Evaluación de factibilidad para la producción de hidrógeno a partir de energía eólica en Colombia
dc.contributor.advisor | Franco Cardona, Carlos Jaime | |
dc.contributor.author | Ramirez Sossa, Mateo | |
dc.contributor.researchgroup | Sistemas energéticos | spa |
dc.date.accessioned | 2024-01-29T13:58:25Z | |
dc.date.available | 2024-01-29T13:58:25Z | |
dc.date.issued | 2023-01-25 | |
dc.description | Ilustraciones, mapas, tablas | spa |
dc.description.abstract | La producción de hidrógeno tradicionalmente se ha realizado a partir de combustibles fósiles, generando un alto impacto ambiental; sin embargo, tiene el potencial para descarbonizar aplicaciones intensivas en energía dada la abundancia de la materia prima para su producción y el hecho de que cuando se comprime tiene una alta densidad energética. En los últimos años, Colombia por su ubicación geográfica y avances en políticas públicas, se viene posicionando como destino de inversión para la implementación de proyectos de energías renovables; pero por su carácter variable y desfase con la demanda es necesario explorar alternativas que permitan aprovechar de la mejor manera la energía producida; por esto, dada la versatilidad del hidrógeno como vector energético, se visualiza como una oportunidad su producción mediante electrólisis aprovechando picos de generación. En esta tesis se evaluó la factibilidad de producir hidrógeno a partir de energía eólica en Colombia; se identificaron los métodos de producción de hidrógeno y los parámetros para la generación de hidrógeno usando energía eólica, se desarrolló un modelo para evaluar la viabilidad de producir hidrógeno verde en Colombia, y se identificaron barreras técnicas y económicas que permiten estructurar recomendaciones para el desarrollo de estos proyectos. (texto tomado de la fuente) | spa |
dc.description.abstract | Hydrogen production has traditionally been carried out from fossil fuels, generating a high environmental impact. However, it has the potential to decarbonize energy-intensive applications given the abundance of raw materials for its production and the fact that it has high energy density when compressed. In recent years, Colombia has been positioning itself as an investment destination for renewable energy projects due to its geographical location and advances in public policies. Still, due to its variable nature and mismatch with demand, it is necessary to explore alternatives that allow optimal energy utilization. Therefore, given the versatility of hydrogen as an energy carrier, its production through electrolysis, taking advantage of generation peaks, is seen as an opportunity. This thesis assessed the feasibility of producing hydrogen from wind energy in Colombia. It identified hydrogen production methods and parameters for hydrogen generation using wind energy. A model was developed to evaluate the viability of producing green hydrogen in Colombia, and technical and economic barriers were identified to structure recommendations for developing these projects. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería de Sistemas e Informática | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Sistemas Energéticos | spa |
dc.description.researcharea | Toma de decisiones | spa |
dc.format.extent | 94 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85479 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602-627. https://doi.org/10.1016/j.enconman.2018.03.088 | spa |
dc.relation.references | Aguilar, I. R. (2016). Evaluación de alternativas para potencializar el uso de hidrógeno como vector energético [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59336 | spa |
dc.relation.references | Air Liquide. (2017, junio 16). How is hydrogen stored? Air Liquide Energies. https://energies.airliquide.com/resources-planet-hydrogen/how-hydrogen-stored | spa |
dc.relation.references | Arango, J. G. M., & Alvarez, C. A. A. (2013). Proyección al año 2025 para el uso del hidrógeno en el sector transporte del Valle de Aburrá. Scientia Et Technica, 18(2), 327-334. | spa |
dc.relation.references | Asunis, F., De Gioannis, G., Isipato, M., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., & Spiga, D. (2019). Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresource Technology, 289, 121722. https://doi.org/10.1016/j.biortech.2019.121722 | spa |
dc.relation.references | Aurélien Babarit, Jean-Christophe Gilloteaux, Gaël Clodic, Maxime Duchet, Alexandre Simoneau, & Max F.Platzerc. (2018). Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. International Journal of Hydrogen Energy, 43(15), 7266-7289. https://doi.org/10.1016/j.ijhydene.2018.02.144 | spa |
dc.relation.references | Bensmann, B., Hanke-Rauschenbach, R., Müller-Syring, G., Henel, M., & Sundmacher, K. (2016). Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications. Applied Energy, 167, 107-124. https://doi.org/10.1016/j.apenergy.2016.01.038 | spa |
dc.relation.references | Berrío, E. J. (2021). Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano. [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80165 | spa |
dc.relation.references | Bicer, Y., & Dincer, I. (2017). Comparative life cycle assessment of hydrogen, methanol and electric vehicles from well to wheel. International Journal of Hydrogen Energy, 42(6), 3767-3777. https://doi.org/10.1016/j.ijhydene.2016.07.252 | spa |
dc.relation.references | BID & Anthesis Group. (2023). Environmental, Health, Safety, and Social Management of Green Hydrogen in Latin America and the Caribbean | Publications. Banco Interamericano de Desarrollo. https://publications.iadb.org/publications/english/viewer/Environmental-Health-Safety-and-Social-Management-of-Green-Hydrogen-in-Latin-America-and-the-Caribbean.pdf | spa |
dc.relation.references | Blanco, M. I. (2009). The economics of wind energy. Renewable and Sustainable Energy Reviews, 13(6), 1372-1382. https://doi.org/10.1016/j.rser.2008.09.004 | spa |
dc.relation.references | Bristowe, G., & Smallbone, A. (2021). The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System. Hydrogen, 2(3), Article 3. https://doi.org/10.3390/hydrogen2030015 | spa |
dc.relation.references | Caparrós Mancera, J. J., Segura Manzano, F., Andújar, J. M., Vivas, F. J., & Calderón, A. J. (2020). An Optimized Balance of Plant for a Medium-Size PEM Electrolyzer: Design, Control and Physical Implementation. Electronics, 9(5), Article 5. https://doi.org/10.3390/electronics9050871 | spa |
dc.relation.references | Castiblanco, O., & Cárdenas, D. J. (2020). Producción de hidrógeno y su perspectiva en Colombia: Una revisión. Gestión y Ambiente, 23(2), Article 2. https://doi.org/10.15446/ga.v23n2.86466 | spa |
dc.relation.references | Chinchilla, E. (2014). Diseño e implementación de un controlador difuso que, interviene la inyección electrónica de combustible en un vehículo, para la utilización de HHO como combustible complementario. https://doi.org/10.13140/2.1.1253.1528 | spa |
dc.relation.references | Clausen, N.-E., Rudolph, D., Kirkegaard, J., & Larsen, S. V. (2021). Where to put wind farms? Challenges related to planning, EIA and social acceptance. DTU International Energy Report 2021: Perspectives on Wind Energy, 44-53. https://doi.org/10.11581/DTU.00000205 | spa |
dc.relation.references | Čuček, L., Klemeš, J. J., Varbanov, P. S., & Kravanja, Z. (2015). Significance of environmental footprints for evaluating sustainability and security of development. Clean Technologies and Environmental Policy, 17(8), 2125-2141. https://doi.org/10.1007/s10098-015-0972-3 | spa |
dc.relation.references | Demir, M. E., & Dincer, I. (2018). Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 43(22), 10420-10430. https://doi.org/10.1016/j.ijhydene.2017.08.002 | spa |
dc.relation.references | Falcão, D. S., & Pinto, A. M. F. R. (2020). A review on PEM electrolyzer modelling: Guidelines for beginners. Journal of Cleaner Production, 261, 121184. https://doi.org/10.1016/j.jclepro.2020.121184 | spa |
dc.relation.references | Gallardo, F. I., Monforti Ferrario, A., Lamagna, M., Bocci, E., Astiaso Garcia, D., & Baeza-Jeria, T. E. (2021). A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. International Journal of Hydrogen Energy, 46(26), 13709-13728. https://doi.org/10.1016/j.ijhydene.2020.07.050 | spa |
dc.relation.references | GIZ, ARIEMA Energía y Medioambiente S.l, & TCI Gecomp SpA. (2021). Estudios de prefactibilidad técnica y económica de la producción de hidrógeno a escala local [Estudios de prefactibilidad técnica y económica]. https://www.4echile.cl/publicaciones/estudio-de-prefactibilidad-tecnica-y-economica-de-la-produccion-de-hidrógeno-verde-mediante-electrolisis-para-la-entidad-gna/ | spa |
dc.relation.references | Hanley, E. S., Deane, J., & Gallachóir, B. Ó. (2018). The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renewable and Sustainable Energy Reviews, 82, 3027-3045. https://doi.org/10.1016/j.rser.2017.10.034 | spa |
dc.relation.references | Hans Böhm, Andreas Zauner, Sebastian Goers, Robert Tichler, & Pieter Kroon. (2018). Innovative large-scale energy storage technologies and Power-to-Gas concepts after optimization. European Union’s Horizon 2020 research and innovation programme. | spa |
dc.relation.references | Hu, G., Chen, C., Lu, H. T., Wu, Y., Liu, C., Tao, L., Men, Y., He, G., & Li, K. G. (2020). A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. Engineering, 6(12), 1364-1380. https://doi.org/10.1016/j.eng.2020.04.016 | spa |
dc.relation.references | i-deals. (2021). Hoja de Ruta del Hidrógeno en Colombia [Hoja de ruta]. Ministerio de energía. https://www.minenergía.gov.co/enlaces-ruta-hidrógeno | spa |
dc.relation.references | IDEAM. (s. f.). Atlas Interactivo—Vientos -. Recuperado 4 de abril de 2022, de http://atlas.ideam.gov.co/visorAtlasVientos.html | spa |
dc.relation.references | IEA. (2019). The Future of Hydrogen – Analysis. https://www.iea.org/reports/the-future-of-hydrogen | spa |
dc.relation.references | IRENA. (2020). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal. https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction | spa |
dc.relation.references | Jang, D., Kim, J., Kim, D., Won-Bi Han, & Kang, S. (2022). Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management, 258, 115499. https://doi.org/10.1016/j.enconman.2022.115499 | spa |
dc.relation.references | Khalid Almutairi, Seyyed Shahabaddin Hosseini Dehshiri, Seyyed Jalaladdin Hosseini Dehshiri, Ali Mostafaeipour, Mehdi Jahangirig, & Kuaanan Techato. (2021). Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews, 36, 100684. https://doi.org/10.1016/j.esr.2021.100684 | spa |
dc.relation.references | Laurinavichene, T. V., Belokopytov, B. F., Laurinavichius, K. S., Tekucheva, D. N., Seibert, M., & Tsygankov, A. A. (2010). Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. International Journal of Hydrogen Energy, 35(16), 8536-8543. https://doi.org/10.1016/j.ijhydene.2010.02.063 | spa |
dc.relation.references | Lin, H., Wu, Q., Chen, X., Yang, X., Guo, X., Lv, J., Lu, T., Song, S., & McElroy, M. (2021). Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China. Renewable Energy, 173, 569-580. https://doi.org/10.1016/j.renene.2021.04.015 | spa |
dc.relation.references | Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J., & Ulgiati, S. (2018). Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments, 5(2), Article 2. https://doi.org/10.3390/environments5020024 | spa |
dc.relation.references | Ministerio de Minas y Energía. (2021). Transición Energética: Un legado para el presente y futuro de Colombia. https://www.minenergía.gov.co/es/micrositios/enlace-legado-transicion-energetica/ | spa |
dc.relation.references | Ministerio de Minas y Energía. (2022a). Decreto 1476 del 3 de agosto de 2022. https://www.anla.gov.co/eureka/index.php/2-uncategorised/2930-decreto-1476-del-3-de-agosto-de-2022 | spa |
dc.relation.references | Ministerio de Minas y Energía. (2022b). Sistema de Información Normativa del Ministerio de Minas y Energía. https://normativame.minenergía.gov.co/normatividad/6220/norma/ | spa |
dc.relation.references | Mohammadi, A., & Mehrpooya, M. (2018). A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy, 158, 632-655. https://doi.org/10.1016/j.energy.2018.06.073 | spa |
dc.relation.references | Mostafa Rezaei, Kaveh R.Khalilpour, & Mohamed A.Mohamed. (2021). Co-production of electricity and hydrogen from wind: A comprehensive scenario-based techno-economic analysis. International Journal of Hydrogen Energy, 46(35), 18242-18256. https://doi.org/10.1016/j.ijhydene.2021.03.004 | spa |
dc.relation.references | Mostafaeipour, A., Rezaei, M., Moftakharzadeh, A., Qolipour, M., & Salimi, M. (2019). Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 44(16), 7983-7995. https://doi.org/10.1016/j.ijhydene.2019.02.047 | spa |
dc.relation.references | Office of Energy Efficiency & Renewable Energy. (2020a). Gaseous Hydrogen Compression. Energy.Gov. https://www.energy.gov/eere/fuelcells/gaseous-hydrogen-compression | spa |
dc.relation.references | Office of Energy Efficiency & Renewable Energy. (2020b). Hydrogen Storage. Energy.Gov. https://www.energy.gov/eere/fuelcells/hydrogen-storage | spa |
dc.relation.references | Ritchie, H., & Roser, M. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data. https://ourworldindata.org/emissions-by-sector | spa |
dc.relation.references | Rodríguez, C. R., Wuthrich, N., Cobos, J., Santa Cruz, R., Aisa, S., Jeandrevin, G., & Leiva, E. P. M. (2009). Aspectos económicos y ambientales de la producción de hidrógeno en la provincia de Córdoba, a partir de recursos eólicos. Avances en Energías Renovables y Medio Ambiente, 13. http://sedici.unlp.edu.ar/handle/10915/98744 | spa |
dc.relation.references | Saccani, C., Pellegrini, M., & Guzzini, A. (2020). Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy. Energies, 13(18), Article 18. https://doi.org/10.3390/en13184835 | spa |
dc.relation.references | Schwengber, C. A., Alves, H. J., Schaffner, R. A., da Silva, F. A., Sequinel, R., Bach, V. R., & Ferracin, R. J. (2016). Overview of glycerol reforming for hydrogen production. Renewable and Sustainable Energy Reviews, 58, 259-266. https://doi.org/10.1016/j.rser.2015.12.279 | spa |
dc.relation.references | Siemens. (2019). Hydrogen Solutions [Newton_ps-detail]. Siemens-Energy.Com Global Website. https://www.siemens-energy.com/global/en/offerings/renewable-energy/hydrogen-solutions.html | spa |
dc.relation.references | Vargas Vigoya, P. A. (2021). Análisis del costo de producción del hidrógeno verde en la zona del caribe colombiano, una aplicación al sector Industrial [Pontifia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/56967 | spa |
dc.relation.references | Vega, A., Ramos, A., Conde, E., & Reina, P. (2011). Pre-feasibility study of hybrid wind power-H2 system connected to electrical grid. IEEE Latin America Transactions, 9(5), 800-807. https://doi.org/10.1109/TLA.2011.6030992 | spa |
dc.relation.references | Velazquez Abad, A., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 138, 111300. https://doi.org/10.1016/j.enpol.2020.111300 | spa |
dc.relation.references | Vestas. (2023, julio 28). Vestas enters new market with an order in Colombia. https://www.vestas.com/en/media/company-news/2020/vestas-enters-new-market-with-an-order-in-colombia-c3196448 | spa |
dc.relation.references | Walsh, S. D. C., Easton, L., Weng, Z., Wang, C., Moloney, J., & Feitz, A. (2021). Evaluating the economic fairways for hydrogen production in Australia. International Journal of Hydrogen Energy, 46(73), 35985-35996. https://doi.org/10.1016/j.ijhydene.2021.08.142 | spa |
dc.relation.references | Wietschel, M., & Hasenauer, U. (2007). Feasibility of hydrogen corridors between the EU and its neighbouring countries. Renewable Energy, 32(13), 2129-2146. https://doi.org/10.1016/j.renene.2006.11.012 | spa |
dc.relation.references | Zheng, J., Liu, X., Xu, P., Liu, P., Zhao, Y., & Yang, J. (2012). Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 37(1), 1048-1057. https://doi.org/10.1016/j.ijhydene.2011.02.125 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.proposal | Costo Nivelado del Hidrógeno | spa |
dc.subject.proposal | Electrólisis | spa |
dc.subject.proposal | Energía eólica | spa |
dc.subject.proposal | Evaluación de factibilidad | spa |
dc.subject.proposal | Producción de hidrógeno | spa |
dc.subject.proposal | Electrolysis | eng |
dc.subject.proposal | Hydrogen production | eng |
dc.subject.proposal | Levelized Cost of Hydrogen | eng |
dc.subject.proposal | Wind energy | eng |
dc.subject.wikidata | Energías renovables | |
dc.subject.wikidata | Energía eólica | |
dc.subject.wikidata | Electrólisis | |
dc.subject.wikidata | Producción de hidrógeno | |
dc.title | Evaluación de factibilidad para la producción de hidrógeno a partir de energía eólica en Colombia | spa |
dc.title.translated | Feasibility evaluation for hydrogen production with wind energy in Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Model | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Valuing Variability in the Colombian Electricity Market | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1128453577.2024.pdf
- Tamaño:
- 1.69 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Sistemas Energéticos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: