeng
dc.subject.proposalAnisotropy of magnetic susceptibilityeng
dc.subject.unescoTectónicaspa
dc.subject.unescoVolcanologíaspa
dc.subject.unescoFallas geológicasspa
dc.titlePaleomagnetismo en la Provincia Volcano-tectónica San Diego – Cerro Machínspa
dc.title.translatedPaleomagnetism in the San Diego - Cerro Machin Volcano-tectonic Provinceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053837369.2024.pdf
Tamaño:
5.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: