Evaluación de factibilidad para la producción de hidrógeno a partir de energía eólica en Colombia

dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.authorRamirez Sossa, Mateo
dc.contributor.researchgroupSistemas energéticosspa
dc.date.accessioned2024-01-29T13:58:25Z
dc.date.available2024-01-29T13:58:25Z
dc.date.issued2023-01-25
dc.descriptionIlustraciones, mapas, tablasspa
dc.description.abstractLa producción de hidrógeno tradicionalmente se ha realizado a partir de combustibles fósiles, generando un alto impacto ambiental; sin embargo, tiene el potencial para descarbonizar aplicaciones intensivas en energía dada la abundancia de la materia prima para su producción y el hecho de que cuando se comprime tiene una alta densidad energética. En los últimos años, Colombia por su ubicación geográfica y avances en políticas públicas, se viene posicionando como destino de inversión para la implementación de proyectos de energías renovables; pero por su carácter variable y desfase con la demanda es necesario explorar alternativas que permitan aprovechar de la mejor manera la energía producida; por esto, dada la versatilidad del hidrógeno como vector energético, se visualiza como una oportunidad su producción mediante electrólisis aprovechando picos de generación. En esta tesis se evaluó la factibilidad de producir hidrógeno a partir de energía eólica en Colombia; se identificaron los métodos de producción de hidrógeno y los parámetros para la generación de hidrógeno usando energía eólica, se desarrolló un modelo para evaluar la viabilidad de producir hidrógeno verde en Colombia, y se identificaron barreras técnicas y económicas que permiten estructurar recomendaciones para el desarrollo de estos proyectos. (texto tomado de la fuente)spa
dc.description.abstractHydrogen production has traditionally been carried out from fossil fuels, generating a high environmental impact. However, it has the potential to decarbonize energy-intensive applications given the abundance of raw materials for its production and the fact that it has high energy density when compressed. In recent years, Colombia has been positioning itself as an investment destination for renewable energy projects due to its geographical location and advances in public policies. Still, due to its variable nature and mismatch with demand, it is necessary to explore alternatives that allow optimal energy utilization. Therefore, given the versatility of hydrogen as an energy carrier, its production through electrolysis, taking advantage of generation peaks, is seen as an opportunity. This thesis assessed the feasibility of producing hydrogen from wind energy in Colombia. It identified hydrogen production methods and parameters for hydrogen generation using wind energy. A model was developed to evaluate the viability of producing green hydrogen in Colombia, and technical and economic barriers were identified to structure recommendations for developing these projects.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Sistemas Energéticosspa
dc.description.researchareaToma de decisionesspa
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85479
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602-627. https://doi.org/10.1016/j.enconman.2018.03.088spa
dc.relation.referencesAguilar, I. R. (2016). Evaluación de alternativas para potencializar el uso de hidrógeno como vector energético [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59336spa
dc.relation.referencesAir Liquide. (2017, junio 16). How is hydrogen stored? Air Liquide Energies. https://energies.airliquide.com/resources-planet-hydrogen/how-hydrogen-storedspa
dc.relation.referencesArango, J. G. M., & Alvarez, C. A. A. (2013). Proyección al año 2025 para el uso del hidrógeno en el sector transporte del Valle de Aburrá. Scientia Et Technica, 18(2), 327-334.spa
dc.relation.referencesAsunis, F., De Gioannis, G., Isipato, M., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., & Spiga, D. (2019). Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresource Technology, 289, 121722. https://doi.org/10.1016/j.biortech.2019.121722spa
dc.relation.referencesAurélien Babarit, Jean-Christophe Gilloteaux, Gaël Clodic, Maxime Duchet, Alexandre Simoneau, & Max F.Platzerc. (2018). Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. International Journal of Hydrogen Energy, 43(15), 7266-7289. https://doi.org/10.1016/j.ijhydene.2018.02.144spa
dc.relation.referencesBensmann, B., Hanke-Rauschenbach, R., Müller-Syring, G., Henel, M., & Sundmacher, K. (2016). Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications. Applied Energy, 167, 107-124. https://doi.org/10.1016/j.apenergy.2016.01.038spa
dc.relation.referencesBerrío, E. J. (2021). Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano. [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80165spa
dc.relation.referencesBicer, Y., & Dincer, I. (2017). Comparative life cycle assessment of hydrogen, methanol and electric vehicles from well to wheel. International Journal of Hydrogen Energy, 42(6), 3767-3777. https://doi.org/10.1016/j.ijhydene.2016.07.252spa
dc.relation.referencesBID & Anthesis Group. (2023). Environmental, Health, Safety, and Social Management of Green Hydrogen in Latin America and the Caribbean | Publications. Banco Interamericano de Desarrollo. https://publications.iadb.org/publications/english/viewer/Environmental-Health-Safety-and-Social-Management-of-Green-Hydrogen-in-Latin-America-and-the-Caribbean.pdfspa
dc.relation.referencesBlanco, M. I. (2009). The economics of wind energy. Renewable and Sustainable Energy Reviews, 13(6), 1372-1382. https://doi.org/10.1016/j.rser.2008.09.004spa
dc.relation.referencesBristowe, G., & Smallbone, A. (2021). The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System. Hydrogen, 2(3), Article 3. https://doi.org/10.3390/hydrogen2030015spa
dc.relation.referencesCaparrós Mancera, J. J., Segura Manzano, F., Andújar, J. M., Vivas, F. J., & Calderón, A. J. (2020). An Optimized Balance of Plant for a Medium-Size PEM Electrolyzer: Design, Control and Physical Implementation. Electronics, 9(5), Article 5. https://doi.org/10.3390/electronics9050871spa
dc.relation.referencesCastiblanco, O., & Cárdenas, D. J. (2020). Producción de hidrógeno y su perspectiva en Colombia: Una revisión. Gestión y Ambiente, 23(2), Article 2. https://doi.org/10.15446/ga.v23n2.86466spa
dc.relation.referencesChinchilla, E. (2014). Diseño e implementación de un controlador difuso que, interviene la inyección electrónica de combustible en un vehículo, para la utilización de HHO como combustible complementario. https://doi.org/10.13140/2.1.1253.1528spa
dc.relation.referencesClausen, N.-E., Rudolph, D., Kirkegaard, J., & Larsen, S. V. (2021). Where to put wind farms? Challenges related to planning, EIA and social acceptance. DTU International Energy Report 2021: Perspectives on Wind Energy, 44-53. https://doi.org/10.11581/DTU.00000205spa
dc.relation.referencesČuček, L., Klemeš, J. J., Varbanov, P. S., & Kravanja, Z. (2015). Significance of environmental footprints for evaluating sustainability and security of development. Clean Technologies and Environmental Policy, 17(8), 2125-2141. https://doi.org/10.1007/s10098-015-0972-3spa
dc.relation.referencesDemir, M. E., & Dincer, I. (2018). Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 43(22), 10420-10430. https://doi.org/10.1016/j.ijhydene.2017.08.002spa
dc.relation.referencesFalcão, D. S., & Pinto, A. M. F. R. (2020). A review on PEM electrolyzer modelling: Guidelines for beginners. Journal of Cleaner Production, 261, 121184. https://doi.org/10.1016/j.jclepro.2020.121184spa
dc.relation.referencesGallardo, F. I., Monforti Ferrario, A., Lamagna, M., Bocci, E., Astiaso Garcia, D., & Baeza-Jeria, T. E. (2021). A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. International Journal of Hydrogen Energy, 46(26), 13709-13728. https://doi.org/10.1016/j.ijhydene.2020.07.050spa
dc.relation.referencesGIZ, ARIEMA Energía y Medioambiente S.l, & TCI Gecomp SpA. (2021). Estudios de prefactibilidad técnica y económica de la producción de hidrógeno a escala local [Estudios de prefactibilidad técnica y económica]. https://www.4echile.cl/publicaciones/estudio-de-prefactibilidad-tecnica-y-economica-de-la-produccion-de-hidrógeno-verde-mediante-electrolisis-para-la-entidad-gna/spa
dc.relation.referencesHanley, E. S., Deane, J., & Gallachóir, B. Ó. (2018). The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renewable and Sustainable Energy Reviews, 82, 3027-3045. https://doi.org/10.1016/j.rser.2017.10.034spa
dc.relation.referencesHans Böhm, Andreas Zauner, Sebastian Goers, Robert Tichler, & Pieter Kroon. (2018). Innovative large-scale energy storage technologies and Power-to-Gas concepts after optimization. European Union’s Horizon 2020 research and innovation programme.spa
dc.relation.referencesHu, G., Chen, C., Lu, H. T., Wu, Y., Liu, C., Tao, L., Men, Y., He, G., & Li, K. G. (2020). A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. Engineering, 6(12), 1364-1380. https://doi.org/10.1016/j.eng.2020.04.016spa
dc.relation.referencesi-deals. (2021). Hoja de Ruta del Hidrógeno en Colombia [Hoja de ruta]. Ministerio de energía. https://www.minenergía.gov.co/enlaces-ruta-hidrógenospa
dc.relation.referencesIDEAM. (s. f.). Atlas Interactivo—Vientos -. Recuperado 4 de abril de 2022, de http://atlas.ideam.gov.co/visorAtlasVientos.htmlspa
dc.relation.referencesIEA. (2019). The Future of Hydrogen – Analysis. https://www.iea.org/reports/the-future-of-hydrogenspa
dc.relation.referencesIRENA. (2020). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal. https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reductionspa
dc.relation.referencesJang, D., Kim, J., Kim, D., Won-Bi Han, & Kang, S. (2022). Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management, 258, 115499. https://doi.org/10.1016/j.enconman.2022.115499spa
dc.relation.referencesKhalid Almutairi, Seyyed Shahabaddin Hosseini Dehshiri, Seyyed Jalaladdin Hosseini Dehshiri, Ali Mostafaeipour, Mehdi Jahangirig, & Kuaanan Techato. (2021). Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews, 36, 100684. https://doi.org/10.1016/j.esr.2021.100684spa
dc.relation.referencesLaurinavichene, T. V., Belokopytov, B. F., Laurinavichius, K. S., Tekucheva, D. N., Seibert, M., & Tsygankov, A. A. (2010). Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. International Journal of Hydrogen Energy, 35(16), 8536-8543. https://doi.org/10.1016/j.ijhydene.2010.02.063spa
dc.relation.referencesLin, H., Wu, Q., Chen, X., Yang, X., Guo, X., Lv, J., Lu, T., Song, S., & McElroy, M. (2021). Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China. Renewable Energy, 173, 569-580. https://doi.org/10.1016/j.renene.2021.04.015spa
dc.relation.referencesMehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J., & Ulgiati, S. (2018). Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments, 5(2), Article 2. https://doi.org/10.3390/environments5020024spa
dc.relation.referencesMinisterio de Minas y Energía. (2021). Transición Energética: Un legado para el presente y futuro de Colombia. https://www.minenergía.gov.co/es/micrositios/enlace-legado-transicion-energetica/spa
dc.relation.referencesMinisterio de Minas y Energía. (2022a). Decreto 1476 del 3 de agosto de 2022. https://www.anla.gov.co/eureka/index.php/2-uncategorised/2930-decreto-1476-del-3-de-agosto-de-2022spa
dc.relation.referencesMinisterio de Minas y Energía. (2022b). Sistema de Información Normativa del Ministerio de Minas y Energía. https://normativame.minenergía.gov.co/normatividad/6220/norma/spa
dc.relation.referencesMohammadi, A., & Mehrpooya, M. (2018). A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy, 158, 632-655. https://doi.org/10.1016/j.energy.2018.06.073spa
dc.relation.referencesMostafa Rezaei, Kaveh R.Khalilpour, & Mohamed A.Mohamed. (2021). Co-production of electricity and hydrogen from wind: A comprehensive scenario-based techno-economic analysis. International Journal of Hydrogen Energy, 46(35), 18242-18256. https://doi.org/10.1016/j.ijhydene.2021.03.004spa
dc.relation.referencesMostafaeipour, A., Rezaei, M., Moftakharzadeh, A., Qolipour, M., & Salimi, M. (2019). Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 44(16), 7983-7995. https://doi.org/10.1016/j.ijhydene.2019.02.047spa
dc.relation.referencesOffice of Energy Efficiency & Renewable Energy. (2020a). Gaseous Hydrogen Compression. Energy.Gov. https://www.energy.gov/eere/fuelcells/gaseous-hydrogen-compressionspa
dc.relation.referencesOffice of Energy Efficiency & Renewable Energy. (2020b). Hydrogen Storage. Energy.Gov. https://www.energy.gov/eere/fuelcells/hydrogen-storagespa
dc.relation.referencesRitchie, H., & Roser, M. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data. https://ourworldindata.org/emissions-by-sectorspa
dc.relation.referencesRodríguez, C. R., Wuthrich, N., Cobos, J., Santa Cruz, R., Aisa, S., Jeandrevin, G., & Leiva, E. P. M. (2009). Aspectos económicos y ambientales de la producción de hidrógeno en la provincia de Córdoba, a partir de recursos eólicos. Avances en Energías Renovables y Medio Ambiente, 13. http://sedici.unlp.edu.ar/handle/10915/98744spa
dc.relation.referencesSaccani, C., Pellegrini, M., & Guzzini, A. (2020). Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy. Energies, 13(18), Article 18. https://doi.org/10.3390/en13184835spa
dc.relation.referencesSchwengber, C. A., Alves, H. J., Schaffner, R. A., da Silva, F. A., Sequinel, R., Bach, V. R., & Ferracin, R. J. (2016). Overview of glycerol reforming for hydrogen production. Renewable and Sustainable Energy Reviews, 58, 259-266. https://doi.org/10.1016/j.rser.2015.12.279spa
dc.relation.referencesSiemens. (2019). Hydrogen Solutions [Newton_ps-detail]. Siemens-Energy.Com Global Website. https://www.siemens-energy.com/global/en/offerings/renewable-energy/hydrogen-solutions.htmlspa
dc.relation.referencesVargas Vigoya, P. A. (2021). Análisis del costo de producción del hidrógeno verde en la zona del caribe colombiano, una aplicación al sector Industrial [Pontifia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/56967spa
dc.relation.referencesVega, A., Ramos, A., Conde, E., & Reina, P. (2011). Pre-feasibility study of hybrid wind power-H2 system connected to electrical grid. IEEE Latin America Transactions, 9(5), 800-807. https://doi.org/10.1109/TLA.2011.6030992spa
dc.relation.referencesVelazquez Abad, A., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 138, 111300. https://doi.org/10.1016/j.enpol.2020.111300spa
dc.relation.referencesVestas. (2023, julio 28). Vestas enters new market with an order in Colombia. https://www.vestas.com/en/media/company-news/2020/vestas-enters-new-market-with-an-order-in-colombia-c3196448spa
dc.relation.referencesWalsh, S. D. C., Easton, L., Weng, Z., Wang, C., Moloney, J., & Feitz, A. (2021). Evaluating the economic fairways for hydrogen production in Australia. International Journal of Hydrogen Energy, 46(73), 35985-35996. https://doi.org/10.1016/j.ijhydene.2021.08.142spa
dc.relation.referencesWietschel, M., & Hasenauer, U. (2007). Feasibility of hydrogen corridors between the EU and its neighbouring countries. Renewable Energy, 32(13), 2129-2146. https://doi.org/10.1016/j.renene.2006.11.012spa
dc.relation.referencesZheng, J., Liu, X., Xu, P., Liu, P., Zhao, Y., & Yang, J. (2012). Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 37(1), 1048-1057. https://doi.org/10.1016/j.ijhydene.2011.02.125spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.proposalCosto Nivelado del Hidrógenospa
dc.subject.proposalElectrólisisspa
dc.subject.proposalEnergía eólicaspa
dc.subject.proposalEvaluación de factibilidadspa
dc.subject.proposalProducción de hidrógenospa
dc.subject.proposalElectrolysiseng
dc.subject.proposalHydrogen productioneng
dc.subject.proposalLevelized Cost of Hydrogeneng
dc.subject.proposalWind energyeng
dc.subject.wikidataEnergías renovables
dc.subject.wikidataEnergía eólica
dc.subject.wikidataElectrólisis
dc.subject.wikidataProducción de hidrógeno
dc.titleEvaluación de factibilidad para la producción de hidrógeno a partir de energía eólica en Colombiaspa
dc.title.translatedFeasibility evaluation for hydrogen production with wind energy in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentModelspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleValuing Variability in the Colombian Electricity Marketspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128453577.2024.pdf
Tamaño:
1.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: