En 21 día(s), 20 hora(s) y 52 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Use of mitochondrial markers as a tool in the management of trade wildlife in Colombia

dc.contributor.advisorVargas Ramírez, Mario
dc.contributor.authorArias Sosa, Luis Alejandro
dc.contributor.cvlacLuis Alejandro Arias Sosa [0001561765]spa
dc.contributor.orcidLuis Alejandro Arias Sosa [0000000262399809]spa
dc.contributor.researchgroupBiodiversidad y Conservación Genéticaspa
dc.coverage.cityColombia
dc.date.accessioned2024-07-30T19:59:36Z
dc.date.available2024-07-30T19:59:36Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractLa extracción y comercio ilegal de fauna silvestre constituyen un importante impulsor de la pérdida de biodiversidad a nivel global y regional. Esto representa amenazas considerables para las poblaciones naturales y ejerce una inmensa presión sobre las entidades ambientales encargadas de gestionar eficazmente cientos de individuos confiscados cada año. Si bien el resultado óptimo es la rehabilitación adecuada y la liberación de individuos confiscados en su hábitat natural, la falta de información confiable sobre el origen del animal y decisiones de manejo desinformadas podrían tener efectos indeseables en las poblaciones naturales, como la depresión exogámica y la homogeneización de la diversidad. En consecuencia, el uso de información genética para inferir el origen más probable de los individuos confiscados ha sido altamente recomendado como una herramienta en la toma de decisiones para las estrategias de manejo. Este estudio tuvo como objetivo explorar el uso de marcadores mitocondriales como una herramienta para inferir el origen geográfico de algunas de las especies de loros, tortugas y serpientes más comercializadas en Colombia. Para lograr esto, exploramos inicialmente la estructura filogeográfica en diez especies altamente comercializadas mediante el análisis de 647 secuencias de individuos de poblaciones naturales conocidas. Este análisis buscaba determinar si los individuos de diferentes ubicaciones biogeográficas mostraban patrones genéticos diferenciados y establecer una base de datos de referencia. Posteriormente, obtuvimos secuencias de 329 individuos en cautiverio de origen desconocido y determinamos su origen más probable al analizarlos junto con la base de datos de referencia establecida. Los resultados destacan la estructura genética en las poblaciones silvestres a lo largo de las regiones biogeográficas, enfatizando la necesidad de gestión infraespecífica para proteger la diversidad genética del país. Nuestro análisis reveló nuevas líneas evolutivas - 14 (es decir, grupos filogeográficos y subespecies no descritas), así como nuevas unidades de manejo para las especies estudiadas. Además, este trabajo reveló una heterogeneidad significativa en los orígenes de los individuos confiscados, indicando complejas redes comerciales donde los individuos son capturados en múltiples áreas de caza y luego movilizados hacia el interior para satisfacer las demandas dentro del país. Estos hallazgos demuestran la necesidad urgente de programas de manejo y liberación mejor informados. El análisis genético debe integrarse en la toma de decisiones con respecto al manejo y disposición de individuos en cautiverio, requiriendo la separación de animales de diferentes grupos genéticos/originarios y liberaciones dirigidas en áreas dentro del origen inferido de los especímenes. Se deben evitar las liberaciones masivas de individuos en áreas no específicas en la amplia distribución de una especie. Las caracterizaciones genéticas deben llevarse a cabo para todas las especies altamente comercializadas en el país. Al llevar a cabo este proyecto de investigación, hemos demostrado el potencial de los marcadores moleculares mitocondriales como una herramienta relativamente simple, estandarizada, económica y confiable para evaluar el origen de la fauna silvestre comercializada en Colombia. Sin embargo, dado que cada especie tiene una historia ecológica y filogeográfica única, esta herramienta debe validarse de manera independiente para su uso en otras especies (Texto tomado de la fuente).spa
dc.description.abstractIllegal wildlife extraction and trade constitute a significant driver of global and regional biodiversity loss. This poses considerable threats to natural populations and places immense pressure on environmental entities, tasked with effectively managing hundreds of seized individuals each year. While the optimal outcome is the proper rehabilitation and release of confiscated individuals into the wild, the lack of reliable information regarding the animal’s origin and uninformed management decisions could lead to undesirable effects on natural populations, such as exogamic depression and diversity homogenization. Consequently, the use of genetic information to infer the most probable origin of seized individuals has been highly recommended as a tool in decision-making for management strategies. This study aims to explore the use of mitochondrial markers as a tool to infer the geographic origin of some of the most traded species of parrots, turtles and snakes in Colombia. To achieve this, we initially explored the phylogeographic structure in ten highly traded species by analyzing 647 sequences from individuals from known natural populations. This analysis sought to determine whether individuals from different biogeographic locations exhibited differentiated genetic patterns and to establish a reference database. Subsequently, we obtained sequences from 329 captive individuals of unknown origin and determined their most probable origin by analyzing them together with the established reference database. The results underscore the genetic structure in wild populations across biogeographic regions, emphasizing the need for infra-specific management to protect the country's genetic diversity. Our analysis revealed new evolutionary lineages, (i.e., undescribed phylogeographic groups and subspecies), as well as new management units for the studied species. Additionally, this work unveiled significant heterogeneity in the origins of seized individuals, indicating complex trade networks where individuals are harvested from multiple poaching areas and then mobilized to the interior to meet demands within the country. These findings demonstrate the urgent need for better-informed management and release programs. Genetic analysis needs to be integrated into decision-making regarding the management and disposition of captive individuals, necessitating the separation of animals from different genetic/origin groups and targeted releases in areas within the inferred origin of the specimens. Massive releases of individuals within unspecific areas in the broad distribution of a species should be avoided. Genetic characterizations should be carried out for all highly traded species in the country. By performing this research project, we have demonstrated the potential of mitochondrial molecular markers as a relatively simple, standardized, inexpensive, and reliable tool to assess the origin of traded wildlife in Colombia. However, given that each species has a unique ecological and phylogeographical history, this tool needs to be independently validated to be used in other species.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.methodsSample Collection: Tissue samples were sourced mainly from museum material from a variety of locations, as well as some field sampling efforts. We specifically targeted the six Amazon parrot species found in Colombia, namely Amazona ochrocephala, A. amazonica, A. farinosa, A. autumnalis, A. festiva, and A. mercenaria. Additionally, we incorporated published sequences with known origins that were obtained from the GenBank and BOLD databases. To address the taxonomic ambiguity within the yellow-crowned amazon (A. ochrocephala), which is part of the "yellow-headed parrot species complex", we included available sequences from related species. These related species included the yellow-naped amazon (A. auropalliata), yellow-shouldered amazon (A. barbadensis), and turquoise-fronted amazon (A. aestiva), as they have been considered part of the same complex (Eberhard y Bermingham 2004; Ribas, Tavares, et al. 2007). In total, our analysis included 140 sequences with known geographic origins, comprising our genetic reference database (Table 1). In addition, we collected 156 blood samples from seized Amazon parrots with unknown origins. These samples were obtained from tissue collections and live animals held by various institutions, including the “Laboratorio de Genética Forense de Especies Silvestres en la Dirección de Investigación Criminal e INTERPOL”, the “Unidad de Rescate y Rehabilitación de Animales Silvestres (URRAS) bajo la jurisdicción de la Secretaría de Ambiente del Distrito de Bogotá”, and the “Corporación Autónoma Regional de Cundinamarca CAR”. Of these samples, 144 were obtained from adult individuals, while 12 were from young parrots where plumage-based identification was not feasible. For a comprehensive dataset of all analyzed sequences, please refer to Supplementary Table 1. DNA extraction: For fresh and well-preserved samples we performed DNA extraction using the NucleoSpin Tissue Kit from MACHEREY-NAGEL, Germany, following the manufacturer's instructions. For museum samples, we followed the protocol described in Hoyos et al. (2017). After extraction, DNA concentration was quantified with an EzDrop 1000 Micro-Volume Spectrophotometer (Bleu-Ray), and purity was assessed based on absorbance ratios at 280-260 and 230-260.spa
dc.description.researchareaGenética de la conservaciónspa
dc.format.extent219 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86655
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAcosta Galvis, A.R. 2023. Lista de los Anfibios de Colombia: Referencia en linea V.13.2023. Batrachia .spa
dc.relation.referencesAcosta-Galvis, A.R. 2016. Los anfibios en Colombia. En Gómez, M. F., Moreno, L. A., Andrade, G. I., Rueda, C. (eds.), Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia, pp. 9-10. Instituto Alexander von Humboldt, Bogotá D.C (Colombia).spa
dc.relation.referencesAdrian Quijada-Mascareñas, J., Ferguson, J.E., Pook, C.E., Salomão, M.D.G., Thorpe, R.S., Wüster, W. 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: The Neotropical rattlesnake (Crotalus durissus complex) as an example. En Journal of Biogeography, pp. 1296-1312.spa
dc.relation.referencesAlacs, E.A., Janzen, F.J., Scribner, K.T. 2007. Genetic Issues in Freshwater Turtle and Tortoise Conservation, TURTLE CONSERVATION GENETICS WORKING GROUP. Chelonian Research Monographs 4: 107-123.spa
dc.relation.referencesAlberico, M., Cadena, A., Muñoz-Saba, Y. 2000. Mamíferos (Synapsida: Theria) de Colombia. Biota Colombiana 1: 43-75.spa
dc.relation.referencesAlencar, L.R.V., Quental, T.B., Grazziotin, F.G., Alfaro, M.L., Martins, M., Venzon, M., Zaher, H. 2016. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution 105: 50-62.spa
dc.relation.referencesAlves, R.R.N., Neto, N.A.L., Brooks, S.E., Albuquerque, U.P. 2009. Commercialization of animal-derived remedies as complementary medicine in the semi-arid region of Northeastern Brazil. Journal of Ethnopharmacology 124: 600-608.spa
dc.relation.referencesAlves, R.R.N., Rosa, I.L. 2007. Zootherapy goes to town: The use of animal-based remedies in urban areas of NE and N Brazil. Journal of Ethnopharmacology 113: 541-555.spa
dc.relation.referencesArantes, L.S., Ferreira, L.C.L., Driller, M., Repinaldo Filho, F.P.M., Mazzoni, C.J., Santos, F.R. 2020. Author Correction: Genomic evidence of recent hybridization between sea turtles at Abrolhos Archipelago and its association to low reproductive output (Scientific Reports, (2020), 10, 1, (12847), 10.1038/s41598-020-69613-8). Scientific Reports 10: .spa
dc.relation.referencesArmesto, O., Acevedo, A.A., Gallardo, A., Franco, R. 2014. Rhinoclemmys diademata (Mertens, 1954). En (1):, V. 2 (ed.), Catálogo de Anfibios y Reptiles de Colombia Volumen 2 (1), pp. 47-52.spa
dc.relation.referencesArredondo, J.C. 2015. Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia, Bogotá, Colombia.spa
dc.relation.referencesArroyave Bermudez, F.J., Romero Goyeneche, O.Y., Bonilla Gómez, A., Hurtado Heredia, R.G. 2014. Tráfico ilegal de tortugas continentales (Testudinata) en Colombia: Una aproximación desde el análisis de redes. Acta Biológica Colombiana 19: 381-392.spa
dc.relation.referencesAvendaño, J.E., López, J.O., Laverde-R, O. 2018. Bird diversity of the Cúcuta valley (Colombia) and biogeographical affinities with dry forest avifaunas of northern South America. Wilson Journal of Ornithology 130: 213-223.spa
dc.relation.referencesAyerbe-Quiñones, F. 2018. Guía ilustrada de la avifauna colombiana. wildlife Conservation Society, Bogotá (colombia).spa
dc.relation.referencesBalcero-Deaquiz, M.C. 2022. Genética poblacional de la tortuga icotea colombiana trachemys venusta callirostris (testudines: emydidae), proponiendo estrategias para su conservación. Universidad Nacional de Colombia.spa
dc.relation.referencesBarbanti, A., Martin, C., Blumenthal, J.M., Boyle, J., Broderick, A.C., Collyer, L., Ebanks-Petrie, G. et al. 2019. How many came home? Evaluating ex situ conservation of green turtles in the Cayman Islands. Molecular Ecology 28: 1637-1651.spa
dc.relation.referencesBastidas, M., Bello-Pulido, J.A., Fariña, Á., Fiore, N. 2022. Uso de la fauna silvestre y acuática por la comunidad rural de Guaranache, estado Sucre, nororiente de Venezuela. Memoria de la Fundación La Salle de Ciencias Naturales 80: 63-85.spa
dc.relation.referencesBellagamba, F., Velayutham, D., Cozzi, M.C., Caprino, F., Vasconi, M., Busetto, M.L., Bagnato, A., Moretti, V.M. 2016. Cytochrome Oxidase-I Sequence Based Studies of Commercially Available Pangasius Hypophthalmus in Italy. https://doi.org/10.4081/ijas.2015.3928 14: 378-382.spa
dc.relation.referencesBenício, R.A. 2018. Notes on habitat use of Crotalus durissus (South american rattlesnake). Herpetology Notes 11: 645-646.spa
dc.relation.referencesBernal Restrepo, M.P. 2021. Distribución del tráfico ilegal de reptiles en áreas específicas de Colombia. Pontificia Universidad Javeriana.spa
dc.relation.referencesBertola, L.D., Miller, S.M., Williams, V.L., Naude, V.N., Coals, P., Dures, S.G., Henschel, P. et al. 2022. Genetic guidelines for translocations: Maintaining intraspecific diversity in the lion (Panthera leo). Evolutionary Applications 15: 22-39.spa
dc.relation.referencesBöhm, M., Collen, B., Baillie, J.E.M., Bowles, P., Chanson, J., Cox, N., Hammerson, G. et al. 2013. The conservation status of the world’s reptiles. Biological Conservation 157: 372-385.spa
dc.relation.referencesBrian C. Bock, V.P.P. y J.C.-D. 2015. Hicotea (Trachemys callirostris). En Arredondo, J. C. (ed.), Libro rojo de reptiles de Colombia, pp. 166-171. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia, Bogotá, D. C (Colombia).spa
dc.relation.referencesBueno, M.L., Pennington, R.T., Dexter, K.G., Kamino, L.H.Y., Pontara, V., Neves, D.M., Ratter, J.A., de Oliveira-Filho, A.T. 2017. Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40: 403-414.spa
dc.relation.referencesvan Buurt, G. 2005. Field Guide to the Amphibians and Reptiles of Aruba, Curacao and Bonaire. Edition Chimaira, Frankfurt am Main.spa
dc.relation.referencesBuzatti, R.S. de O., Pfeilsticker, T.R., de Magalhães, R.F., Bueno, M.L., Lemos-Filho, J.P., Lovato, M.B. 2018. Genetic and historical colonization analyses of an endemic savanna tree, qualea grandiflora, reveal ancient connections between amazonian savannas and cerrado core. Frontiers in Plant Science 9: .spa
dc.relation.referencesCaballero, S., Martínez, J.G., Morales-Betancourt, M.A., Bolaños, N., Lasso, C.A. 2022. Genomic analyses of the scorpion mud turtle (Kinosternon scorpioides) (Linnaeus, 1766) in insular and continental Colombia: Evidence for multiple conservation and taxonomic units. Frontiers in Conservation Science 3: .spa
dc.relation.referencesCabrejo-Bello, A. 2010. Tráfico y tenencia ilegal de fauna silvestre en el departamento de Boyacá. Revista Cultura Científica 8: 16-23.spa
dc.relation.referencesCacciali, P., Caicedo, J.R., Carreira, S., Fitzgerald, L., Gutiérrez-Cárdenas, P., Kacoliris, Montero, R. et al. 2021. Crotalus durissus. En The IUCN Red List of Threatened Species, pp. e.T178477A44954627.spa
dc.relation.referencesCañas, C.A. 2022. Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins 14: .spa
dc.relation.referencesCaparroz, R., Miyaki, C.Y., Baker, A.J. 2009. Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: Evidence of female philopatry and male-biased gene flow among regional populations of the blue-and-yellow Macaw (Psittaciformes: Ara ararauna) in Brazil. Auk 126: 359-370.spa
dc.relation.referencesCarbajal-Márquez, R.A., Cedeño-Vázquez, J.R., Martínez-Arce, A., Neri-Castro, E., Machkour- M’Rabet, S.C. 2020. Accessing cryptic diversity in Neotropical rattlesnakes (Serpentes: Viperidae: Crotalus) with the description of two new species. Zootaxa 4729: 451-481.spa
dc.relation.referencesCárdenas-Barrantes, D.M. 2021. Diversity and gene flow in four Colombian turtle population of Podocnemis vogli (Testudines: Podocnemididae). Universidad Nacional de Colombia.spa
dc.relation.referencesCardoso Da Silva, J.M., Bates, J.M. 2002. Biogeographic Patterns and Conservation in the South American Cerrado: A Tropical Savanna Hotspot: The Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. BioScience 52: 225-234.spa
dc.relation.referencesCastro Cortés, A.A., Brieva, C., Witte, C. 2022. Implications of wildlife trafficking on the health and conservation efforts of an endangered turtle species in Colombia. Conservation Science and Practice 4: .spa
dc.relation.referencesChan, D.T.C., Poon, E.S.K., Wong, A.T.C., Sin, S.Y.W. 2021. Global trade in parrots – Influential factors of trade and implications for conservation. Global Ecology and Conservation 30: .spa
dc.relation.referencesChaparro-herrera, S., Echeverry-galvis, M.Á., Córdoba-córdoba, S., Sua-becerra, A. 2013. Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Biota Colombiana 14: 235-271.spa
dc.relation.referencesCharry R, H. 2006. Accidentes por serpientes de coral. En Gómez-Villegas, C. (ed.), Primer simposio de Toxinología Clínica «César Gömez Villegas», pp. 1-9. Facultad de medicina Fundación Universitaria San Martín, Bogotá D.C (Colombia).spa
dc.relation.referencesCharry-Restrepo, H. 2006. El accidente crotálico en Colombia. (Mordedura por serpiente de cascabel.). Bogotá.spa
dc.relation.referencesChasqui-Velasco, L., Polanco, A., Acero, A., Mejía-Falla, P.A., Navia, A., Zapata, L.A., Caldas, J.P. 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar, Ministerio de Ambiente y Desarrollo Sostenible. Serie de Publicaciones Generales de INVEMAR, Santa Marta, Colombia.spa
dc.relation.referencesChoperena Palencia, M.C., Mancera Rodríguez, N.J. 2016. Lineamientos para el seguimiento y monitoreo post-liberación de fauna silvestre rehabilitada. Revista U.D.C.A Actualidad & Divulgación Científica 19: .spa
dc.relation.referencesCoates, D.J., Byrne, M., Moritz, C. 2018. Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Frontiers in Ecology and Evolution 6: .spa
dc.relation.referencesCoghlan, M.L., White, N.E., Parkinson, L., Haile, J., Spencer, P.B.S., Bunce, M. 2012. Egg forensics: An appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs. Forensic Science International. Genetics 6: 268.spa
dc.relation.referencesColihueque, N., Gantz, A., Parraguez, M. 2021. Revealing the biodiversity of Chilean birds through the COI barcode approach. ZooKeys 1016: 143.spa
dc.relation.referencesColli, G.R., Vieira, C.R., Dianese, J.C. 2020. Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodiversity and Conservation 29: 1465-1475.spa
dc.relation.referencesCorredor, G., Kattan, G.H., Galvis-Rizo, C.A., Amorocho, D. 2007. Tortugas del Valle del Cauca. Corporación autónoma regional del Valle del Cauca.spa
dc.relation.referencesCruz, C.E.F., Funkler, G.R., Zani, A.L.S., Wagner, P.G.C., Andretta, I., Segura, L.N., Fagundes, N.J.R. 2021. A Preliminary Assessment of the Potential Health and Genetic Impacts of Releasing Confiscated Passerines Into the Wild: A Reduced-Risk Approach. Frontiers in Veterinary Science 8: 679049.spa
dc.relation.referencesD’Cruze, N., Singh, B., Morrison, T., Schmidt-Burbach, J., Macdonald, D.W., Mookerjee, A. 2015. A star attraction: The illegal trade in Indian Star Tortoises. Nature Conservation 13: 1-19.spa
dc.relation.referencesDeagle, B.E., Jarman, S.N., Coissac, E., Pompanon, F., Taberlet, P. 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10: .spa
dc.relation.referencesDeliveyne, N., Cassey, P., Linacre, A., Delean, S., Austin, J.J., Young, J.M. 2022. Recovering trace reptile DNA from the illegal wildlife trade. Forensic Science International: Animals and Environments 2: 100040.spa
dc.relation.referencesDonegan, T., Ellery, T., Pacheco, J.A., Verhelst, J.C., Salaman, P. 2018. Revision of the status of bird species occurring or reported in Colombia 2018. Conservacion Colombiana 24: 1-47.spa
dc.relation.referencesDrummond, A.J., Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: .spa
dc.relation.referencesDubey, B., Meganathan, P.R., Haque, I. 2011. DNA mini-barcoding: An approach for forensic identification of some endangered Indian snake species. Forensic Science International: Genetics 5: 181-184.spa
dc.relation.referencesEberhard, J.R., Bermingham, E. 2004. Phylogeny and Biogeography of the Amazona Ochrocephala (Aves: Psittacidae) Complex. The Auk 121: 318-332.spa
dc.relation.referencesEberhard, J.R., Wright, T.F. 2016. Rearrangement and evolution of mitochondrial genomes in parrots. Molecular phylogenetics and evolution 94: 34-46.spa
dc.relation.referencesEcheverri-García, L. del P., Carr, J.L., Garcés-Restrepo, M.F., Galvis-Rizo, C.A., Giraldo, A. 2012. Rhinoclemmys melanosterna. En Páez, V. P., Morales-Betancourt, M. A., Lasso, C. A., Castaño-Mora, O. V, Bock, B. (eds.), BIOLOGÍA Y CONSERVACIÓN DE LAS TORTUGAS CONTINENTALES DE COLOMBIA, pp. 308-314. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D. C., Colombia.spa
dc.relation.referencesEcheverry-Alcendra, A. 2019. Chelonoidis carbonarius (Spix, 1824). En Catálogo de anfibios y reptiles de Colombia Volumen 5 (1), pp. 13-29.spa
dc.relation.referencesEdgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.spa
dc.relation.referencesEtter, A. 1993. Diversidad Ecosistemica en Colombia hoy. En Nuestra Diversidad Biologica, pp. 44-61.spa
dc.relation.referencesExcoffier, L., Laval, G., Schneider, S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 117693430500100.spa
dc.relation.referencesFallon, S.M. 2007. Genetic data and the listing of species under the U.S. endangered species act. Conservation Biology 21: 1186-1195.spa
dc.relation.referencesFernandes, G.A., Caparroz, R. 2013. DNA sequence analysis to guide the release of blue-and-yellow macaws (Ara ararauna, Psittaciformes, Aves) from the illegal trade back into the wild. Molecular biology reports 40: 2757-2762.spa
dc.relation.referencesFormentão, L., Saraiva, A.S., Marrero, A.R. 2021. DNA barcoding exposes the need to control the illegal trade of eggs of non-threatened parrots in Brazil. Conservation Genetics Resources 2021 13:3 13: 275-281.spa
dc.relation.referencesForshaw, J.M. 2010. Parrots of the World.spa
dc.relation.referencesFrankham, R., Ballou, J.D., Eldridge, M.D.B., Lacy, R.C., Ralls, K., Dudash, M.R., Fenster, C.B. 2011. Predicting the probability of outbreeding depression. Conservation biology : the journal of the Society for Conservation Biology 25: 465-475.spa
dc.relation.referencesFuhrmann, N., Kaiser, T.S. 2021. The importance of DNA barcode choice in biogeographic analyses - a case study on marine midges of the genus Clunio. Genome 64: 242-252.spa
dc.relation.referencesGaillard, D., Yeh, F.C., Lin, L., Chen, H.Q., Zhang, T., Luo, S.J., Shi, H.T. 2021. Lost at sea: Determining geographic origins of illegally traded green sea turtles (Chelonia mydas) rescued on Hainan Island, China. Wildlife Research 48: 55-63.spa
dc.relation.referencesGallego-García, N., Vargas-Ramírez, M., Shaffer, H.B. 2023. The importance of cryptic diversity in the conservation of wide-ranging species: The red-footed tortoise Chelonoidis carbonarius in Colombia. Molecular Ecology 32: 4531-4545.spa
dc.relation.referencesGaur, A., Reddy, A., Annapoorni, S., Satyarebala, B., Shivaji, S. 2006. The origin of Indian Star tortoises (Geochelone elegans) based on nuclear and mitochondrial DNA analysis: A story of rescue and repatriation. Conservation Genetics 7: 231-240.spa
dc.relation.referencesGermano, J.M., Field, K.J., Griffiths, R.A., Clulow, S., Foster, J., Harding, G., Swaisgood, R.R. 2015. Mitigation-driven translocations: are we moving wildlife in the right direction? Frontiers in Ecology and the Environment 13: 100-105.spa
dc.relation.referencesGippoliti, S., Cotterill, F.P.D., Groves, C.P., Zinner, D. 2018. Poor taxonomy and genetic rescue are possible co-agents of silent extinction and biogeographic homogenization among ungulate mammals. Biogeographia 33: 41-54.spa
dc.relation.referencesGonçalves, P.F.M., Oliveira-Marques, A.R., Matsumoto, T.E., Miyaki, C.Y. 2015. DNA Barcoding Identifies Illegal Parrot Trade. Journal of Heredity 106: 560-564.spa
dc.relation.referencesGriffith, G.E., Omernik, J.M., Azevedo, S.H. 2017. Ecoregions of Central and South America. Ecological Regions.spa
dc.relation.referencesGuerra, G.F.C., Vale, M.M., Tardin, R., Fernandes, D.S. 2023. Global change explains the neotropical rattlesnake Crotalus durissus (Serpentes: Viperidae) range expansion in South America. Perspectives in Ecology and Conservation 21: 200-208.spa
dc.relation.referencesGuo, B., Kong, L. 2022. Comparing the Efficiency of Single-Locus Species Delimitation Methods within Trochoidea (Gastropoda: Vetigastropoda). Genes 13: .spa
dc.relation.referencesHam-Dueñas, J.G., Canales-Del-Castillo, R., Voelker, G., Ruvalcaba-Ortega, I., Aguirre-Calderón, C.E., González-Rojas, J.I. 2020. Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (Xenospiza baileyi). PLoS ONE 15: .spa
dc.relation.referencesHellmich, D.L., Saidenberg, A.B.S., Wright, T.F. 2021. Genetic, but not Behavioral, evidence supports the distinctiveness of the mealy amazon parrot in the Brazilian Atlantic forest. Diversity 13: 273.spa
dc.relation.referencesHilty, S.L. 2021. Birds of Colombia. BirdLife International. (ed.),. Lynx.spa
dc.relation.referencesHoge, A. 1966. Preliminary Account on Neotropical Crotalinae (Serpentes, Viperidae). Memórias do Inst Butantan 32: 109–184.spa
dc.relation.referencesHojun, J., Il-Kook, P., Jongsun, K., Park, J., Sang-Cheol, L., Park, D. 2023. Genetic Diversity and Population Structure of the Slender Racer (Orientocoluber spinalis) in South Korea. Diversity 15: .spa
dc.relation.referencesDel Hoyo, J., Collar, N.J. 2015. Illustrated checklist of the birds of the world: v.1: Non-passerines. Lynx Edicions and BirdLife International, Barcelona.spa
dc.relation.referencesHoyos, M., Tusso, S., Bedoya, T.R., Manrique Gaviria, A.S., Bloor, P. 2017. A simple and cost-effective method for obtaining DNA from a wide range of animal wildlife samples. Conservation Genetics Resources 9: 513-521.spa
dc.relation.referencesIngenloff, K., Townsend Peterson, A. 2015. Potencial de dispersio´n trans-Amazo´nica de Crotalus durissus durante el Pleistoceno. Biota Neotropica 15: 1-7.spa
dc.relation.referencesIshida, Y., Georgiadis, N.J., Hondo, T., Roca, A.L. 2013. Triangulating the provenance of African elephants using mitochondrial DNA. Evolutionary Applications 6: 253.spa
dc.relation.referencesIslam, N.N., Sajib, A.A., Islam, Md.S., Ahmed, Md.S. 2022. Molecular identification of snakes from cast-off skin based on COI marker in Bangladesh. Herpetology Notes 15: 699-709.spa
dc.relation.referencesJamaluddin, J.A.F., Pau, T.M., Siti-Azizah, M.N. 2011. Genetic structure of the snakehead murrel, channa striata (channidae) based on the cytochrome c oxidase subunit i gene: Influence of historical and geomorphological factors. Genetics and Molecular Biology 34: 152-160.spa
dc.relation.referencesJaramillo-Castaño, M.J. 2020. Validación de caracteres morfológicos diagnósticos y estandarización de condiciones de PCR de marcadores mitocondriales, para la identificación de tres subespecies de Amazona ochrocephala (A. o. ochrocephala, A. o. nattereri, A. o. panamensis) Psittacidae. Pontificia Universidad Javeriana.spa
dc.relation.referencesJensen, T.J., Auliya, M., Burgess, N.D., Aust, P.W., Pertoldi, C., Strand, J. 2019. Exploring the international trade in African snakes not listed on CITES: highlighting the role of the internet and social media. Biodiversity and Conservation 28: 1-19.spa
dc.relation.referencesJiménez, I., Cadena, C.D. 2004. Por qué no liberar animales silvestres decomisados. Ornitología Colombiana 2: 53-57.spa
dc.relation.referencesJoseph, J., Nishizawa, H., Alin, J.M., Othman, R., Jolis, G., Isnain, I., Nais, J. 2019. Mass sea turtle slaughter at Pulau Tiga, Malaysia: Genetic studies indicate poaching locations and its potential effects. Global Ecology and Conservation 17: .spa
dc.relation.referencesKerr, K.C.R., Lijtmaer, D.A., Barreira, A.S., Hebert, P.D.N., Tubaro, P.L. 2009b. Probing Evolutionary Patterns in Neotropical Birds through DNA Barcodes. PLOS ONE 4: e4379.spa
dc.relation.referencesKim, J.T.D.D.Y.C.-B. 2020. Application of Cytochrome b Gene Sequences for Identification of Parrots from Korean Zoos. Animal Systematics, Evolution and Diversity 36: 216-221.spa
dc.relation.referencesKindler, C., Graciá, E., Fritz, U. 2018. Extra-Mediterranean glacial refuges in barred and common grass snakes (Natrix helvetica, N. natrix). Scientific Reports 8: 1821.spa
dc.relation.referencesKongrit, C., Markviriya, D., Laithong, P., Khudamrongsawat, J. 2020. Species Identification and Unlocking Hidden Genetic Diversity of Confiscated Slow Lorises (Nycticebus spp.) Based on Mitochondrial DNA Markers. Folia primatologica; international journal of primatology 91: 1-14.spa
dc.relation.referencesKošuthová, A., Bergsten, J., Westberg, M., Wedin, M. 2020. Species delimitation in the cyanolichen genus Rostania. BMC Evolutionary Biology 20: .spa
dc.relation.referencesKumar, S., Nei, M., Dudley, J., Tamura, K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299-306.spa
dc.relation.referencesKundu, S., Lalremsanga, H.T., Tyagi, K., Biakzuala, L., Kumar, V., Chandra, K. 2020. Mitochondrial DNA discriminates distinct population of two deadly snakes (Reptilia: Elapidae) in Northeast India. Mitochondrial DNA Part B 5: 1530-1534.spa
dc.relation.referencesLaCasella, E.L., Jensen, M.P., Madden Hof, C.A., Bell, I.P., Frey, A., Dutton, P.H. 2021. Mitochondrial DNA Profiling to Combat the Illegal Trade in Tortoiseshell Products. Frontiers in Marine Science 7: 1225.spa
dc.relation.referencesLasso, C.A., Trujillo, F., Morales-Betancourt, M.A., Amaya, L., Caballero, S., Castañeda, B. 2018. Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia. Biota Colombiana 19: 147-159.spa
dc.relation.referencesLiew, J.H., Kho, Z.Y., Lim, R.B.H., Dingle, C., Bonebrake, T.C., Sung, Y.H., Dudgeon, D. 2021. International socioeconomic inequality drives trade patterns in the global wildlife market. Science Advances 7: .spa
dc.relation.referencesLima, N.C.B., Soares, A.E.R., Almeida, L.G. de P., da Costa, I.R., Sato, F.M., Schneider, P., Aleixo, A. et al. 2018. Comparative mitogenomic analyses of Amazona parrots and Psittaciformes. Genetics and Molecular Biology 41: 593.spa
dc.relation.referencesLin, L., Li, S., Chen, M., Parham, J.F., Shi, H. 2021. Sea turtle demand in China threatens the survival of wild populations. iScience 24: .spa
dc.relation.referencesde M. Bastos, E.G., de Araújo, A.F.B., da Silva, H.R. 2005. Records of the rattlesnakes Crotalus durissus terrificus (Laurenti) (Serpentes, Viperidae) in the State of Rio de Janeiro, Brazil: a possible case of invasion facilitated by deforestation. Revista Brasileira de Zoologia 22: 812-815.spa
dc.relation.referencesMagoga, G., Fontaneto, D., Montagna, M. 2021. Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Molecular Ecology Resources 21: 1475-1489.spa
dc.relation.referencesMancera, N., Reyes, O. 2008. Wildlife Trade in Colombia. Fac.Nal.Agr.Medellín 61: 4618-4645.spa
dc.relation.referencesMaritz, B., Penner, J., Martins, M., Crnobrnja-Isailović, J., Spear, S., Alencar, L.R.V., Sigala-Rodriguez, J. et al. 2016. Identifying global priorities for the conservation of vipers. Biological Conservation 204: 94-102.spa
dc.relation.referencesMartínez, L.M., Bock, B.C., Páez, V.P. 2007. Population genetics of the slider turtle (Trachemys scripta callirostris) in the Mompos Depression, Colombia. Copeia1001-1005.spa
dc.relation.referencesMartins, S., Ferreira-Veiga, N., Rodrigues, Z., Querido, A., Loureiro, N. de S., Freire, K., Abella, E. et al. 2021. Hatchery efficiency for turtle conservation in Cabo Verde. MethodsX 8: .spa
dc.relation.referencesMedina-Rangel, G.F. 2015. Chelonoidis carbonarius (Spix, 1824). En Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P., Bock, B. C. (eds.), Libro rojo de reptiles de Colombia, pp. 172-175. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia, Bogotá (colombia).spa
dc.relation.referencesMendivelso-Gamboa, D.A., Montenegro, O.L. 2007. Diagnóstico del tráfico ilegal y del manejo post decomiso de fauna silvestre en nueve corporaciones autónomas regionales de Colombia. Acta Biológica Colombiana 12S: 125-127.spa
dc.relation.referencesMendoza, Á.M., Torres, M.F., Paz, A., Trujillo-Arias, N., López-Alvarez, D., Sierra, S., Forero, F., Gonzalez, M.A. 2016. Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species. Molecular Ecology Resources 16: 862-873.spa
dc.relation.referencesMercado, A.S., Asmussen, M., Rodriguez, J.P., Moran, L., Cardozo-Urdaneta, A., Morales, L.I. 2020. Illegal trade of the Psittacidae in Venezuela. Oryx 54: 77-83.spa
dc.relation.referencesMiller, E.A., McClenachan, L., Uni, Y., Phocas, G., Hagemann, M.E., Van Houtan, K.S. 2019. The historical development of complex global trafficking networks for marine wildlife. Science Advances 5: .spa
dc.relation.referencesMinh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R., Teeling, E. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 37: 1530-1534.spa
dc.relation.referencesMinisterio de Ambiente vivienda y Desarrollo Territorial. 2010. RESOLUCIÓN 2064 DE 2010. Por la cual se reglamentan las medidas posteriores a la aprehensión preventiva, restitución o decomiso de especímenes de especies silvestres de Fauna y Flora Terrestre y Acuática y se dictan otras disposiciones. Colombia.spa
dc.relation.referencesMójica, J.I. 2012. Libro rojo de peces dulceacuícolas de Colombia.spa
dc.relation.referencesMontague, L.E., Marcotrigiano, J.M., Keane, N.E., Marquardt, H.E., Sevin, J.A., Karraker, N.E. 2022. Online sale of small turtles circumvents public health regulations in the United States. PLoS ONE 17: .spa
dc.relation.referencesMorales-Betancourt, M.A., Páez, V.P., Lasso, C.A. 2015. Conservación de las tortugas continentales de Colombia: evaluación 2012-2013 y propuesta 2015-2020. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesMoritz, C. 1994. Applications of mitochondrial DNA analysis in conservation: A critical review. Molecular Ecology 3: 401-411.spa
dc.relation.referencesNakahama, N. 2021. Museum specimens: An overlooked and valuable material for conservation genetics. Ecological Research 36: 13-23.spa
dc.relation.referencesNehemy, I.K.R., Gomes, T.O., Paiva, F., Kubo, W.K., Almeida Júnior, J.E., Neves, N.F., São-Pedro, V.A. 2022. Herpeto-commerce: A look at the illegal online trade of amphibians and reptiles in Brazil. Cuadernos de Herpetología 36: 185-196.spa
dc.relation.referencesNoreña, A.P., González Muñoz, A., Mosquera-Rendón, J., Botero, K., Cristancho, M.A. 2018. Colombia, an unknown genetic diversity in the era of Big Data. BMC Genomics 19: .spa
dc.relation.referencesOklander, L.I., Caputo, M., Solari, A., Corach, D. 2020. Genetic assignment of illegally trafficked neotropical primates and implications for reintroduction programs. Scientific Reports 10: .spa
dc.relation.referencesPáez, V. P., M.A.M.-B., C. A. Lasso, O.V.C.-M. y B.C.B. 2012. Biología y conservación de las tortugas continentales de Colombia. Serie Edit. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH)., Bogotá, D. C., Colombia,.spa
dc.relation.referencesPhillips, K.P., Jorgensen, T.H., Jolliffe, K.G., Richardson, D.S. 2017. Evidence of opposing fitness effects of parental heterozygosity and relatedness in a critically endangered marine turtle? Journal of Evolutionary Biology 30: 1953-1965.spa
dc.relation.referencesPons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S. et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: .spa
dc.relation.referencesPosada, D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256.spa
dc.relation.referencesPrémel, V., Cobigo, M., Ineich, I. 2022. Distribution and conservation of the Neotropical rattlesnake, Crotalus durissus (Squamata: Viperidae), in French Guiana: citizen science and local communities come to the rescue. Herpetology Notes 15: 583-592.spa
dc.relation.referencesPresti, F.T., Guedes, N.M.R., Antas, P.T.Z., Miyaki, C.Y. 2015. Population Genetic Structure in Hyacinth Macaws (Anodorhynchus hyacinthinus) and Identification of the Probable Origin of Confiscated Individuals. The Journal of heredity 106 Suppl 1: 491-502.spa
dc.relation.referencesPucca, M.B., Bernarde, P.S., Rocha, A.M., Viana, P.F., Farias, R.E.S., Cerni, F.A., Oliveira, I.S. et al. 2021. Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Frontiers in Immunology 12: .spa
dc.relation.referencesPuillandre, N., Brouillet, S., Achaz, G. 2021. ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21: 609-620.spa
dc.relation.referencesPuillandre, N., Lambert, A., Brouillet, S., Achaz, G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular ecology 21: 1864-1877.spa
dc.relation.referencesRambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904.spa
dc.relation.referencesRamírez-Chaves, H.E., Suárez-Castro, A.F., González-Maya, J.F. 2016. Cambios recientes a la lista de los mamíferos de Colombia. Mammalogy Notes 3: 1-9.spa
dc.relation.referencesReinert, H. k., Bushar, L., Rocco, G., Goode, M., Odum, A. 2002. Distribution of the Aruba Island Rattlesnake, Crotalus unicolor, on Aruba, Dutch West Indies. Caribbean Journal of Science 38: 126-128.spa
dc.relation.referencesRenjifo, L.M., Amaya-Villarreal, A.M., Burbano-Girón, J., Velásquez-Tibatá, J. 2016. Libro rojo de aves de Colombia, Volumen II: Ecosistemas abiertos, secos, insulares, acuáticos continentales, marinos, tierras altas del Darién y Sierra Nevada de Santa Marta y bosques húmedos del centro, norte y oriente del país. Editorial Pontificia Universidad Javeriana e Instituto Alexander von Humboldt, Bogotá, D. C., Colombia.spa
dc.relation.referencesRenjifo, L.M., Amaya-Villarreal, A.M., Butchart, S.H.M. 2020. Tracking extinction risk trends and patterns in a mega-diverse country: A Red List Index for birds in Colombia Mousseau, T. A. (ed.),. PLOS ONE 15: e0227381.spa
dc.relation.referencesRenjifo, L.M., Gomez, M.F., Velásquez-Tibatá, J., Amaya-Villarreal, Á.M., Kattan, G.H., Amaya-Espinel, J.D., Burbano-Girón, J. 2014. Libro rojo de aves de Colombia, Volumen I: bosques húmedos de los Andes y la costa Pacífica.spa
dc.relation.referencesRestrepo, A., Páez, V.P., Bock, B.C., Daza1, J.M., Díazgranados, I. 2014. Trachemys callirostris (Gray 1856). En ACH, A. C. de H.- (ed.), Catálogo de Anfibios y Reptiles de Colombia Volumen 2 (2), pp. 7-12.spa
dc.relation.referencesRestrepo-Rodas, D.C., Pulgarín-Restrepo, P.C. 2017. Dinámicas de los loros en cautiverio en Colombia: tráfico, mortalidad y liberación. Ornitologia Colombiana 16: 1-23.spa
dc.relation.referencesReyes-Velasco, J., Cox, C.L., Jones, J.M., Borja, M., Campbell, J.A. 2022. HOW MANY SPECIES OF RATTLESNAKES ARE THERE IN THE CROTALUS DURISSUS SPECIES GROUP (SERPENTES: CROTALIDAE)? Revista Latinoamericana de Herpetologia 5: 43-55.spa
dc.relation.referencesRibas, C.C., Moyle, R.G., Miyaki, C.Y., Cracraft, J. 2007. The assembly of montane biotas: Linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proceedings of the Royal Society B: Biological Sciences 274: 2399-2408.spa
dc.relation.referencesRibas, C.C., Tavares, E.S., Yoshihara, C., Miyaki, C.Y. 2007. Phylogeny and biogeography of Yellow-headed and Blue-fronted Parrots (Amazona ochrocephala and Amazona aestiva) with special reference to the South American taxa. Ibis 149: 564-574.spa
dc.relation.referencesRibeiro, V., Werneck, F.P., Machado, R.B. 2016. Distribution dynamics of South American savanna birds in response to Quaternary climate change. Austral Ecology 41: 768-777.spa
dc.relation.referencesRicaurte, L.F., Patiño, J.E., Zambrano, D.F.R., Arias-G, J.C., Acevedo, O., Aponte, C., Medina, R. et al. 2019. A Classification System for Colombian Wetlands: an Essential Step Forward in Open Environmental Policy-Making. Wetlands 39: 971-990.spa
dc.relation.referencesRivera-Ortíz, F.A., Arizmendi, M.D.C., Juan-Espinosa, J., Solórzano, S., Contreras-González, A.M. 2021. Genetic assignment tests to identify the probable geographic origin of a captive specimen of military macaw (Ara militaris) in mexico: Implications for conservation. Diversity 13: 245.spa
dc.relation.referencesRivera-Ortíz, F.A., Solórzano, S., Arizmendi, M. del C., Dávila-Aranda, P., Oyama, K. 2016. Genetic Diversity and Structure of the Military Macaw (Ara militaris) in Mexico: Implications for Conservation. http://dx.doi.org/10.1177/1940082916684346 10: .spa
dc.relation.referencesRoach, N.S., Urbina-Cardona, N., Lacher, T.E. 2020. Land cover drives amphibian diversity across steep elevational gradients in an isolated neotropical mountain range: Implications for community conservation. Global Ecology and Conservation 22: e00968.spa
dc.relation.referencesRocha, A. V., Rivera, L.O., Martinez, J., Prestes, N.P., Caparroz, R. 2014. Biogeography of speciation of two sister species of neotropical amazona (Aves, Psittaciformes) Based on mitochondrial sequence data. PLoS ONE 9: 108096.spa
dc.relation.referencesRodrigues, A.D.S., Brandão, J.H.S.G., Bitencourt, J.D.A., Jucá-Chagas, R., Sampaio, I., Schneider, H., Affonso, P.R.A.D.M. 2016. Molecular identification and traceability of illegal trading in lignobrycon myersi (Teleostei: Characiformes), a threatened Brazilian fish species, using DNA barcode. Scientific World Journal 2016: .spa
dc.relation.referencesRodríguez-Mahecha, J.Vicente., Landazábal Mendoza, C., Nash, S.D. 2006. Libro rojo de los mamíferos de Colombia. Conservación Internacional Colombia. Conservación Internacional Colombia. Colombia. Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesRodríguez-Robles, J.A., Jezkova, T., Fujita, M.K., Tolson, P.J., García, M.A. 2015. Genetic divergence and diversity in the Mona and Virgin Islands Boas, Chilabothrus monensis (Epicrates monensis) (Serpentes: Boidae), West Indian snakes of special conservation concern. Molecular Phylogenetics and Evolution 88: 144-153.spa
dc.relation.referencesRosen, G.E., Smith, K.F. 2010. Summarizing the Evidence on the International Trade in Illegal Wildlife. Ecohealth 7: 24.spa
dc.relation.referencesRozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., Sanchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34: 3299-3302.spa
dc.relation.referencesRuiz-García, M., Leguizamón, N., Vásquez, C., Rodríguez, K., Castillo, M.I. 2010. Métodos genéticos para la reintroducción de monos de los géneros saguinus, aotus y cebus (primates: Cebidae) decomisados en bogotá, colombia. Revista de Biologia Tropical 58: .spa
dc.relation.referencesRussello, M.A., Amato, G. 2004. A molecular phylogeny of Amazona: Implications for Neotropical parrot biogeography, taxonomy, and conservation. Molecular Phylogenetics and Evolution 30: 421-437.spa
dc.relation.referencesSaldarriaga-Gómez, A.M., Ardila-Robayo, M.C., Medem, F., Vargas-Ramírez, M. 2023. Hope is the last thing lost: Colombian captive-bred population of the critically endangered Orinoco crocodile (Crocodylus intermedius) is a genetic reservoir that could help to save the species from extinction. Nature Conservation85-103.spa
dc.relation.referencesSalgado-Roa, F.C., Pardo-Diaz, C., Lasso, E., Arias, C.F., Solferini, V.N., Salazar, C. 2018. Gene flow and Andean uplift shape the diversification of Gasteracantha cancriformis (Araneae: Araneidae) in Northern South America. Ecology and Evolution 8: 7131-7142.spa
dc.relation.referencesScheffers, B.R., Oliveira, B.F., Lamb, I., Edwards, D.P. 2019. Global wildlife trade across the tree of life. Science (New York, N.Y.) 366: 71-76.spa
dc.relation.referencesSchindel, D.E., Stoeckle, M.Y., Milensky, C.M., Trizna, M., Schmidt, B.K., Gebhard, C.A., Graves, G.R. 2011. Project description: DNA barcodes of bird species in the national museum of natural history, smithsonian institution, USA. ZooKeys 152: 87-91.spa
dc.relation.referencesSchmidt, K.L., Aardema, M.L., Amato, G. 2020. Genetic analysis reveals strong phylogeographical divergences within the Scarlet Macaw Ara macao. Ibis 162: 735-748.spa
dc.relation.referencesSekercioglu, C.H. 2002. Impacts of birdwatching on human and avian communities. Environmental Conservation 29: 282-289.spa
dc.relation.referencesSenko, J.F., Burgher, K.M., del Mar Mancha-Cisneros, M., Godley, B.J., Kinan-Kelly, I., Fox, T., Humber, F. et al. 2022. Global patterns of illegal marine turtle exploitation. Global Change Biology 28: 6509-6523.spa
dc.relation.referencesShaney, K.J., Diaz-Ramirez, L.G., Espindola, S., Castañeda-Rico, S., Berovides-Álvarez, V., Vázquez-Domínguez, E. 2020. Defining intraspecific conservation units in the endemic Cuban Rock Iguanas (Cyclura nubila nubila). Scientific Reports 10: .spa
dc.relation.referencesStanford, C.B., Iverson, J.B., Rhodin, A.G.J., Paul van Dijk, P., Mittermeier, R.A., Kuchling, G., Berry, K.H. et al. 2020. Turtles and Tortoises Are in Trouble. Current Biology 30: R721-R735.spa
dc.relation.referencesStrimple, P. 1993. Crotalus unicolor (Van Lidt de Jeude), Aruba Island Rattlesnake. Litteratura Serpentium 13: 4-13.spa
dc.relation.referencesSuárez-Giorgi, C.A. 2016. Diagnóstico del tráfico ilegal de fauna silvestre en jurisdicción de la Corporación Autónoma Regional de Cundinamarca – CAR, departamentos de Cundinamarca y Boyacá, Colombia. Bogotá, Colombia.spa
dc.relation.referencesTavares, E.S., Gonçalves, P., Miyaki, C.Y., Baker, A.J. 2011. DNA Barcode Detects High Genetic Structure within Neotropical Bird Species. PLoS ONE 6: .spa
dc.relation.referencesTella, J.L., Hiraldo, F. 2014. Illegal and Legal Parrot Trade Shows a Long-Term, Cross-Cultural Preference for the Most Attractive Species Increasing Their Risk of Extinction. PLoS ONE 9: .spa
dc.relation.referencesTizard, J., Patel, S., Waugh, J., Tavares, E., Bergmann, T., Gill, B., Norman, J. et al. 2019. DNA barcoding a unique avifauna: an important tool for evolution, systematics and conservation. BMC Evolutionary Biology 19: .spa
dc.relation.referencesTonkin-Hill, G., Lees, J.A., Bentley, S.D., Frost, S.D.W., Corander, J. 2018. RhierBAPs: An R implementation of the population clustering algorithm hierbaps. Wellcome Open Research 3: .spa
dc.relation.referencesTow, J.H., Symes, W.S., Carrasco, L.R. 2021. Economic value of illegal wildlife trade entering the USA. PLoS ONE 16: .spa
dc.relation.referencesUrantowka, A.D., Hajduk, K., Kosowska, B. 2013. Complete mitochondrial genome of endangered Yellow-shouldered Amazon (Amazona barbadensis): two control region copies in parrot species of the Amazona genus. Mitochondrial DNA 24: 411-413.spa
dc.relation.referencesUrantoẃka, A.D., Mackiewicz, P., Strzaał, T. 2014. Phylogeny of Amazona barbadensis and the Yellow-Headed Amazon complex (Aves: Psittacidae): A new look at South American parrot evolution. PLoS ONE 9: e97228.spa
dc.relation.referencesVargas-Ramírez, M., Caballero, S., Morales-Betancourt, M.A., Lasso, C.A., Amaya, L., Martínez, J.G., das Neves Silva Viana, M. et al. 2020. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Molecular Phylogenetics and Evolution 148: .spa
dc.relation.referencesVargas-RamíRez, M., Carr, J.L., Fritz, U. 2013. Complex phylogeography in Rhinoclemmys melanosterna: Conflicting mitochondrial and nuclear evidence suggests past hybridization (Testudines: Geoemydidae). Zootaxa 3670: 238-254.spa
dc.relation.referencesVargas-Ramírez, M., Maran, J., Fritz, U. 2010. Red- And yellow-footed tortoises, Chelonoidis carbonaria and C. denticulam (Reptilia: Testadines: Testudinidae), in South American savannahs and forests: Do their phylogeographies reflect distinct habitats? Organisms Diversity and Evolution 10: 161-172.spa
dc.relation.referencesVargas-Ramírez, M., Stuckas, H., Castaño-Mora, O.V., Fritz, U. 2012. Extremely low genetic diversity and weak population differentiation in the endangered Colombian river turtle Podocnemis lewyana (Testudines: Podocnemididae). Conservation Genetics 13: 65-77.spa
dc.relation.referencesVelo-Antón, G., Pereira, P., Gonçãlves, D. V. 2021. Genetic assignment of captive European pond turtles (Emys orbicularis) increases conservation value of recovery centres. Journal for Nature Conservation 59: .spa
dc.relation.referencesVergara-Tabares, D.L., Cordier, J.M., Landi, M.A., Olah, G., Nori, J. 2020. Global trends of habitat destruction and consequences for parrot conservation. Global Change Biology 26: 4251-4262.spa
dc.relation.referencesVictorino, A. 2012. BOSQUES PARA LAS PERSONAS. MEMORIAS DEL AÑO INTERNACIONAL DE LOS BOSQUES, 2011. . Instituto de Investigación de Recurso Biológicos Alexander von Humboldt y Ministerio de Ambiente y Desarrollo Sostenible, Bogotá, D.C., Colombia.spa
dc.relation.referencesWang, X., Edwards, R.L., Auler, A.S., Cheng, H., Kong, X., Wang, Y., Cruz, F.W. et al. 2017. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541: 204-207.spa
dc.relation.referencesWeeks, A.R., Sgro, C.M., Young, A.G., Frankham, R., Mitchell, N.J., Miller, K.A., Byrne, M. et al. 2011. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evolutionary Applications 4: 709-725.spa
dc.relation.referencesWenner, T.J., Russello, M.A., Wright, T.F. 2012. Cryptic species in a Neotropical parrot: genetic variation within the Amazona farinosa species complex and its conservation implications. Conservation Genetics 2012 13:5 13: 1427-1432.spa
dc.relation.referencesWerneck, F.P., Nogueira, C., Colli, G.R., Sites, J.W., Costa, G.C. 2012. Climatic stability in the Brazilian Cerrado: Implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography 39: 1695-1706.spa
dc.relation.referencesWhitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E. et al. 2011. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307: 177-192.spa
dc.relation.referencesWinger, B.M., Hosner, P.A., Bravo, G.A., Cuervo, A.M., Aristizábal, N., Cueto, L.E., Bates, J.M. 2015. Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology 24: 6256-6277.spa
dc.relation.referencesWitzenberger, K.A., Hochkirch, A. 2011. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodiversity and Conservation 20: 1843-1861.spa
dc.relation.referencesWüster, W., Ferguson, J.E., Quijada-Mascareñas, J.A., Pook, C.E., Salomão, M.D.G., Thorpe, R.S. 2005. Tracing an invasion: Landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology 14: 1095-1108.spa
dc.relation.referencesWüster, W., Salomão, M.D.G., Quijada-Mascareñas, J.A., Thorpe, R.S., BBBSP. 2002. Origin and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. En Biology of the Vipers, pp. 111-128.spa
dc.relation.referencesXu, Y., Zhang, S., Wang, H., Wang, M., Li, G. 2019. Mitochondrial Gene Sequence (COI) Reveals the Genetic Structure and Demographic History of Lymantria dispar (Lepidoptera: Erebidae: Lymantriinae) in and around China. Insects 10: .spa
dc.relation.referencesYang, J., Zhu, G.F., Jiang, J., Xiang, C.L., Gao, F.L., Bao, W.D. 2019. Non-invasive genetic analysis indicates low population connectivity in vulnerable Chinese gorals: concerns for segregated population management. Zoological research 40: 439-448.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biología::578 - Historia natural de los organismos y temas relacionadosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.lembESPECIES AMENAZADASspa
dc.subject.lembEndangered specieseng
dc.subject.lembCONSERVACION DE LA NATURALEZAspa
dc.subject.lembNature conservationeng
dc.subject.lembRECUPERACION DE LA FAUNA SILVESTREspa
dc.subject.lembWildlife rehabilitatorseng
dc.subject.lembINGENIERIA GENETICAspa
dc.subject.lembGenetic engineeringeng
dc.subject.proposalEstructura genéticaspa
dc.subject.proposalUnidades de manejospa
dc.subject.proposalLorosspa
dc.subject.proposalFilogeografíaspa
dc.subject.proposalSerpientesspa
dc.subject.proposalTortugasspa
dc.subject.proposalManejo de fauna silvestrespa
dc.subject.proposalDecomisos de fauna silvestrespa
dc.subject.proposalGenetic structureeng
dc.subject.proposalManagement unitseng
dc.subject.proposalParrotseng
dc.subject.proposalPhylogeographyeng
dc.subject.proposalSnakeseng
dc.subject.proposalTurtleseng
dc.subject.proposalWildlife managementeng
dc.subject.proposalWildlife confiscationseng
dc.titleUse of mitochondrial markers as a tool in the management of trade wildlife in Colombiaspa
dc.title.translatedUso de marcadores mitocondriales como herramienta en el manejo fauna traficada en Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010001399.2024.pdf
Tamaño:
7.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: