Métodos para la selección de distribuciones a priori utilizando el estimador de James-Stein, planes de muestreo por atributo y modelos logísticos multinivel

dc.contributor.advisorPericchi Guerra, Luis Raulspa
dc.contributor.advisorSalazar Uribe, Juan Carlosspa
dc.contributor.authorCorreal Álvarez, Cristian Davidspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-06-24T21:58:41Zspa
dc.date.available2020-06-24T21:58:41Zspa
dc.date.issued2020-06-23spa
dc.description.abstractLas distribuciones a priori son indispensables en estadística bayesiana para hacer inferencia, porque reflejan el conocimiento previo de un parámetro desconocido; estas distribuciones han sido utilizadas en diferentes áreas con el fin de mejorar las inferencias de los modelos planeados. Por lo anterior, en este trabajo se consideran distribuciones a priori en tres situaciones de interés. En la primera situación, se propone una metodología para combinar distribuciones a priori considerando el estimador de James-Stein; pero con varianza no constante por experto como una forma de penalizar el conocimiento de éste. Se muestra que la metodología es razonable para seleccionar la distribución a priori de interés ya que considera a todos los expertos del estudio y no se descarta información. En la segunda situación, se utilizan distribuciones a priori beta para modelar la fracción de defectos p en planes de aceptación por atributo; el procedimiento es válido para frecuentistas y bayesianos a la hora de determinar el tamaño óptimo de la muestra y decidir la aceptabilidad de un lote enviado a inspeccionar. Se presenta un procedimiento para minimizar una suma ponderada de los riesgos clásicos y esperados del productor y consumidor, y se muestra que la inclusión de funciones de peso/densidad para la fracción de defectos puede disminuir significativamente la cantidad de pruebas requeridas; sin embargo, su principal ventaja no es necesariamente la reducción del tamaño de la muestra, sino una mejor evaluación del riesgo real del tomador de decisiones. En la tercera situación, se modelan los aciertos obtenidos de dos encuestas aplicadas a estudiantes universitarios a lo largo del semestre académico 2018-1, con un modelo logístico multinivel utilizando las distribuciones a priori beta 2 escalada y gamma-inversa, para modelar el efecto aleatorio. Los resultados se comparan con modelos tradicionales donde no se considera el efecto aleatorio dentro de cada grupo. Se concluye que los modelos de efecto aleatorio tienen mayor capacidad predictiva de los datos y presentan intervalos de probabilidad más precisos que los modelos de efecto fijo.spa
dc.description.abstractPrior distributions are indispensable in Bayesian statistics to make inference because they reflect prior knowledge of an unknown parameter; these distributions have been used in different areas in order to improve the inferences of the planned models. In the first situation, prior distributions are considered for three problems of interest. Initially a methodology is proposed to combine a prior distributions considering the James-Stein method; but with variance not constant by expert as a way to penalize expert knowledge. It is shown that the methodology is reasonable to select the a prior distribution of interest since it considers all the experts in the study and does not discard information. In the second situation, a prior beta distributions are used to model the fraction $p$ of defects in acceptance plans by attribute; the procedure is valid for frequentists and Bayesians when determining the optimal sample size and deciding the acceptability of a lot sent to inspect. A procedure is presented to minimize a weighted sum of the classic risks and expected risks of the producer and consumer, it is shown that the inclusion of weight/density functions for the defect fraction can significantly decrease the amount of tests required. However, its main advantage is not necessarily the reduction of the sample size, but a better evaluation of the real risk of the decision maker. In the third situation, the successes obtained from two surveys applied to university students throughout the 2018-1 academic semester are modeled, with a multilevel logistic model using the scaled beta 2 and inverse-gamma prior distributions, to model the random effects. The results are compared with traditional models where the random effect within each group is not considered. It is concluded that the random effect models have a greater predictive capacity of the data and present less wide probability intervals than the fixed effect models.spa
dc.description.degreelevelDoctoradospa
dc.format.extent96spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77686
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesAdams, F. (2006). Expert elicitation and bayesian analysis of construction contract risks: an investigation. Construction Management and Economics, 24 (1), 81-96.spa
dc.relation.referencesAdler, M., y Ziglio, E. (1996). Gazing into the oracle: The delphi method and its application to social policy and public health. Jessica Kingsley Publishers.spa
dc.relation.referencesAl-Awadhi, S., y Garthwaite, P. (2006). Quantifying expert opinion for modelling fauna habitat distributions. Computational Statistics, 21 (1), 121-140.spa
dc.relation.referencesAlbert, I., Donnet, S., Guihenneuc-Jouyaux, C., Low-Choy, S., Mengersen, K., y Rousseau, J. (2012). Combining expert opinions in prior elicitation. Bayesian Analysis, 7 (3), 503-532.spa
dc.relation.referencesAshby, D. (2006). Bayesian statistics in medicine: a 25 year review. Statistics in medicine, 25 (21), 3589-3631.spa
dc.relation.referencesAslam, M. (2019). A new attribute sampling plan using neutrosophic statistical interval method. Complex & Intelligent Systems, 1-6.spa
dc.relation.referencesBarrera, C., y Correa, J. (2007). Distribución predictiva bayesiana para modelos de pruebas de vida vía mcmc (Tesis de Master no publicada). Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia.spa
dc.relation.referencesBarrera, C., y Correa, J. (2008). Distribución predictiva bayesiana para modelos de pruebas de vida vía mcmc. Revista Colombiana de Estadística, 31 (2), 145-155.spa
dc.relation.referencesBarrera, C., y Correa, J. (2015). Analysis of the elicited prior distributions using tools of functional data analysis (Tesis Doctoral no publicada). PhD thesis, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia.spa
dc.relation.referencesBarrera, C., Correa, J., y Marmolejo-Ramos, F. (2019). Experimental investigation on the elicitation of subjective distributions. Frontiers in psychology, 10 , 862.spa
dc.relation.referencesBedrick, E., Christensen, R., y Johnson, W. (1997). Bayesian binomial regression: Predicting survival at a trauma center. The American Statistician, 51 (3), 211-218.spa
dc.relation.referencesBerger, J. (2000). Bayesian analysis: A look at today and thoughts of tomorrow. Journal of the American Statistical Association, 95 (452), 1269-1276.spa
dc.relation.referencesBerger, J. (2006). The case for objective bayesian analysis. Bayesian analysis, 1 (3), 385-402.spa
dc.relation.referencesBerger, J., Bernardo, J., y Sun, D. (2009). The formal de nition of reference priors. The Annals of Statistics, 37 (2), 905-938.spa
dc.relation.referencesBernardo, J., y Ram on, J. (1998). An introduction to bayesian reference analysis: inference on the ratio of multinomial parameters. Journal of the Royal Statistical Society: Series D (The Statistician), 47 (1), 101-135.spa
dc.relation.referencesBernardo, J., y Smith, A. (2000). Bayesian theory. John Wiley & Sons.spa
dc.relation.referencesBirlutiu, A., Groot, P., y Heskes, T. (2010). Multi-task preference learning with an application to hearing aid personalization. Neurocomputing, 73 (7-9), 1177-1185.spa
dc.relation.referencesBornmann, L., Stefaner, M., de Moya Aneg on, F., y Mutz, R. (2016). Excellence networks in science: A web-based application based on bayesian multilevel logistic regression (bmlr) for the identi cation of institutions collaborating successfully. Journal of Informetrics, 10 (1), 312-327.spa
dc.relation.referencesBrooks, S., y Roberts, G. (1998). Assessing convergence of markov chain monte carlo algorithms. Statistics and Computing, 8 (4), 319-335.spa
dc.relation.referencesCarmona, R. (2014). Heavy tail distributions. statistical analysis of nancial data in r. Springer.spa
dc.relation.referencesChiang, J.-Y., Zhu, J., Tsai, T.-R., Lio, Y., y Jiang, N. (2017). An innovative sampling scheme for resubmitted lots by attributes. The International Journal of Advanced Manufacturing Technology, 91 (9-12), 4019-4031.spa
dc.relation.referencesCorrea, J., y Barrera, C. (2018). Introducción a la estadística bayesiana: notas de clase. Instituto Tecnológico Metropolitano.spa
dc.relation.referencesCowles, M., y Carlin, B. (1996). Markov chain monte carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91 (434), 883-904.spa
dc.relation.referencesDeGroot, M. (1975). Probability and statistics (Vol. 2). New York: Addison-Wesley.spa
dc.relation.referencesDeGroot, M., y Schervish, M. (2012). Probability and statistics. Pearson Education.spa
dc.relation.referencesDe la Cruz, R., Meza, C., Arribas-Gil, A., y Carroll, R. (2016). Bayesian regression analysis of data with random e ects covariates from nonlinear longitudinal measurements. Journal of multivariate analysis, 143 , 94-106.spa
dc.relation.referencesDellaportas, P., y Smith, A. (1993). Bayesian inference for generalized linear and proportional hazards models via gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 42 (3), 443-459.spa
dc.relation.referencesDuarte, B., y Saraiva, P. (2008). An optimization-based approach for designing attribute acceptance sampling plans. International Journal of Quality & Reliability Management, 25 (8), 824-841.spa
dc.relation.referencesEfron, B., y Morris, C. (1973). Stein's estimation rule and its competitors|an empirical bayes approach. Journal of the American Statistical Association, 68 (341), 117-130.spa
dc.relation.referencesEfron, B., y Morris, C. (1975). Data analysis using stein's estimator and its generalizations. Journal of the American Statistical Association, 70 (350), 311-319.spa
dc.relation.referencesEfron, B., y Morris, C. (1975). Data analysis using stein's estimator and its generalizations. Journal of the American Statistical Association, 70 (350), 311-319.spa
dc.relation.referencesFernández, A. (2009). Weibull inference using trimmed samples and prior information. Statistical Papers, 50 (1), 119-136.spa
dc.relation.referencesFernández, A. (2017). Economic lot sampling inspection from defect counts with minimum conditional value-at-risk. European Journal of Operational Research, 258 (2), 573-580.spa
dc.relation.referencesFernández, A., Correa-Álvarez, C., y Pericchi, L. (2020). Balancing producer and consumer risks in optimal attribute testing: A uni ed bayesian/frequentist design. European Journal of Operational Research, 286 (2), 576-587.spa
dc.relation.referencesFernández, A., y Pérez-González, C. (2012). Generalized beta prior models on fraction defective in reliability test planning. Journal of Computational and Applied Mathematics, 236 (13), 3147-3159.spa
dc.relation.referencesFernández, A., Pérez-González, C., Aslam, M., y Jun, C.-H. (2011). Design of progressively censored group sampling plans for weibull distributions: An optimization problem. European Journal of Operational Research, 211 (3), 525-532.spa
dc.relation.referencesFoss, S., Korshunov, D., y Zachary, S. (2011). An introduction to heavy-tailed and subexponential distributions (Vol. 6). Springer.spa
dc.relation.referencesGarthwaite, P., y Dickey, J. (1988). Quantifying expert opinion in linear regression problems. Journal of the Royal Statistical Society: Series B (Methodological), 50 (3), 462{474.spa
dc.relation.referencesGarthwaite, P., y Dickey, J. (1992). Elicitation of prior distributions for variable-selection problems in regression. The Annals of Statistics, 20 (4), 1697-1719.spa
dc.relation.referencesGaviria, J., y Morera, M. (2005). Modelos jerárquicos lineales. Editorial La Muralla.spa
dc.relation.referencesGelfand, A., Mallick, B. K., y Dey, D. (1995). Modeling expert opinion arising as a partial probabilistic speci cation. Journal of the American Statistical Association, 90 (430), 598-604.spa
dc.relation.referencesGelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian analysis, 1 (3), 515-534.spa
dc.relation.referencesGelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., y Rubin, D. (2013). Bayesian data analysis (3.a ed.). Reading, Massachusetts: Chapman and Hall/CRC.spa
dc.relation.referencesGelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., y Rubin, D. (2014). Bayesian data analysis, vol. 2 crc press.spa
dc.relation.referencesGelman, A., y Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge university press.spa
dc.relation.referencesGeman, S., y Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence (6), 721-741.spa
dc.relation.referencesGhosh, M., Mergel, V., y Datta, G. (2008). Estimation, prediction and the stein phenomenon under divergence loss. Journal of Multivariate Analysis, 99 (9), 1941-1961.spa
dc.relation.referencesHastings, W. (1970). Monte carlo sampling methods using markov chains and their applications.spa
dc.relation.referencesJames, W., y Stein, C. (1961). Estimation with quadratic loss. En Proceedings of the third berkeley symposium on mathematical statistics and probability, vol 1 (p. 361-379).spa
dc.relation.referencesJara, A., Quintana, F., y San Mart n, E. (2008). Linear mixed models with skew-elliptical distributions: A bayesian approach. Computational statistics & data analysis, 52 (11), 5033-5045.spa
dc.relation.referencesJeffreys, H. (1935). Some tests of signi cance, treated by the theory of probability. En Mathematical proceedings of the cambridge philosophical society (Vol. 31, p. 203-222).spa
dc.relation.referencesJeffreys, H. (1961). Theory of probability (3rd ed.). London: London: Oxford University Press.spa
dc.relation.referencesKing, G., y Zeng, L. (2001). Logistic regression in rare events data. Political analysis, 9 (2), 137-163.spa
dc.relation.referencesKwiatkowski, D., Phillips, P., Schmidt, P., y Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54 (1-3), 159-178.spa
dc.relation.referencesLee, A., Wu, C.-W., y Wang, Z.-H. (2018). The construction of a modi ed sampling scheme by variables inspection based on the one-sided capability index. Computers & Industrial Engineering, 122 , 87-94.spa
dc.relation.referencesLee, J., y Oh, H.-S. (2013). Bayesian regression based on principal components for highdimensional data. Journal of Multivariate Analysis, 117 , 175-192.spa
dc.relation.referencesLi, X., Chen, W., Sun, F., Liao, H., Kang, R., y Li, R. (2018). Bayesian accelerated acceptance sampling plans for a lognormal lifetime distribution under type-i censoring. Reliability Engineering & System Safety, 171 , 78-86.spa
dc.relation.referencesLi, X., Gao, P., y Sun, F. (2015). Acceptance sampling plan of accelerated life testing for lognormal distribution under time-censoring. Chinese Journal of Aeronautics, 28 (3), 814-821.spa
dc.relation.referencesLindley, D. (1983). Reconciliation of probability distributions. Operations Research, 31 (5), 866-880.spa
dc.relation.referencesLlera, A., y Beckmann, C. (2016). Estimating an inverse gamma distribution. arXiv preprint arXiv:1605.01019 .spa
dc.relation.referencesLu, Z.-H., Khondker, Z., Ibrahim, J. G., Wang, Y., Zhu, H., y Initiative, A. D. N. (2017). Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies. NeuroImage, 149 , 305-322.spa
dc.relation.referencesMakalic, E., y Schmidt, D. (2009). Minimum message length shrinkage estimation. Statistics & Probability Letters, 79 (9), 1155-1161.spa
dc.relation.referencesMartz, H., y Waller, R. (1982). Bayesian reliability analysis. JOHN WILEY & SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, 1982, 704 .spa
dc.relation.referencesMaruyama, Y. (2004). Stein's idea and minimax admissible estimation of a multivariate normal mean. Journal of multivariate analysis, 88 (2), 320{334.spa
dc.relation.referencesMaruyama, Y., y Strawderman, W. (2017). A sharp boundary for sure-based admissibility for the normal means problem under unknown scale. Journal of Multivariate Analysis, 162 , 134-151.spa
dc.relation.referencesMcElreath, R. (2015). Statistical rethinking: A bayesian course with examples in r and stan. Chapman and Hall/CRC.spa
dc.relation.referencesNezhad, M., y Nasab, H. (2012). A new bayesian acceptance sampling plan considering inspection errors. Scientia Iranica, 19 (6), 1865{1869.spa
dc.relation.referencesNtzoufras, I. (2011). Bayesian modeling using winbugs (Vol. 698). John Wiley & Sons.spa
dc.relation.referencesOakley, J. (2002). Eliciting gaussian process priors for complex computer codes. Journal of the Royal Statistical Society: Series D (The Statistician), 51 (1), 81-97.spa
dc.relation.referencesPan, W., y Louis, T. (1999). Two semi-parametric empirical bayes estimators. Computational statistics & data analysis, 30 (2), 185-196.spa
dc.relation.referencesPeng, C.-Y., Lee, K., y Ingersoll, G. (2002). An introduction to logistic regression analysis and reporting. The journal of educational research, 96 (1), 3-14.spa
dc.relation.referencesPérez, M.-E., y Pericchi, L. (2014). Changing statistical signi cance with the amount of information: The adaptive alpha signi cance level. Statistics & probability letters, 85, 20-24.spa
dc.relation.referencesPérez, M.-E., Pericchi, L., y Ramírez, I. (2017). The scaled beta2 distribution as a robust prior for scales. Bayesian Analysis, 12 (3), 615-637.spa
dc.relation.referencesPérez-González, C., y Fernández, A. (2009). Accuracy of approximate progressively censored reliability sampling plans for exponential models. Statistical Papers, 50 (1), 161-170.spa
dc.relation.referencesPérez-González, C., y Fernández, A. (2013). Classical versus bayesian risks in acceptance sampling: a sensitivity analysis. Computational Statistics, 28 (3), 1333-1350.spa
dc.relation.referencesPericchi, L., y Pereira, C. (2016). Adaptative signi cance levels using optimal decision rules: Balancing by weighting the error probabilities. Brazilian Journal of Probability and Statistics, 30 (1), 70-90.spa
dc.relation.referencesPinheiro, J., y Bates, D. (2006). Mixed-effects models in s and s-plus. Springer Science & Business Media.spa
dc.relation.referencesPregibon, D. (1981). Logistic regression diagnostics. The Annals of Statistics, 9 (4), 705{724.spa
dc.relation.referencesR Core Team. (2019). R: A language and environment for statistical computing [Manual de software informático]. Vienna, Austria. Descargado de https://www.R-project.org/spa
dc.relation.referencesRalescu, S. (2002). On solutions for global stein optimization problems with applications. Journal of statistical planning and inference, 103 (1-2), 391-400.spa
dc.relation.referencesRojas, J., y Ramírez, I. (2019). Ajuste de un modelo jerárquico desde un enfoque bayesiano (Tesis de Master no publicada). Universidad Nacional de Colombia-Sede Medellín.spa
dc.relation.referencesSkrondal, A., y Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Chapman and Hall/CRC.spa
dc.relation.referencesSpiegelhalter, D., Best, N., Carlin, B., y Van Der Linde, A. (2002). Bayesian measures of model complexity and t. Journal of the royal statistical society: Series b (statistical methodology), 64 (4), 583-639.spa
dc.relation.referencesStein, (1955). Inadmissibility of the usual estimator for the mean of a multivariate normal population. En Proceedings of the third berkeley symposium on mathematical statistics and probability, vol 1 (p. 197-206).spa
dc.relation.referencesSturtz, S., Ligges, U., y Gelman, A. (2010). R2openbugs: a package for running openbugs from r. URL http://cran. rproject. org/web/packages/ R2OpenBUGS/vignettes/R2OpenBUGS. pdf .spa
dc.relation.referencesTang, N.-S., y Duan, X.-D. (2014). Bayesian in uence analysis of generalized partial linear mixed models for longitudinal data. Journal of Multivariate Analysis, 126 , 86-99.spa
dc.relation.referencesTian, J., Li, S., y Tang, X. (2010). Web database sampling approach based on attribute correlation. Wuhan University Journal of Natural Sciences, 15 (4), 297-302.spa
dc.relation.referencesTrapletti, A., Hornik, K., LeBaron, B., y Hornik, M. (2019). Package `tseries'.spa
dc.relation.referencesVaruzza, L., y Pereira, C. (2010). Signi cance test for comparing digital gene expression pro les: Partial likelihood application. Chilean Journal of Statistics, 1 (1), 91-102.spa
dc.relation.referencesWang, X., Reich, N., y Horton, N. (2019). Enriching students' conceptual understanding of con dence intervals: An interactive trivia-based classroom activity. The American Statistician, 73 (1), 50-55.spa
dc.relation.referencesWinkler, R. (1967). The quanti cation of judgment: Some methodological suggestions. Journal of the American Statistical Association, 62 (320), 1105-1120.spa
dc.relation.referencesWinkler, R. (1968). The consensus of subjective probability distributions. Management Science, 15 (2), B-61.spa
dc.relation.referencesWinkler, R. (1969). Scoring rules and the evaluation of probability assessors. Journal of the American Statistical Association, 64 (327), 1073-1078.spa
dc.relation.referencesWong, G., y Mason, W. (1985). The hierarchical logistic regression model for multilevel analysis. Journal of the American Statistical Association, 80 (391), 513-524.spa
dc.relation.referencesWu, C.-W., Shu, M.-H., Nugroho, A., y Kurniati, N. (2015). A flexible process-capability-qualifi ed resubmission-allowed acceptance sampling scheme. Computers & Industrial Engineering, 80 , 62-71.spa
dc.relation.referencesYuasa, R., y Kubokawa, T. (2020). Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution. Journal of Multivariate Analysis, 104-608.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalBayesian inferenceeng
dc.subject.proposalInferencia bayesianaspa
dc.subject.proposalDistribuciones a priorispa
dc.subject.proposalPrior distributionseng
dc.subject.proposalPlanes de muestreo por atributospa
dc.subject.proposalSampling plans by attributeeng
dc.subject.proposalProducer and consumer riskeng
dc.subject.proposalRiesgo del productor y consumidorspa
dc.subject.proposalBayesian logistic modelseng
dc.subject.proposalModelos logísticos bayesianosspa
dc.subject.proposalCombinación de distribuciones a priorispa
dc.subject.proposalCombination of a prior distributionseng
dc.titleMétodos para la selección de distribuciones a priori utilizando el estimador de James-Stein, planes de muestreo por atributo y modelos logísticos multinivelspa
dc.title.alternativeMethods for prior distributions selections using the James-Stein estimator, attribute sampling plans and multilevel logistics modelsspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
78079961.2020.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: