Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)

dc.contributor.advisorArdila Barrantes, Harold Dubanspa
dc.contributor.advisorCoy Barrera, Ericsson Davidspa
dc.contributor.authorSantos Rodríguez, Janneth Fabiolaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001506038spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=eR8ZJx0AAAAJ&hl=es&oi=aospa
dc.contributor.orcidhttps://orcid.org/0000-0002-8510-5279spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Janneth-Santosspa
dc.contributor.researchgroupEstudio de Actividades Metabolicas Vegetalesspa
dc.date.accessioned2024-01-30T20:24:22Z
dc.date.available2024-01-30T20:24:22Z
dc.date.issued2022
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEn la presente investigación se estudiaron los cambios bioquímicos que se generan en raíces de plantas de clavel (Dianthus caryophyllus L.), durante la aplicación de un elicitor de origen biótico (eFod, acrónimo del elicitor proveniente de Fusarium oxysporum f. sp. dianthi) con potencial para la inducción de resistencia al marchitamiento vascular causado por el hongo Fusarium oxysporum f. sp. dianthi. Para ello, se emplearon herramientas analíticas que permitieron determinar cambios en los perfiles proteómicos y metabólicos, de manera independiente en tres escenarios: 1. por efecto de la aplicación del elicitor de origen biótico; 2. durante la infección con el patógeno; y 3. durante la elicitación y posterior reto con el patógeno. Se determinó que, la aplicación del elicitor objeto de estudio, tiene un efecto positivo en la reducción del progreso de la enfermedad y su aplicación afecta fenómenos relacionados con la resistencia en plantas, como son cambios en la producción/acumulación de compuestos derivados de la ruta shikimato/fenilpropanoide, junto a una regulación de proteínas asociadas a diversos procesos asociados a la detección de PAMPs y MAMPs. Así mismo, se determinó que, durante el reto con el patógeno, la aplicación previa del inductor permitió potencializar la respuesta bioquímica inducida, principalmente en una variedad susceptible, mediante el aumento de metabolitos y proteínas relacionadas con la resistencia multigénica reportada en clavel. La presente investigación aporta al conocimiento del potencial uso de inductores de resistencia inducida para el control del marchitamiento vascular del clavel. (Texto tomado de la fuente)spa
dc.description.abstractIn this research, we aimed to study the biochemical changes generated in the roots of carnation (Dianthus caryophyllus L.) due to the application of an elicitor of biotic origin, which has the potential for inducing resistance against vascular wilting caused by the fungus Fusarium oxysporum. f. sp. dianthi. In order to reach this goal, we used analytical tools that allowed to determine the changes in the proteomic and metabolic profiles of carnation roots. Three scenarios were evaluated: 1) effect of the application of the elicitor of biotic origin; 2) effect of the infection with the pathogen; and 3) effect of elicitation and subsequent challenge with the pathogen. We found evidence that the application of this elicitor has a positive effect on reducing the progress of the disease and that its application affects phenomena related to plant resistance, such as changes in the accumulation/production of compounds derived from the shikimate/phenylpropanoid route. Also, we observed both, a regulation of proteins associated with various processes related to the detection of PAMPs and MAMPs. Likewise, it was determined that during the challenge with the pathogen, the previous application of the inducer allowed to potentiate the induced biochemical response, through the increase of metabolites and proteins related multigenic resistance reported of the carnation. The present study contributes to the knowledge of the potential use of inducers of induced resistance for the control of vascular wilt of carnation.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias-Biologíaspa
dc.description.researchareaBioquímica de la interacción hospedero-patógenospa
dc.description.sponsorshipMincienciasspa
dc.format.extent[xxii], 258 páginas + 1 anexospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85541
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAbd-elsalam, K. A., Aly, I. N., Abdel-satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 96–103. https://doi.org/https://doi.org/10.5897/AJB2003.000-1016spa
dc.relation.referencesAbdelrahman, M., Abdel-Motaal, F., El-Sayed, M., Jogaiah, S., Shigyo, M., Ito, S. ichi, & Tran, L. S. P. (2016). Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246, 128–138. https://doi.org/10.1016/j.plantsci.2016.02.008spa
dc.relation.referencesAdrian, M., Lucio, M., Roullier-Gall, C., Héloir, M. C., Trouvelot, S., Daire, X., Kanawati, B., Lemaître-Guillier, C., Poinssot, B., Gougeon, R., & Schmitt-Kopplin, P. (2017). Metabolic fingerprint of PS3-induced resistance of grapevine leaves against Plasmopara viticola revealed differences in elicitor-triggered defenses. Frontiers in Plant Science, 8(February), 1–14. https://doi.org/10.3389/fpls.2017.00101spa
dc.relation.referencesAebersold, R., & Mann, M. (2016). Mass-spectrometric exploration of proteome structure and function. Nature, 537(7620), 347–355. https://doi.org/10.1038/nature19949spa
dc.relation.referencesAgorio, A., & Vera, P. (2007). ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell, 19(11), 3778–3790. https://doi.org/10.1105/tpc.107.054494spa
dc.relation.referencesAgrios, G. (2005). Parasitism and disease development. In G. Agrios (Ed.), Plant Pathology (Fifth edit, pp. 77–104). Elsevier Academic Press.spa
dc.relation.referencesAl-Snafi, P. D. A. E. (2017). Chemical contents and medical importance of Dianthus caryophyllus- A review. IOSR Journal of Pharmacy (IOSRPHR), 07(03), 61–71. https://doi.org/10.9790/3013-0703016171spa
dc.relation.referencesAldinary, A. M., Morsy Abdelaziz, A., Farrag, A. A., & Attia, M. S. (2021). Biocontrol of tomato Fusarium wilt disease by a new Moringa endophytic Aspergillus isolates. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.03.423spa
dc.relation.referencesAlmagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377–390. https://doi.org/10.1093/jxb/ern277spa
dc.relation.referencesAmaral, J., Lamelas, L., Valledor, L., Castillejo, M. Á., Alves, A., & Pinto, G. (2021). Comparative proteomics of <scp> Pinus – Fusarium </scp> circinatum interactions reveal metabolic clues to biotic stress resistance. Physiologia Plantarum. https://doi.org/10.1111/ppl.13563spa
dc.relation.referencesApel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701spa
dc.relation.referencesArbelaez, G. (1987). Enfermedades fungosas y bacteriales del clavel en Colombia. Agronomía Colombiana, 4(1–2), 3–8.spa
dc.relation.referencesArbeláez, G., Garcéz de Granada, E., Orozco de Amézquita, M., & Calderón, O. L. (1996). Respuesta de algunas variedades de clavel estandar a cuatro razas fisiológicas de Fusarium oxysporum f. sp. dianthi. Agronomia Colombiana’, 13(2), 117–127. https://doi.org/10.1094/pd-66-809spa
dc.relation.referencesArdila, H. D. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus) al patógeno Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesArdila, H. D., Baquero, B., & Martínez, S. T. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en el clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f.sp. dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167.spa
dc.relation.referencesArdila, H. D., Fernández, R. G., Higuera, B. L., Redondo, I., & Martínez, S. T. (2014). Protein Extraction and Gel-Based Separation Methods to Analyze Responses to Pathogens in Carnation (Dianthus caryophyllus L). In J. V Jorrin-novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics, Methods and Protocols (2nd ed., pp. 573–591). Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_39spa
dc.relation.referencesArdila, H. D., Martínez, S. T. S. T., & Higuera, B. L. B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0spa
dc.relation.referencesAshwin, N. M. R., Barnabas, L., Ramesh Sundar, A., Malathi, P., Viswanathan, R., Masi, A., Agrawal, G. K., & Rakwal, R. (2017). Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions. Journal of Plant Biochemistry and Biotechnology, 26(4), 371–386. https://doi.org/10.1007/s13562-017-0402-1spa
dc.relation.referencesAslam, S. N., Erbs, G., Morrissey, K. L., Newman, M.-A., Chinchilla, D., Boller, T., Molinaro, A., Jackson, R. W., & Cooper, R. M. (2009). Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 10(3), 375–387. https://doi.org/10.1111/j.1364-3703.2009.00537.xspa
dc.relation.referencesAsocolflores. (2018). Boletín estadístico diciembre 2018. Dirección de economía y logística.spa
dc.relation.referencesBaayen, R. P. (1988). Responses related to lignification and intravascular periderm formation in carnations resistant to Fusarium wilt. Canadian Journal of Botany, 66, 784–792.spa
dc.relation.referencesBaayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.xspa
dc.relation.referencesBaayen, R. P., Sparnaaij, L. D., Jansen, J., & Niemann, G. J. (1991). Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Netherlands Journal of Plant Pathology, 97(2), 73–86. https://doi.org/10.1007/BF01974271spa
dc.relation.referencesBaenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: A tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541–13563. https://doi.org/10.3390/molecules190913541spa
dc.relation.referencesBálintová, M., Bruňáková, K., Petijová, L., & Čellárová, E. (2019). Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant Physiology and Biochemistry, 135(December 2018), 348–358. https://doi.org/10.1016/j.plaphy.2018.12.024spa
dc.relation.referencesBalmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The “prime-ome”: Towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002spa
dc.relation.referencesBalmer, D., De Papajewski, D. V., Planchamp, C., Glauser, G., & Mauch-Mani, B. (2013). Induced resistance in maize is based on organ-specific defence responses. Plant Journal, 74(2), 213–225. https://doi.org/10.1111/tpj.12114spa
dc.relation.referencesBeck, M., Komis, G., Müller, J., Menzel, D., & Šamaj, J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essentialfor microtubule organization. Plant Cell, 22(3), 755–771. https://doi.org/10.1105/tpc.109.071746spa
dc.relation.referencesBeckers, G. J. M., & Spoel, S. H. (2006). Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biology, 8(1), 1–10. https://doi.org/10.1055/s-2005-872705spa
dc.relation.referencesBellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(MAY), 1–8. https://doi.org/10.3389/fpls.2014.00228spa
dc.relation.referencesBen-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f. sp. dianthi race 2. Plant Disease, 81(7), 777–780. https://doi.org/10.1094/PDIS.1997.81.7.777spa
dc.relation.referencesBen-Yephet, Y., Reuven, M., Zviebil, A., & Shtienberg, D. (1996). Effects of initial inoculum and cultivar resistance on incidence of Fusarium wilt and population densities of Fusarium oxysporum f. sp. dianthi on carnation and in soil. In Phytopathology (Vol. 86, Issue 7, pp. 751–756). https://doi.org/10.1094/phyto-86-751spa
dc.relation.referencesBen-Yephet, Y., & Shtienberg, D. (1994). Effects of solar radiation and temperature on Fusarium wilt in carnation. Phytopathology, 84(12), 1416–1421spa
dc.relation.referencesBen Khaled, S., Postma, J., & Robatzek, S. (2015). A Moving View: Subcellular Trafficking Processes in Pattern Recognition ReceptorTriggered Plant Immunity. Annual Review of Phytopathology, 53(August), 379–402. https://doi.org/10.1146/annurev-phyto-080614-120347spa
dc.relation.referencesBenhamou, N. (1996). Elicitor-induced plant defence pathways. Trends in Plant Science, 1(7), 233–240. https://doi.org/10.1016/1360-1385(96)86901-9spa
dc.relation.referencesBenhamou, N., & Nicole, M. (1999). Cell biology of plant immunization against microbial infection: The potential of induced resistance in controlling plant diseases. Plant Physiology and Biochemistry, 37(10), 703–719. https://doi.org/10.1016/S0981-9428(00)86684-Xspa
dc.relation.referencesBenson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2009). GenBank. Nucleic Acids Research, 37(SUPPL. 1), 26–31. https://doi.org/10.1093/nar/gkn723spa
dc.relation.referencesBigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022spa
dc.relation.referencesBoba, A., Kostyn, K., Kostyn, A., Wojtasik, W., Dziadas, M., Preisner, M., Szopa, J., & Kulma, A. (2017). Methyl salicylate level increase in flax after Fusarium oxysporum infection is associated with phenylpropanoid pathway activation. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01951spa
dc.relation.referencesBoller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346spa
dc.relation.referencesBoller, T., & He, S. Y. (2009). Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science, 324(5928), 742–744. https://doi.org/10.1126/science.1171647spa
dc.relation.referencesBolton, M. D. (2009). Primary Metabolism and Plant Defense—Fuel for the Fire. Molecular Plant-Microbe Interactions, 22(5), 487–497. https://doi.org/10.1094/mpmi-22-5-0487spa
dc.relation.referencesBrodersen, P., Petersen, M., Bjørn Nielsen, H., Zhu, S., Newman, M.-A., Shokat, K. M., Rietz, S., Parker, J., & Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 47(4), 532–546. https://doi.org/10.1111/j.1365-313X.2006.02806.xspa
dc.relation.referencesBruce, T. J. A. (2014). Variation in plant responsiveness to defense elicitors caused by genotype and environment. Frontiers in Plant Science, 5(JUL), 3–6. https://doi.org/10.3389/fpls.2014.00349spa
dc.relation.referencesBurketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004spa
dc.relation.referencesCai, Q., He, B., & Jin, H. (2019). A safe ride in extracellular vesicles – small RNA trafficking between plant hosts and pathogens. Current Opinion in Plant Biology, 52, 140–148. https://doi.org/10.1016/j.pbi.2019.09.001spa
dc.relation.referencesCamañes, G., Scalschi, L., Vicedo, B., González-Bosch, C., & García-Agustín, P. (2015). An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas sy. Plant Journal, 84(1), 125–139. https://doi.org/10.1111/tpj.12964spa
dc.relation.referencesCannell, N., Emms, D. M., Hetherington, A. J., MacKay, J., Kelly, S., Dolan, L., & Sweetlove, L. J. (2020). Multiple Metabolic Innovations and Losses Are Associated with Major Transitions in Land Plant Evolution. Current Biology, 30(10), 1783-1800.e11. https://doi.org/10.1016/j.cub.2020.02.086spa
dc.relation.referencesCastellanos-Domínguez, O., Fonseca-Rodríguez, S., & Buriticá-Ospina, S. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de flores y follajes con énfasis en clavel.spa
dc.relation.referencesCastiblanco, F., & Ardila, H. D. (2021). Condiciones de crecimiento del hongo Fusarium oxysporum f.sp. dianthi para la preparación de un potencial inductor de resistenci al marchitamiento vascular del clavel (Dianthus caryophyllus).spa
dc.relation.referencesCastillejo, M.-Á., Fondevilla-Aparicio, S., Fuentes-Almagro, C., & Rubiales, D. (2020). Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight ( Peyronellaea pinodes ) in Pea. Journal of Proteome Research, 19(3), 1000–1012. https://doi.org/10.1021/acs.jproteome.9b00365spa
dc.relation.referencesCastillejo, M. Á., Bani, M., & Rubiales, D. (2015). Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 115(1), 44–58. https://doi.org/10.1016/j.phytochem.2015.01.009spa
dc.relation.referencesCastro-Moretti, F. R., Gentzel, I. N., Mackey, D., & Alonso, A. P. (2020). Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites, 10(2), 1–23. https://doi.org/10.3390/metabo10020052spa
dc.relation.referencesChakraborty, N., & Acharya, K. (2016). Ex vivo analyses of formulated bio-elicitors from a phytopathogen in the improvement of innate immunity in host. Archives of Phytopathology and Plant Protection, 49(17–18), 485–505. https://doi.org/10.1080/03235408.2016.1242196spa
dc.relation.referencesChandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5, 1–14. https://doi.org/10.1038/srep15195spa
dc.relation.referencesChang, T. H., Lin, Y. H., Chen, K. S., Huang, J. W., Hsiao, S. C., & Chang, P. F. L. (2015). Cell wall reinforcement in watermelon shoot base related to its resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. niveum. Journal of Agricultural Science, 153(2), 296–305. https://doi.org/10.1017/S0021859614000057spa
dc.relation.referencesChatterjee, M., Gupta, S., Bhar, A., Chakraborti, D., Basu, D., & Das, S. (2014). Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-949spa
dc.relation.referencesChen, J., Ullah, C., Reichelt, M., Gershenzon, J., & Hammerbacher, A. (2019). Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiology, 180(4), 1975–1987. https://doi.org/10.1104/pp.19.00461spa
dc.relation.referencesChen, Y. C., Kidd, B. N., Carvalhais, L. C., & Schenk, P. M. (2014). Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signaling & Behavior, 9(12), e977710. https://doi.org/10.4161/15592324.2014.977710spa
dc.relation.referencesChen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against fusarium oxysporum reveals new regulators to confer resistance. Scientific Reports, 4. https://doi.org/10.1038/srep05584spa
dc.relation.referencesChiocchetti, a, Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., Migheli, Q., Gullino, L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169spa
dc.relation.referencesChong, J., Pierrel, M. A., Atanassova, R., Werck-Reichhart, D., Fritig, B., & Saindrenan, P. (2001). Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiology, 125(1), 318–328. https://doi.org/10.1104/pp.125.1.318spa
dc.relation.referencesConrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., & Mauch-Mani, B. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071. https://doi.org/10.1094/MPMI-19-1062spa
dc.relation.referencesConrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for Enhanced Defense. Annual Review of Phytopathology, 53, 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132spa
dc.relation.referencesConrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6spa
dc.relation.referencesCouto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9), 537–552. https://doi.org/10.1038/nri.2016.77spa
dc.relation.referencesCurir, P., Dolci, M., Dolci, P., Lanzotti, V., & De Cooman, L. (2003). Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochemical Analysis, 14(1), 8–12. https://doi.org/10.1002/pca.672spa
dc.relation.referencesCurir, P., Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-Xspa
dc.relation.referencesDe Ascensao, A. R. F. D. C., & Dubery, I. A. (2003). Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry, 63(6), 679–686. https://doi.org/10.1016/S0031-9422(03)00286-3spa
dc.relation.referencesDe Borba, M. C., de Freitas, M. B., & Stadnik, M. J. (2019). Ulvan enhances seedling emergence and reduces Fusarium wilt severity in common bean (Phaseolus vulgaris L.). Crop Protection, 118(December 2018), 66–71. https://doi.org/10.1016/j.cropro.2018.12.014spa
dc.relation.referencesDe Kesel, J., Conrath, U., Flors, V., Luna, E., Mageroy, M. H., Mauch-Mani, B., Pastor, V., Pozo, M. J., Pieterse, C. M. J., Ton, J., & Kyndt, T. (2021). The Induced Resistance Lexicon: Do’s and Don’ts. Trends in Plant Science, January. https://doi.org/10.1016/j.tplants.2021.01.001spa
dc.relation.referencesDeng, Z. (2018). Breeding for Disease Resistance in Florists’ Crops (pp. 87–117). https://doi.org/10.1007/978-3-319-39670-5_4spa
dc.relation.referencesDenison, F. C., Paul, A. L., Zupanska, A. K., & Ferl, R. J. (2011). 14-3-3 Proteins in Plant Physiology. Seminars in Cell and Developmental Biology, 22(7), 720–727. https://doi.org/10.1016/j.semcdb.2011.08.006spa
dc.relation.referencesDeuerling, E., Gamerdinger, M., & Kreft, S. G. (2019). Chaperone Interactions at the Ribosome. Cold Spring Harbor Perspectives in Biology, 11(11), a033977. https://doi.org/10.1101/cshperspect.a033977spa
dc.relation.referencesDewen, Q., Yijie, D., Yi, Z., Shupeng, L., & Fachao, S. (2017). Plant immunity inducer development and application. Molecular Plant-Microbe Interactions, 30(5), 355–360. https://doi.org/10.1094/MPMI-11-16-0231-CRspa
dc.relation.referencesDi Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xspa
dc.relation.referencesDixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7(7), 1085–1097. https://doi.org/10.1105/tpc.7.7.1085spa
dc.relation.referencesDixon, Richard A., & Pasinetti, G. M. (2010). Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiology, 154(2), 453–457. https://doi.org/10.1104/pp.110.161430spa
dc.relation.referencesDodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11(8), 539–548. https://doi.org/10.1038/nrg2812spa
dc.relation.referencesDong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology, 1(4), 316–323. https://doi.org/10.1016/1369-5266(88)80053-0spa
dc.relation.referencesEl Modafar, C., Tantaoui, A., & El Boustani, E. S. (2001). Differential induction of phenylalanine ammonia-lyase activity in date palm roots in response to inoculation with Fusarium oxysporum f. sp. albedinis and to elicitation with fungal wall elicitor. Journal of Plant Physiology, 158(6), 715–722. https://doi.org/10.1078/0176-1617-00258spa
dc.relation.referencesEng, J. K., Searle, B. C., Clauser, K. R., & Tabb, D. L. (2011). A face in the crowd: Recognizing peptides through database search. Molecular and Cellular Proteomics, 10(11), 1–9. https://doi.org/10.1074/mcp.R111.009522spa
dc.relation.referencesEspinas, N. A., Saze, H., & Saijo, Y. (2016). Epigenetic control of defense signaling and priming in plants. Frontiers in Plant Science, 7(AUG2016), 1–7. https://doi.org/10.3389/fpls.2016.01201spa
dc.relation.referencesFalcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(SEP), 1–15. https://doi.org/10.3389/fpls.2012.00222spa
dc.relation.referencesFan, K.-T., Wang, K.-H., Chang, W.-H., Yang, J.-C., Yeh, C.-F., Cheng, K.-T., Hung, S.-C., & Chen, Y.-R. (2019). Application of Data-Independent Acquisition Approach to Study the Proteome Change from Early to Later Phases of Tomato Pathogenesis Responses. International Journal of Molecular Sciences, 20(4), 863. https://doi.org/10.3390/ijms20040863spa
dc.relation.referencesFerrochio, L., Cendoya, E., Farnochi, M. C., Massad, W., & Ramirez, M. L. (2013). Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. International Journal of Food Microbiology, 167(2), 215–220. https://doi.org/10.1016/j.ijfoodmicro.2013.09.005spa
dc.relation.referencesFiehn, O. (2002). Metabolomics - The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171. https://doi.org/10.1023/A:1013713905833spa
dc.relation.referencesGaleotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001spa
dc.relation.referencesGamir, J., Pastor, V., Kaever, A., Cerezo, M., & Flors, V. (2014). Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina. Plant Journal, 78(2), 227–240. https://doi.org/10.1111/tpj.12465spa
dc.relation.referencesGarcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D., & Pugin, A. (2006). Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions, 19(7), 711–724. https://doi.org/10.1094/MPMI-19-0711spa
dc.relation.referencesGlazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923spa
dc.relation.referencesGonzález-Fernández, R., Prats, E., & Jorrín-Novo, J. V. (2010). Proteomics of plant pathogenic fungi. Journal of Biomedicine and Biotechnology, 2010. https://doi.org/10.1155/2010/932527spa
dc.relation.referencesHake, K., & Romeis, T. (2019). Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. Plant Cell and Environment, 42(3), 904–917. https://doi.org/10.1111/pce.13429spa
dc.relation.referencesHall, R. D. (2006). Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453–468. https://doi.org/10.1111/j.1469-8137.2005.01632.xspa
dc.relation.referencesHammond-Kosack, K., & Jones, J. D. G. (2015). Responses to plant pathogens. In B. B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & Molecular Biology of Plants (2da ed., p. 984). John Wiley & Sons, Ltd.spa
dc.relation.referencesHartmann, T. (1996). Diversity and variability of plant secondary metabolism: a mechanistic view. Entomologia Experimentalis et Applicata, 80, 177–188.spa
dc.relation.referencesHeil, M. (2010). Plastic defence expression in plants. Evolutionary Ecology, 24(3), 555–569. https://doi.org/10.1007/s10682-009-9348-7spa
dc.relation.referencesHeuberger, A. L., Robison, F. M., Lyons, S. M. A., Broeckling, C. D., & Prenni, J. E. (2014). Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Frontiers in Plant Science, 5(JUN), 1–11. https://doi.org/10.3389/fpls.2014.00291spa
dc.relation.referencesHiguera, B.L., & Ebrahim-Nesbat, F. (1999). Study of vascular root responses as defense mechanisms in carnation resistant or susceptible to Fusarium oxysporum f. sp. dianthi by transmission electron microscopy. Acta Horticulturae, 482, 101–108. https://doi.org/10.17660/ActaHortic.1999.482.14spa
dc.relation.referencesHiguera, Blanca Ligia. (2001). Contribución al estudio del papel de los compuestos fenólicos en los mecanismos de la interacción clavel Dianthus caryophyllus L. -Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesHiguera, Blanca Ligia, & De Gómez, V. M. (1996). Contribution of HPLC to the Study of the Defense Mechanisms Acting in Carnation (Dianthus caryophyllus L.) Roots on Infection with Fusarium oxysporum f. sp. Dianthi. HRC Journal of High Resolution Chromatography, 19(12), 706–708. https://doi.org/10.1002/jhrc.1240191213spa
dc.relation.referencesHilker, M., & Schmülling, T. (2019). Stress priming, memory, and signalling in plants. Plant Cell and Environment, 42(3), 753–761. https://doi.org/10.1111/pce.13526spa
dc.relation.referencesHoleski, L. M., Jander, G., & Agrawal, A. A. (2012). Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology and Evolution, 27(11), 618–626. https://doi.org/10.1016/j.tree.2012.07.011spa
dc.relation.referencesHu, J., Baker, A., Bartel, B., Linka, N., Mullen, R. T., Reumann, S., & Zolman, B. K. (2012). Plant Peroxisomes: Biogenesis and Function. The Plant Cell, 24(6), 2279–2303. https://doi.org/10.1105/tpc.112.096586spa
dc.relation.referencesIngole, K. D., Dahale, S. K., & Bhattacharjee, S. (2021). Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. Journal of Proteomics, 232. https://doi.org/10.1016/j.jprot.2020.104054spa
dc.relation.referencesITC. (2021). Trade Map International Trade Centre. https://marketanalysis.intracen.orgspa
dc.relation.referencesJacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405–414. https://doi.org/10.1111/pbi.12659spa
dc.relation.referencesJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286spa
dc.relation.referencesJorrin-Novo, J. V. (2014). Plant Proteomics Methods and Protocols. In J. V Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics Methods and Protocols (2nd ed., pp. 3–13). Humana Press. https://doi.org/10.1007/978-1-62703-631-3_1spa
dc.relation.referencesKarmakar, S., Datta, K., Molla, K. A., Gayen, D., Das, K., Sarkar, S. N., & Datta, S. K. (2019). Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-46885-3spa
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845spa
dc.relation.referencesKumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/162750spa
dc.relation.referencesLattanzio, V., Kroon, P. A., Quideau, S., & Treutter, D. (2008). Plant Phenolics– Secondary Metabolites with Diverse Functions. In F. Daayf & V. Lattanzio (Eds.), Recent Advances in Polyphenol Research (Vol. 1, pp. 1–35). Wiley-Blackwell. https://doi.org/10.1002/9781444302400.ch1spa
dc.relation.referencesLattanzio, V., Lattanzio, V. M. T., Cardinali, A., & Amendola, V. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F. Imperato (Ed.), Phytochemistry: Advances in Research (1st ed., Vol. 661, Issue 2, pp. 23–67). Research Signpost.spa
dc.relation.referencesLe Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7(MAY2016). https://doi.org/10.3389/fpls.2016.00735spa
dc.relation.referencesLecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17–30. https://doi.org/10.1016/j.biocontrol.2016.06.004spa
dc.relation.referencesLeslie, J. F., & Summerell, B. A. (2006). Techniques and Methods. Techniques for Recovering Fusarium. In J. F. Leslie & B. A. Summerell (Eds.), The Fusarium Laboratory Manual (1st ed., pp. 15–20). Blackwell Publishing.spa
dc.relation.referencesLi, J., Chu, Z. H., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C., & Jones, J. D. G. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15973–15978. https://doi.org/10.1073/pnas.0905532106spa
dc.relation.referencesLin, Z. J. D., Liebrand, T. W. H., Yadeta, K. A., & Coaker, G. (2015). PBL13 is a serine/threonine protein kinase that negatively regulates arabidopsis immune responses. Plant Physiology, 169(4), 2950–2962. https://doi.org/10.1104/pp.15.01391spa
dc.relation.referencesLorenc-Kukuła, K., Korobczak, A., Aksamit-Stachurska, A., Kostyń, K., Łukaszewicz, M., & Szopa, J. (2004). Glucosyltransferase: The gene arrangement and enzyme function. Cellular and Molecular Biology Letters, 9(4 B), 935–946.spa
dc.relation.referencesLorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005spa
dc.relation.referencesLuzzatto, T., Golan, A., Yishay, M., Bilkis, I., Ben-Ari, J., & Yedidia, I. (2007). Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. Journal of Agricultural and Food Chemistry, 55(25), 10315–10322. https://doi.org/10.1021/jf072037spa
dc.relation.referencesMalinowski, R., Novák, O., Borhan, M. H., Spíchal, L., Strnad, M., & Rolfe, S. A. (2016). The role of cytokinins in clubroot disease. European Journal of Plant Pathology, 145(3), 543–557. https://doi.org/10.1007/s10658-015-0845-yspa
dc.relation.referencesMandal, S., Kar, I., Mukherjee, A. K., & Acharya, P. (2013). Elicitor-induced defense responses in solanum lycopersicum against Ralstonia solanacearum. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/561056spa
dc.relation.referencesMandal, S., & Mitra, A. (2007). Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology, 71(4–6), 201–209. https://doi.org/10.1016/j.pmpp.2008.02.003spa
dc.relation.referencesMarcec, M. J., Gilroy, S., Poovaiah, B. W., & Tanaka, K. (2019). Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Science, 283(December 2018), 343–354. https://doi.org/10.1016/j.plantsci.2019.03.004spa
dc.relation.referencesMartínez-González, A. P., Ardila, H. D., Martínez-Peralta, S. T., Melgarejo-Muñoz, L. M., Castillejo-Sánchez, M. A., & Jorrín-Novo, J. V. (2018). What proteomic analysis of the apoplast tells us about plant–pathogen interactions. Plant Pathology, 67(8), 1647–1668. https://doi.org/10.1111/ppa.12893spa
dc.relation.referencesMartinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M., & Conrath, U. (2016). Recognizing Plant Defense Priming. Trends in Plant Science, 21(10), 818–822. https://doi.org/10.1016/j.tplants.2016.07.009spa
dc.relation.referencesMartinez Gonzalez, A. P., Martínez Peralta, S. T., & Ardila Barrantes, H. D. (2017). Condiciones para el análisis electrofóretico de proteínas apoplásticas de tallos y raíces de clavel (Dianthus caryophyllus L) para estudios proteómicos. Revista Colombiana de Química, 46(2), 5. https://doi.org/10.15446/rev.colomb.quim.v46n2.62958spa
dc.relation.referencesMartínez, P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesMata-Pérez, C., & Spoel, S. H. (2019). Thioredoxin-mediated redox signalling in plant immunity. Plant Science, 279(December 2017), 27–33. https://doi.org/10.1016/j.plantsci.2018.05.001spa
dc.relation.referencesMauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132spa
dc.relation.referencesMendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7(8), 352–356. https://doi.org/10.1016/S1360-1385(02)02297-5spa
dc.relation.referencesMittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(1), 11–19. https://doi.org/10.1016/j.tplants.2016.08.002spa
dc.relation.referencesMonroy Mena, S. (2019). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesNamdeo, A., Patil, S., & Fulzele, D. P. (2002). Influence of fungal elicitors on production of ajmalicine by cell cultures of catharanthus roseus. Biotechnology Progress, 18(1), 159–162. https://doi.org/10.1021/bp0101280spa
dc.relation.referencesNelson, P. E. (1981). Life Cycle and Epidemiology of Fusarium oxysporum. In M. Mace, A. Bell, & C. Beckman (Eds.), Fungal Wilt Diseases of Plants (1st ed, Issue 1071). Academic Press, INC. https://doi.org/10.1016/B978-0-12-464450-2.50008-5spa
dc.relation.referencesNesvizhskii, A. I. (2010). A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics, 73(11), 2092–2123. https://doi.org/10.1016/j.jprot.2010.08.009spa
dc.relation.referencesNiemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054spa
dc.relation.referencesOliveira, M. D. M., Varanda, C. M. R., & Félix, M. R. F. (2016). Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15, 152–158. https://doi.org/10.1016/j.phytol.2015.12.011spa
dc.relation.referencesPark, E., Nedo, A., Caplan, J. L., & Dinesh-Kumar, S. P. (2018). Plant-microbe interactions: organelles and the cytoskeleton in action. New Phytologist, 217(3), 1012–1028. https://doi.org/10.1111/nph.14959spa
dc.relation.referencesPastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–12. https://doi.org/10.3389/fpls.2014.00295spa
dc.relation.referencesPatti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314spa
dc.relation.referencesPaxton, J. D. (1981). Phytoalexins — A Working Redefinition. Journal of Phytopathology, 101(2), 106–109. https://doi.org/10.1111/j.1439-0434.1981.tb03327.xspa
dc.relation.referencesPérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2020). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 0(0), 1–18. https://doi.org/10.1080/03235408.2020.1868734spa
dc.relation.referencesPonchet, M., Favre-Bonvin, J., Hauteville, M., & Ricci, P. (1988). Dianthramides (N-benzoyl and N-paracoumarylanthranilic acid derivatives) from elicited tissues of Dianthus caryophyllus. Phytochemistry, 27(3), 725–730. https://doi.org/10.1016/0031-9422(88)84083-4spa
dc.relation.referencesPourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2007). Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12(1), 29–36. https://doi.org/10.1016/j.tplants.2006.11.006spa
dc.relation.referencesPusztahelyi, T. (2018). Chitin and chitin-related compounds in plant–fungal interactions. Mycology, 9(3), 189–201. https://doi.org/10.1080/21501203.2018.1473299spa
dc.relation.referencesRabilloud, T. (2014). How to Use 2D Gel Electrophoresis in Plant Proteomics. In J. V Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics Methods and Protocols (2nd ed., pp. 43–50). Humana Press. https://doi.org/10.1007/978-1-62703-631-3_4spa
dc.relation.referencesRamagli, L., & Rodriguez, L. (1985). Quantitation of microgram amounts of protein in two- dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6, 559–563.spa
dc.relation.referencesRanf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77. https://doi.org/10.1016/j.pbi.2017.04.011spa
dc.relation.referencesRanf, S., Eschen-Lippold, L., Pecher, P., Lee, J., & Scheel, D. (2011). Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant Journal, 68(1), 100–113. https://doi.org/10.1111/j.1365-313X.2011.04671.xspa
dc.relation.referencesRayapuram, N., Jarad, M., Alhoraibi, H. M., Bigeard, J., Abulfaraj, A. A., Völz, R., Mariappan, K. G., Almeida-Trapp, M., Schlöffel, M., Lastrucci, E., Bonhomme, L., Gust, A. A., Mithöfer, A., Arold, S. T., Pflieger, D., & Hirt, H. (2021). Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proceedings of the National Academy of Sciences, 118(3), e2004670118. https://doi.org/10.1073/pnas.2004670118spa
dc.relation.referencesRivero, C., Traubenik, S., Zanetti, M. E., & Blanco, F. A. (2019). Small GTPases in plant biotic interactions. Small GTPases, 10(5), 350–360. https://doi.org/10.1080/21541248.2017.1333557spa
dc.relation.referencesRomeis, T., & Herde, M. (2014). From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 20, 1–10. https://doi.org/10.1016/j.pbi.2014.03.002spa
dc.relation.referencesRomero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192(September). https://doi.org/10.1016/j.phytochem.2021.112933spa
dc.relation.referencesRomero Rincón, A. E. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f.sp. dianthi [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78330spa
dc.relation.referencesRoss, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340–358. https://doi.org/10.1016/0042-6822(61)90319-1spa
dc.relation.referencesSánchez-Estrada, A., Tiznado-Hernández, M. E., Ojeda-Contreras, A. J., Valenzuela-Quintanar, A. I., & Troncoso-Rojas, R. (2009). Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. Journal of Phytopathology, 157(1), 24–32. https://doi.org/10.1111/j.1439-0434.2008.01440.xspa
dc.relation.referencesSarrocco, S., Falaschi, N., Vergara, M., Nicoletti, F., & Vannacci, G. (2007). Use of Fusarium oxysporum F. sp. dianthi transformed with marker genes to follow colonization of carnation roots. Journal of Plant Pathology, 89(1), 47–54. https://doi.org/10.4454/jpp.v89i1.723spa
dc.relation.referencesSAS Institute Inc. (2018). JMP (14.0.0).spa
dc.relation.referencesSathiyabama, M., & Charles, R. E. (2015). Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydrate Polymers, 133, 400–407. https://doi.org/10.1016/j.carbpol.2015.07.066spa
dc.relation.referencesSchymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105spa
dc.relation.referencesScranton, M. A., Yee, A., Park, S. Y., & Walling, L. L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. Journal of Biological Chemistry, 287(22), 18408–18417. https://doi.org/10.1074/jbc.M111.309500spa
dc.relation.referencesShcherbakova, L. A., Odintsova, T. I., Stakheev, A. A., Fravel, D. R., & Zavriev, S. K. (2016). Identification of a novel small cysteine-rich protein in the fraction from the biocontrol fusarium oxysporum strain CS-20 that mitigates fusarium wilt symptoms and triggers defense responses in tomato. Frontiers in Plant Science, 6(JAN2016), 1–15. https://doi.org/10.3389/fpls.2015.01207spa
dc.relation.referencesSomssich, I., & Hahlbrock, K. (1998). Pathogen defence in plants - a paradigm of biological complexity. Trends in Plant Science, 3(3), 86–90.spa
dc.relation.referencesSoto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomia Colombiana, 30(2), 172–178.spa
dc.relation.referencesSpeed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D., & Brockhurst, M. A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208(4), 1251–1263. https://doi.org/10.1111/nph.13560spa
dc.relation.referencesSpoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141spa
dc.relation.referencesSterck, L., Rombauts, S., Vandepoele, K., Rouzé, P., & Van de Peer, Y. (2007). How many genes are there in plants (... and why are they there)? Current Opinion in Plant Biology, 10(2), 199–203. https://doi.org/10.1016/j.pbi.2007.01.004spa
dc.relation.referencesSummerell, B. A., Salleh, B., & Leslie, J. F. (2003). A utilitarian approach to Fusarium Identification. Plant Disease, 87(2), 117–128.spa
dc.relation.referencesTakahama, U., & Hirota, S. (2000). Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant and Cell Physiology, 41(9), 1021–1029. https://doi.org/10.1093/pcp/pcd025spa
dc.relation.referencesTalapatra, S. K., & Talapatra, B. (2015). Diterpenoids (C20). In Chemistry of Plant Natural Products (pp. 469–510). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45410-3_8spa
dc.relation.referencesTao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G., & Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 15(2), 317–330. https://doi.org/10.1105/tpc.007591spa
dc.relation.referencesThe Uniprot Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky104spa
dc.relation.referencesTroncoso-Rojas, R., Sánchez-Estrada, A., Carvallo, T., González-León, A., Ojeda-Contreras, J., Aguilar-Valenzuela, A., & Tiznado-Hernández, M. E. (2013). A fungal elicitor enhances the resistance of tomato fruit to Fusarium oxysporum infection by activating the phenylpropanoid metabolic pathway. Phytoparasitica, 41(2), 133–142. https://doi.org/10.1007/s12600-012-0271-zspa
dc.relation.referencesUl Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W. X., Zhang, H. X., Wei, A. M., & Gong, Z. H. (2019). Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20(21), 1–31. https://doi.org/10.3390/ijms20215321spa
dc.relation.referencesUnderwood, W. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. Frontiers in Plant Science, 3(MAY), 1–6. https://doi.org/10.3389/fpls.2012.00085spa
dc.relation.referencesUnderwood, W. (2016). Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Seminars in Cell and Developmental Biology, 56, 163–173. https://doi.org/10.1016/j.semcdb.2016.05.016spa
dc.relation.referencesVallad, G., & Goodman, R. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.spa
dc.relation.referencesValledor, L., & Jorrín, J. (2011). Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of Proteomics, 74(1), 1–18. https://doi.org/10.1016/j.jprot.2010.07.007spa
dc.relation.referencesValledor, L., & Weckwerth, W. (2014). An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. In J. V Jorrin-novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics, Methods and Protocols Methods and Protocols (2nd ed., pp. 347–358). Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_25spa
dc.relation.referencesVan Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425spa
dc.relation.referencesVan Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.spa
dc.relation.referencesVanegas, L. (2019). Leidy Johana Vanegas Cano. Universidad Nacional de Colombia.spa
dc.relation.referencesVaudel, M., Sickmann, A., & Martens, L. (2012). Current methods for global proteome identification. Expert Review of Proteomics, 9(5), 519–532. https://doi.org/10.1586/epr.12.51spa
dc.relation.referencesViladomat, F., & Bastida, J. (2015). General Overview of Plant Secondary Metabolism. In B. Bahadur, M. Rajam, L. Sahijram, & K. Krishnamurthy (Eds.), Plant Biology and Biotechnology (Vol. 1, pp. 539–568). Springer India. https://doi.org/10.1007/978-81-322-2286-6_21spa
dc.relation.referencesVogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227–232. https://doi.org/10.1038/nrg3185spa
dc.relation.referencesWalters, D. R., & Boyle, C. (2005). Induced resistance and allocation costs: What is the impact of pathogen challenge? Physiological and Molecular Plant Pathology, 66(1–2), 40–44. https://doi.org/10.1016/j.pmpp.2005.04.002spa
dc.relation.referencesWalters, Dale R., & Paterson, L. (2012). Parents lend a helping hand to their offspring in plant defence. Biology Letters, 8(5), 871–873. https://doi.org/10.1098/rsbl.2012.0416spa
dc.relation.referencesWalters, Dale R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026spa
dc.relation.referencesWalters, Dale R. (2011a). What Defenses Do Plants Use ? In Dale R Walters (Ed.), Plant Defense: Warding off Attack by Pathogens, Herbivores, and Parasitic Plants (1st ed., pp. 15–76). Wiley-Blackwell.spa
dc.relation.referencesWalters, Dale R. (2011b). Why do plants need defenses? In Dale R Walters (Ed.), Plant Defense: Warding off Attack by Pathogens, Herbivores, and Parasitic Plants (1st ed., pp. 1–11). Wiley-Blackwell. https://doi.org/10.1016/S1097-2765(03)00072-8spa
dc.relation.referencesWang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133–141. https://doi.org/10.1016/j.pbi.2017.05.003spa
dc.relation.referencesWang, Y., Gao, M., Li, Q., Wang, L., Wang, J., Jeon, J. S., Qu, N., Zhang, Y., & He, Z. (2008). OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Molecular Plant-Microbe Interactions, 21(3), 294–303. https://doi.org/10.1094/MPMI-21-3-0294spa
dc.relation.referencesWi, S. J., Kim, W. T., & Park, K. Y. (2006). Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports, 25(10), 1111–1121. https://doi.org/10.1007/s00299-006-0160-3spa
dc.relation.referencesWiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(NOV), 1–13. https://doi.org/10.3389/fpls.2014.00655spa
dc.relation.referencesWink, M. (2010). Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites. In Biochemistry of Plant Secondary Metabolism (1st ed., Vol. 40, Issue August, pp. 1–19). Wiley-Blackwell. https://doi.org/10.1002/9781444320503.ch1spa
dc.relation.referencesWolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In Handbook of florist’s crops diseases (pp. 317–378). https://doi.org/10.1007/978-3-319-39670-5_14spa
dc.relation.referencesYagi, M. (2018). Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants. Breeding Science, 68(1), 62–70. https://doi.org/10.1270/jsbbs.17080spa
dc.relation.referencesYagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053spa
dc.relation.referencesYamaguchi, Y., & Huffaker, A. (2011). Endogenous peptide elicitors in higher plants. https://doi.org/10.1016/j.pbi.2011.05.001spa
dc.relation.referencesZeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plan, Cell & Environment, 36, 2085–2103.spa
dc.relation.referencesZhang, M., Xu, J., Liu, G., Yao, X., Ren, R., & Yang, X. (2018). Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Plant and Soil, 422(1–2), 169–181. https://doi.org/10.1007/s11104-017-3294-xspa
dc.relation.referencesZhang, X., Wu, Q., Ren, J., Qian, W., He, S., Huang, K., Yu, X. C., Gao, Y., Huang, P., & An, C. (2012). Two novel RING-type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiology, 160(2), 808–822. https://doi.org/10.1104/pp.112.203422spa
dc.relation.referencesZhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003spa
dc.relation.referencesZhao, N., Wang, G., Norris, A., Chen, X., & Chen, F. (2013). Studying Plant Secondary Metabolism in the Age of Genomics. Critical Reviews in Plant Sciences, 32(6), 369–382. https://doi.org/10.1080/07352689.2013.789648spa
dc.relation.referencesZhou, C., Zhang, L., Duan, J., Miki, B., & Wu, K. (2005). Histone Deacetylase19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 17(4), 1196–1204. https://doi.org/10.1105/tpc.104.0285spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocDianthus caryophyllusspa
dc.subject.agrovocFusarium oxysporumspa
dc.subject.agrovocProteómicaspa
dc.subject.agrovocProteomicseng
dc.subject.agrovocResistencia inducidaspa
dc.subject.agrovocInduced resistanceeng
dc.subject.agrovocMarchitezspa
dc.subject.agrovocWiltseng
dc.subject.agrovocReacciones de defensa de plantasspa
dc.subject.agrovocPlant defence reactionseng
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales::635 - Cultivos de huerta (Horticultura)spa
dc.subject.lembClaveles - Enfermedades por hongosspa
dc.subject.lembCarnations - Fungus diseaseseng
dc.subject.proposalClavelspa
dc.subject.proposalFusarium oxysporum f. sp. dianthispa
dc.subject.proposalElicitaciónspa
dc.subject.proposalProteómicaspa
dc.subject.proposalPerfil metabólicospa
dc.subject.proposalResistencia inducidaspa
dc.subject.proposalCarnationeng
dc.subject.proposalElicitationeng
dc.subject.proposalPrimingeng
dc.subject.proposalProteomicseng
dc.subject.proposalMetabolic profileeng
dc.subject.proposalInduced resistanceeng
dc.subject.wikidataElicitación
dc.subject.wikidataElicitation
dc.titleContribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)spa
dc.title.translatedContribution to the study of the bichemical response of the induced resistance promoted by the use of elicitors of biotic origin in the interaction Fusarium oxyxporum f. sp. dianthi race 2 - carnation (Dianthus caryophyllus L.)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
37513154.2022.pdf
Tamaño:
15.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Biología
Cargando...
Miniatura
Nombre:
Suplemento 37513154.2022.xlsx
Tamaño:
342.02 KB
Formato:
Microsoft Excel XML
Descripción:
Anexo Tesis de Doctorado en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: