Diseño asistido por computador de un sistema de climatización para invernaderos ventilados naturalmente en el trópico altoandino

dc.contributor.advisorVillagran Munar, Edwin Andres
dc.contributor.advisorAcuña Caita, John Fabio
dc.contributor.authorOrtiz Rocha, Gloria Alexandra
dc.contributor.cvlacGloria Alexandra Ortiz Rocha [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000033806]spa
dc.contributor.googlescholarGloria Alexandra Ortiz Rocha [Gloria Alexandra Ortiz Rocha]spa
dc.contributor.orcidGloria Alexandra Ortiz Rocha [0000-0002-4137-3837]spa
dc.contributor.researchgateGloria Alexandra Ortiz Rocha [https://www.researchgate.net/profile/Gloria-Ortiz-Rocha]spa
dc.contributor.researchgroupGti Grupo de Gestión en Tecnología E Innovación en Biosistemasspa
dc.contributor.scopusOrtiz, Gloria Alexandra [58704045400]spa
dc.date.accessioned2023-11-28T14:22:37Z
dc.date.available2023-11-28T14:22:37Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEsta tesis se propuso abordar el desafío de diseñar y evaluar un sistema de climatización para optimizar el microclima de un invernadero tipo capilla con doble ventilación fija construido en el centro de investigación Tibaitata de la Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Un análisis técnico y bibliométrico del estado del arte en estrategias de climatización para invernaderos. Adicionalmente se identificó la demanda energética de este invernadero y se evaluaron estrategias de optimización microclimática usando dinámica de fluidos computacional y seguimiento experimental en campo. Para cuantificar la demanda energética necesaria, se utilizó un modelo dinámico de balance de energía, considerando la presencia de heladas. El diseño propuesto incluye una pantalla térmica estratégicamente ubicada en el techo y dos paredes, junto con agua en un sistema de tubería negra en el suelo para maximizar la inercia térmica. Esta configuración busca optimizar la eficiencia energética sin depender de fuentes externas, asegurando condiciones microclimáticas ideales para el crecimiento de los cultivos. La evaluación experimental involucró mediciones de temperatura del suelo, de la cubierta, del aire y humedad relativa dentro del invernadero, así como la velocidad del viento, radiación, temperatura y humedad relativa en el exterior. Los resultados obtenidos revelaron que existe un interés activo por el uso de la energía solar y su almacenamiento, especialmente para su aprovechamiento en la condición más crítica, para lo cual se enfocó el modelo dinámico de bance de energía en las perdidas bajo la condición de helada, la aplicación de climatización generó un comportamiento térmico favorable con potenciales mejoras que fueron posible analizar gracias al uso de CFD. Estos resultados respaldan la eficacia del sistema diseñado en la mejora de las condiciones microclimáticas, subrayando su potencial para contribuir a la sostenibilidad y eficiencia en la producción agrícola bajo estructuras protegidas.spa
dc.description.abstractThis thesis aimed to address the challenge of designing and evaluating a climate control system to optimize the microclimate of a chapel-type greenhouse with double fixed ventilation, built at the Tibaitata research center of the Colombian Corporation of Agricultural Research - Agrosavia. A technical and bibliometric analysis of the state of the art in greenhouse climate control strategies was conducted. Additionally, the energy demand of this greenhouse was identified, and microclimatic optimization strategies were evaluated using computational fluid dynamics and experimental field monitoring. To quantify the required energy demand, a dynamic energy balance model was employed, considering the occurrence of frost. The proposed design includes a thermal screen strategically located on the roof and two walls, along with water in a black pipe system on the ground to maximize thermal inertia. This configuration aims to optimize energy efficiency without relying on external sources, ensuring ideal microclimatic conditions for crop growth. The experimental evaluation involved measurements of soil temperature, cover temperature, air temperature, and relative humidity inside the greenhouse, as well as wind speed, radiation, temperature, and relative humidity outside. The results revealed active interest in the use of solar energy and its storage, especially for utilization in critical conditions, focusing the dynamic energy balance model on losses under frost conditions. The application of climate control generated favorable thermal behavior with potential improvements that were possible to analyze through the use of CFD. These findings support the effectiveness of the designed system in improving microclimatic conditions, emphasizing its potential to contribute to sustainability and efficiency in agricultural production under protected structures.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Biosistemasspa
dc.description.methods2. Metodología 2.1. Análisis técnico y bibliométrico del estado del arte 2.2. Identificación de la demanda energética del invernadero en estudio 2.2.1. Descripción del invernadero en estudio 2.2.2. Consideraciones para el sistema de climatización 2.2.3. Definición de la demanda energética durante heladas con un modelo dinámico de balance de energía 2.3. Diseño mediante el uso de dinámica de fluidos computacional de un sistema de climatización para el invernadero en estudio 30 2.3.1. Configuración del modelo numérico en CFD 2.3.2. Simulación y optimización del sistema 2.3.3. Coeficientes de transferencia de calor calculados, temperatura superficial del sistema de tubería y condiciones climáticas externa 2.3.4. Independencia y calidad de la malla 2.4. Evaluación experimental 2.4.1. Recopilación de datos climáticos, micro climáticos y del sistema de climatización 2.4.2. Análisis estadísticospa
dc.description.researchareaConstrucciones e infraestructura rural y bioclimáticaspa
dc.description.sponsorshipCORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA - AGROSAVIAspa
dc.format.extent139 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85002
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícolaspa
dc.relation.referencesABNT. (2022). NBR 15220: Desempenho térmico de edificações Parte 2 - Componentes e elementos construtivos das edificações - Resistência e transmitância térmica. Associação Brasileira de Normas Técnicas, 1–58.spa
dc.relation.referencesAgropinos. (2019). Agroclear (p. 1).spa
dc.relation.referencesAhamed, M. S., Guo, H., & Tanino, K. (2018). Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Computers and Electronics in Agriculture, 150, 235–244.spa
dc.relation.referencesAnsys. (2015). ANSYS ICEM CFD 16.2 Tutorial Manual. 15317(November), 1–1294. papers://d0b7ba82-564e-41a5-892d-096be28ddf10/Paper/p1477spa
dc.relation.referencesAttar, I., Naili, N., Khalifa, N., Hazami, M., & Farhat, A. (2013). Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management, 70, 163–173. https://doi.org/10.1016/j.enconman.2013.02.017spa
dc.relation.referencesBadia, M. (2022). Espesor pared tubería Acero Inoxidable según ASME B36.19M :: DNBrida. http://www.dnbrida.com/espesor-tuberia-acero-inoxidable-sch-asme-b36.19m.phpspa
dc.relation.referencesBaeza, E., Ignacio Montero, J., Pérez-Parra, J., J. Bailey, B., Hernández, J. C., & Carlos Gázquez, J. (2014). Avances en el estudio de la ventilación natural.spa
dc.relation.referencesBaeza, E. J., & Kacira, M. (2017). Greenhouse technology for cultivation in arid and semi-arid regions. Acta Horticulturae, 1170, 17–29. https://doi.org/10.17660/ActaHortic.2017.1170.2spa
dc.relation.referencesBarilla. (2012). Barilla F22 Flat Plate by Fruitful Media Ltd - Issuu. https://issuu.com/fmltd/docs/barilla-f22-flat-platespa
dc.relation.referencesBaxevanou, C., Bartzanas, T., Fidaros, D., & Kittas, C. (2008). Solar radiation distribution in a tunnel greenhouse. Acta Horticulturae, 801 PART 2(February 2014), 855–862. https://doi.org/10.17660/ActaHortic.2008.801.100spa
dc.relation.referencesBelov, V. V. V., Belov, E. L. L., & Sharonova, T. V. V. (2020). Evaluation of the effectiveness of a helio-greenhouse with soil heating. IOP Conference Series: Earth and Environmental Science, 604(1). https://doi.org/10.1088/1755-1315/604/1/spa
dc.relation.referencesBerroug, F., Lakhal, E. K. K., El Omari, M., Faraji, M., & El Qarnia, H. (2011). Thermal performance of a greenhouse with a phase change material north wall. Energy and Buildings, 43(11), 3027–3035. https://doi.org/10.1016/j.enbuild.2011.07.020spa
dc.relation.referencesBlanco, I., Pascuzzi, S., Anifantis, A. S. A. S., & Scarascia-Mugnozza, G. (2014). Study of a pilot photovoltaic-electrolyser-fuel cell power system for a geothermal heat pump heated greenhouse and evaluation of the electrolyser efficiency and operational mode. Journal of Agricultural Engineering, 45(3), 111–118. https://doi.org/10.4081/jae.2014.238spa
dc.relation.referencesBojacá, C. R., Monsalve, O., Casilimas, H., Villagrán, E. A., Gil, R., Arias, L. A., & Fuentes, L. S. (2012). Manual de producción de pimentón bajo invernadero (C. R. Bojacá & O. Monsalve (eds.); 1a ed.). Universidad Jorge Tadeo Lozano.spa
dc.relation.referencesBonachela, S., & Medrano, E. (2022). Sistemas pasivos de calefacción en invernaderos mediterráneos (Número March).spa
dc.relation.referencesBournet, P. E., & Boulard, T. (2010). Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Computers and Electronics in Agriculture, 74(2), 195–217. https://doi.org/10.1016/j.compag.2010.08.007spa
dc.relation.referencesBusinger, J. A. (1963). The glasshouse (greenhouse) climate. Physics of Plant Environment, WR Van Wijk, Ed.(North Holland Publishing Co., Amsterdam, 1963).spa
dc.relation.referencesCardona, J. P., Leal, J. J., & Ustariz, J. E. (2020). Mathematical modeling of white and black box in engineering education. Formacion Universitaria, 13(6), 105–118. https://doi.org/10.4067/S0718-50062020000600105spa
dc.relation.referencesCarrillo, I. T. (2023). Predicción de variables de estaciones meteorologicas para hallar el flujo del aire en la Universidad Industrial de Santander. Universidad Industrial de Santanderspa
dc.relation.referencesCarrión, P., Montalván, N., Paz, N., & Morante, F. (2020). Volcanic geomorphology: A review of worldwide research. Geosciences (Switzerland). https://doi.org/10.3390/geosciences10090347spa
dc.relation.referencesCengel, Y. A. (2007). Transferencia de calor y masa - Un enfoque práctico. Biotechnology Letters, 18(12), 1419–1422. https://doi.org/10.1007/BF00129346spa
dc.relation.referencesCervantes, M. Á. (2015, junio 9). FITOSOFIA: PANTALLAS TÉRMICAS. https://fitosofia.blogspot.com/2015/06/pantallas-termicascoc.htmlspa
dc.relation.referencesChahidi, L. O., Fossa, M., Priarone, A., & Mechaqrane, A. (2021). Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study. Applied Energy, 282(PA), 116156. https://doi.org/10.1016/j.apenergy.2020.116156spa
dc.relation.referencesChen, C., Ling, H., Zhai, Z. (John) Z. J., Li, Y., Yang, F., Han, F., & Wei, S. (2018). Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy, 216(February), 602–612. https://doi.org/10.1016/j.apenergy.2018.02.130spa
dc.relation.referencesChinlli, C. M. (2021). Modelización de Series Temporales modelos clásicos y SARIMA.spa
dc.relation.referencesChu, C.-R. R., Lan, T.-W. W., Tasi, R.-K. K., Wu, T.-R. R., & Yang, C.-K. K. (2017). Wind-driven natural ventilation of greenhouses with vegetation. Biosystems Engineering, 164, 221–234. https://doi.org/10.1016/j.biosystemseng.2017.10.008spa
dc.relation.referencesComisión Europea. (2022). JRC Photovoltaic Geographical Information System (PVGIS) - European Commission. https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.2spa
dc.relation.referencesCondustrial. (2020). 2ACM150spa
dc.relation.referencesDiaz, D. C., Bojacá, C. R., & Schrevens, E. (2018). Modeling the suitability of the traditional plastic greenhouse for tomato production across Colombian regions. Acta Horticulturae, 1205, 857–864. https://doi.org/10.17660/ActaHortic.2018.1205.109spa
dc.relation.referencesDuarte, A. R., Osorio, R., & Mahecha, D. C. (2022). Simulación climática de un invernadero para rosas. Revista Politécnica, 18(36), 107–114. https://doi.org/10.33571/rpolitec.v18n36a8spa
dc.relation.referencesEl Kolaly, W., Ma, W., Li, M., & Darwesh, M. (2020). The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect. Renewable Energy, 159, 506–518. https://doi.org/10.1016/j.renene.2020.05.144spa
dc.relation.referencesEspinal-Montes, V., López-Cruz, I. L., Rojano-Aguilar, A., Romantchik-Kriuchova, E., & Ramírez-Arias, A. (2015). Determination of night-time thermal gradients in a greenhouse using computational thermal dynamics. Agrociencia, 49(3), 233–247.spa
dc.relation.referencesFAO, O. de las N. U. para la A. (2002). Agricultura mundial: hacia los años 2015/2030. https://www.fao.org/3/y3557s/y3557s06.htmspa
dc.relation.referencesFirfiris, V. K. K., Fragos, V. P. P., Kotsopoulos, T. A. A., & Nikita-Martzopoulou, C. (2020). Energy and environmental analysis of an innovative greenhouse structure towards frost prevention and heating needs conservation. Sustainable Energy Technologies and Assessments, 40(March). https://doi.org/10.1016/j.seta.2020.100750spa
dc.relation.referencesFlores, J., & Montero, J. I. (2008). Computational fluid dynamics (CFD) study of large scale screenhouses. Acta Horticulturae, 797, 117–122. https://doi.org/10.17660/ActaHortic.2008.797.14spa
dc.relation.referencesFlores, J., Rojano, F., Aguilar, C. E., Villagran, E., & Villarreal, F. (2022). Greenhouse Thermal Effectiveness to Produce Tomatoes Assessed by a Temperature-Based Index. Agronomy, 12(5), 1–14. https://doi.org/10.3390/agronomy12051158spa
dc.relation.referencesFlores, J., Villarreal, F., Rojano, A., & Schdmith, U. (2019). CFD to analyze energy exchange by convection in a closed greenhouse with a pipe heating system. Acta Universitaria, 29, 1–16. https://doi.org/10.15174/au.2019.2112spa
dc.relation.referencesFuentes, M. K. (1987). A simplified thermal model for Flat-Plate photovoltaic arrays. https://www.osti.gov/biblio/6802914spa
dc.relation.referencesGary, C., Jones, J. W., & Tchamitchian, M. (1998). Crop modelling in horticulture: state of the art. Scientia Horticulturae, 74(1–2), 3–20.spa
dc.relation.referencesGholamalizadeh, E., & Kim, M. H. (2014). Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model. Renewable Energy, 63, 498–506. https://doi.org/10.1016/j.renene.2013.10.011spa
dc.relation.referencesGonzález, O., & Torres, C. (2012). Actualización nota técnica heladas 2012. IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales, 11.spa
dc.relation.referencesGorjian, S., Calise, F., Kant, K., Ahamed, M. S., Copertaro, B., Najafi, G., Zhang, X., Aghaei, M., & Shamshiri, R. R. (2021). A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124807spa
dc.relation.referencesGorjian, S., Ebadi, H., Najafi, G., Singh Chandel, S., & Yildizhan, H. (2021). Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems. Sustainable Energy Technologies and Assessments, 43. https://doi.org/10.1016/j.seta.2020.100940spa
dc.relation.referencesGourdo, L., Fatnassi, H., Bouharroud, R., Ezzaeri, K., Bazgaou, A., Wifaya, A., Demrati, H., Bekkaoui, A., Aharoune, A., Poncet, C., Poncet, C., & Bouirden, L. (2019). Heating canarian greenhouse with a passive solar water–sleeve system: Effect on microclimate and tomato crop yield. Solar Energy, 188(May), 1349–1359. https://doi.org/10.1016/j.solener.2019.07.004spa
dc.relation.referencesGranados, M. R., Hernandez, J., Bonachela, S., Lopez Hernandez, J. C., & Magán, J. J. (2017). Modificación del clima en invernaderos pasivos con pantallas fijas y móvil. February.spa
dc.relation.referencesGuerra, K., de Zayas, M. R., & González, M. V. (2013). Análisis bibliométrico de las publicaciones relacionadas con proyectos de innovación y su gestión en Scopus, en el período 2001-2011. Revista Cubana de Información en Ciencias de la Salud, 24(3), 281–294.spa
dc.relation.referencesHa, T., Lee, I.-B., Hwang, H.-S., Hong, S.-W., Seo, I.-H., & Bitog, J. P. (2011). Development of an assessment model for greenhouse using geothermal heat pump system. American Society of Agricultural and Biological Engineers Annual International Meeting 2011, ASABE 2011, 3, 2105–2114.spa
dc.relation.referencesHaldorai, S., Gurusamy, S., & Pradhapraj, M. (2019). A review on thermal energy storage systems in solar air heaters. International Journal of Energy Research, 43(12), 6061–6077. https://doi.org/10.1002/er.4379spa
dc.relation.referencesHassanien, R. H. E. R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095spa
dc.relation.referencesHerrera, G., Montalván, N., Carrión, P., & Bravo, Lady. (2021). Worldwide research on socio-hydrology: A bibliometric analysis. Water (Switzerland). https://doi.org/10.3390/w13091283spa
dc.relation.referencesHongkang, W., Li, L., Yong, W., Fanjia, M., Haihua, W., & Sigrimis, N. A. (2018). Recurrent neural network model for prediction of microclimate in solar greenhouse. IFAC-PapersOnLine, 51(17), 790–795.spa
dc.relation.referencesHortiCultivos. (2014, agosto 22). Pantallas térmicas para el control del clima | Revista HortiCultivos. https://www.horticultivos.com/agricultura-protegida/invernaderos/pantallas-termicas-para-el-control-del-clima-3/spa
dc.relation.referencesHosseini, F., Motevali, A., Nabavi, A., Hashemi, S. J., & Chau, K. wing. (2019). Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 116(May), 109411. https://doi.org/10.1016/j.rser.2019.109411spa
dc.relation.referencesKitta, E., Katsoulas, N., & Savvas, D. (2012). Shading effects on greenhouse microclimate and crop transpiration in a cucumber crop grown under mediterranean conditions. Applied Engineering in Agriculture, 28(1), 129–140.spa
dc.relation.referencesLam, C. K. G., & Bremhorst, K. (1981). A Modified Form of the k-ε Model for Predicting Wall Turbulence. Journal of Fluids Engineering, 103(3), 456–460. https://doi.org/10.1115/1.3240815spa
dc.relation.referencesLee, C.-G., Cho, L.-H., Kim, S.-J., Park, S.-Y., & Kim, D.-H. (2021). Comparative analysis of combined heating systems involving the use of renewable energy for greenhouse heating. Energies, 14(20). https://doi.org/10.3390/en14206603spa
dc.relation.referencesLiu, Y., & Yang, Y. (2017). Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Solar Energy Materials and Solar Cells, 160(August 2016), 18–25. https://doi.org/10.1016/j.solmat.2016.09.050spa
dc.relation.referencesLópez, J. H., Fitz, E., & Rosales, J. E. (2018). Evaluation of heat-pipe solar collectors for heating a single-span greenhouse. ASABE 2018 Annual International Meeting. https://doi.org/10.13031/aim.201800295spa
dc.relation.referencesMa, J. J. (2019). Direct wind heating greenhouse underground heating system. IOP Conference Series: Earth and Environmental Science, 300(4). https://doi.org/10.1088/1755-1315/300/4/042056spa
dc.relation.referencesMartínez, S. (2017). Climatología y Fenología Agrícola. 1–51.spa
dc.relation.referencesMisra, R., Bansal, V., Agrawal, G. Das, Mathur, J., & Aseri, T. K. (2013). CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger. Applied Energy, 103, 266–277. https://doi.org/10.1016/j.apenergy.2012.09.041spa
dc.relation.referencesMistriotis, A., Bot, G. P. A., Picuno, P., & Scarascia-Mugnozza, G. (1997). Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology, 85(3), 217–228. https://doi.org/https://doi.org/10.1016/S0168-1923(96)02400-8spa
dc.relation.referencesMontero, J. I., Muñoz, P., Sánchez-Guerrero, M. C., Medrano, E., Piscia, D., & Lorenzo, P. (2013). Shading screens for the improvement of the night-time climate of unheated greenhouses. Spanish Journal of Agricultural Research, 11(1), 32–46. https://doi.org/10.5424/sjar/2013111-411-11spa
dc.relation.referencesMüller, E. (2006). Manual de diseño para viviendas con climatización pasiva. 63.spa
dc.relation.referencesNations United. (2020). ¿Qué es el cambio climático? | Naciones Unidas. https://www.un.org/es/climatechange/what-is-climate-changespa
dc.relation.referencesNimmermark, S. A., & Maslak, K. (2015). Measured energy use in a greenhouse with tomatoes compared to predicted use by a mechanistic model including transpiration. Agricultural Engineering International: CIGR Journal, 2015, 65–70.spa
dc.relation.referencesNtinas, G. K. G. K., Dannehl, D., Schuch, I., Rocksch, T., & Schmidt, U. (2020). Sustainable greenhouse production with minimised carbon footprint by energy export. Biosystems Engineering, 189, 164–178. https://doi.org/10.1016/j.biosystemseng.2019.11.012spa
dc.relation.referencesNtinas, G. K. G. K., Neumair, M., Tsadilas, C. D. C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617–3626. https://doi.org/10.1016/j.jclepro.2016.10.106spa
dc.relation.referencesOrtiz, G. A., Chamorro, A. N., Acuña, J. F., Lopez, I. L., & Villagran, E. (2023). Calibration and implementation of a dynamic energy balance model to estimate the temperature in a plastic covered Colombian greenhouse.spa
dc.relation.referencesOrtiz, G. A., Pichimata, M. A., & Villagran, E. (2021). Research on the microclimate of protected agriculture structures using numerical simulation tools: A technical and bibliometric analysis as a contribution to the sustainability of under-cover cropping in tropical and subtropical countries. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810433spa
dc.relation.referencesPaksoy, H. Ö., & Beyhan, B. (2015). Thermal energy storage (TES) systems for greenhouse technology. En Advances in Thermal Energy Storage Systems: Methods and Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9781782420965.4.533spa
dc.relation.referencesPAVCO. (2020). Manual Tecnio Tubosistemas Presion PVC. 2, 22.spa
dc.relation.referencesPérez, C., Ramírez, J. A., López, I. L., Arteaga, R., & Cervantes, R. (2021). 3D computational fluid dynamics modeling of temperature and humidity in a humidified greenhouse. Ingeniería Agrícola y Biosistemas, 13(1), 17–31. https://doi.org/10.5154/r.inagbi.2020.10.060spa
dc.relation.referencesPiscia, D., Montero, J. I., Baeza, E. J., & Bailey, B. J. (2012). A CFD greenhouse night-time condensation model. Biosystems Engineering, 111(2), 141–154. https://doi.org/10.1016/j.biosystemseng.2011.11.006spa
dc.relation.referencesQiu, Z., Song, M., Wang, J., Zhang, X., Liu, H., Meng, T., & Song, Y. (2014). Experiment effect of application to new assembly type solar double effect greenhouse. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30(19), 232–239. https://doi.org/10.3969/j.issn.1002-6819.2014.19.028spa
dc.relation.referencesRasheed, A., Na, W. H. W. H., Lee, J. W. J. W., Kim, H. T. H. T., & Lee, H. W. H. W. (2021). Development and validation of air‐to‐water heat pump model for greenhouse heating. Energies, 14(15), 1–22. https://doi.org/10.3390/en14154714spa
dc.relation.referencesReyes-Rosas, A., Molina-Aiz, F. D., Valera, D. L., López, A., & Khamkure, S. (2017). Development of a single energy balance model for prediction of temperatures inside a naturally ventilated greenhouse with polypropylene soil mulch. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2017.08.020spa
dc.relation.referencesRiggio, G. (2017). Indicadores bibliométricos de la actividad científica de la República Dominicana. (Tesis doctoral) Programa Oficial de Doctorado en Documentación. Universidad Carlos III de Madrid, España. https://doi.org/DOI: 10.13140/RG.2.2.14126.41287spa
dc.relation.referencesRitter Energie. (2020). Evacuated tube collectors.spa
dc.relation.referencesRojano, A., Salazar, R., Flores, J., Lopez, I., Schmidt, U., & Medina, A. (2013). Experimental and Computational Modeling of Venlo Type Greenhouse. https://api.semanticscholar.org/CorpusID:117250891spa
dc.relation.referencesSalazar, R., López, I. L., & Cruz, A. C. S. (2018). Dynamic energy balance model in a greenhouse with tomato cultivation: Simulation, calibration and evaluation. Revista Chapingo, Serie Horticultura, 25(1), 45–60. https://doi.org/10.5154/r.rchsh.2018.07.014spa
dc.relation.referencesSalinas, D. A., Romero, F., Numa, S., Villagrán, E., Donado, P., & Galindo, J. R. (2022). Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912053spa
dc.relation.referencesSeo, Y., & Seo, U.-J. U. J. (2021). Ground source heat pump (GSHP) systems for horticulture greenhouses adjacent to highway interchanges: A case study in South Korea. Renewable and Sustainable Energy Reviews, 135(August 2020), 110194. https://doi.org/10.1016/j.rser.2020.110194spa
dc.relation.referencesSepúlveda, S. (2014). Radiación Solar: Factor Clave Para El Diseño De Sistemas Fotovoltaicos. Revista Mundo FESC, 8, 60–65. file:///C:/Users/HP User/Downloads/Dialnet-RadiacionSolar-5109240.pdfspa
dc.relation.referencesSethi, V. P. P., & Sharma, S. K. K. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82(9), 832–859. https://doi.org/10.1016/j.solener.2008.02.010spa
dc.relation.referencesSvensson. (2022). Especificaciones de la pantalla Obscura 10070 R FR W.spa
dc.relation.referencesSwinbank, W. C. (1963). Long-wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society, 89(381), 339–348. https://doi.org/https://doi.org/10.1002/qj.49708938105spa
dc.relation.referencesTaki, M., Ajabshirchi, Y., Ranjbar, S. F. S. F., Rohani, A., & Matloobi, M. (2016). Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Information Processing in Agriculture, 3(3), 157–174. https://doi.org/10.1016/j.inpa.2016.06.002spa
dc.relation.referencesTesicol - Tejidos de Colombia S.A. (2023). Alumitex® | Tesicol - Tejidos de Colombia S.A. https://www.tesicol.com.co/productos/alumitex/alumitexspa
dc.relation.referencesValera, D., Molina, F., & Álvarez, A. (2008). Ahorro y Eficiencia Energética en Invernaderos. En Eficiencia y ahorro energético. https://www.idae.es/uploads/documentos/documentos_10995_Agr07_AyEE_en_invernaderos_A2008_9e4c63f5.pdfspa
dc.relation.referencesVan, N. J., & Waltman, L. (2013). {VOSviewer} manual. Leiden: Univeristeit Leiden, March, 1–29. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdfspa
dc.relation.referencesVan, N. J., & Waltman, L. (2021). Manual de VOSviewer. Univeristeit Leiden, July. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdfspa
dc.relation.referencesVesbo. (2023). Tuberías Oxy-Pex para calefacción por piso radiante. 100.spa
dc.relation.referencesVillagrán, E., & Bojacá, C. (2019a). CFD simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior. International Journal of Heat and Technology, 37(3), 881–892. https://doi.org/10.18280/ijht.370326spa
dc.relation.referencesVillagrán, E., & Bojacá, C. (2019b). Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133–143. https://doi.org/10.14295/oh.v25i2.2013spa
dc.relation.referencesVillagran, E., & Bojacá, C. R. (2019). Microclimate i simulation in a greenhouse used for roses production under conditions of intertropical climate | Simulacion del microclima en un invernadero usado para la producción de rosas bajo condiciones de clima intertropical. Chilean Journal of Agricultural and Animal Sciences, 35(2), 137–150. https://doi.org/10.4067/S0719-38902019005000308spa
dc.relation.referencesVillagran, E., & Bojacá, C. R. (2020). Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization. Revista Ceres, 67(5), 345–356. https://doi.org/10.1590/0034-737x202067050002spa
dc.relation.referencesVillagrán, E., & Bojacá, C. R. (2019c). Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornamental Horticulture, 25(4), 351–364. https://doi.org/10.1590/2447-536X.v25i4.2087spa
dc.relation.referencesVillagran, E., Bojacá, C. R., & Rojas Bahamon, N. A. (2018). Determinación del comportamiento térmico de un invernadero espacial colombiano mediante dinámica de fluidos computacional. Revista U.D.C.A Actualidad & Divulgación Científica, 21(2). https://doi.org/10.31910/rudca.v21.n2.2018.1070spa
dc.relation.referencesVillagrán, E., Flores, J., Akrami, M., & Bojacá, C. (2021). Influence of the height in a Colombian multi-tunnel greenhouse on natural ventilation and thermal behavior: Modeling approach. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413631spa
dc.relation.referencesVillagrán, E., Flores, J., Akrami, M., & Bojacá, C. (2022). Microclimatic Evaluation of Five Types of Colombian Greenhouses Using Geostatistical Techniques. Sensors, 22(10). https://doi.org/10.3390/s22103925spa
dc.relation.referencesVillagrán, E., Flores, J., Bojacá, C., & Akrami, M. (2021). Evaluation of the Microclimate in a Traditional Colombian Greenhouse Used for Cut Flower Production. Agronomy, 11(7), 1330.spa
dc.relation.referencesVillagran, E., Jaramillo, J. E., & León-Pacheco, R. I. (2020). Natural ventilation in greenhouse with anti-insect screens evaluated with a computational fluid model. Agronomy Mesoamerican, 31(3), 709–728. https://doi.org/10.15517/AM.V31I3.40782spa
dc.relation.referencesVillagran, E., Ramirez-Matarrita, R., Rodriguez, A., León-Pacheco, R. I., Jaramillo, J. E., Ramirez, R., Rodriguez, A., Pacheco, R. L., Jaramillo, J. E., Ramirez-Matarrita, R., Rodriguez, A., & León-Pacheco, R. I. (2020). Simulation of the thermal and aerodynamic behavior of an established screenhouse under warm tropical climate conditions: A numerical approach. International Journal of Sustainable Development and Planning, 15(4), 487–499. https://doi.org/10.18280/ijsdp.150409spa
dc.relation.referencesVillagrán, E., & Rodriguez, A. (2021). Analysis of the thermal behavior of a new structure of protected agriculture established in a region of tropical climate conditions. Fluids, 6(6), 223. https://doi.org/10.3390/fluids6060223spa
dc.relation.referencesWaller, R., Kacira, M., Magadley, E., Teitel, M., & Yehia, I. (2022). Evaluating the Performance of Flexible, Semi-Transparent Large-Area Organic Photovoltaic Arrays Deployed on a Greenhouse. AgriEngineering, 4(4), 969–992. https://doi.org/10.3390/agriengineering4040062spa
dc.relation.referencesYu, O.-Y. Y., Ferrell, J., Kim, H.-Y. Y., & Houser, J. (2018). NEXUS: Integrated sustainable energy for enhancing farm productivity. IOP Conference Series: Earth and Environmental Science, 188(1). https://doi.org/10.1088/1755-1315/188/1/012012spa
dc.relation.referencesZhang, L., Xu, P., Mao, J., Tang, X. X., Li, Z., & Shi, J. (2015). A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy, 156, 213–222. https://doi.org/10.1016/j.apenergy.2015.07.036spa
dc.relation.referencesZhang, X., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Gan, Y., Zhang, J., Tang, Z., & Li, J. (2019). Innovative passive heat-storage walls improve thermal performance and energy efficiency in Chinese solar greenhouses for non-arable lands. Solar Energy, 190, 561–575. https://doi.org/10.1016/j.solener.2019.08.056spa
dc.relation.referencesZhang, X., Wang, H., Zou, Z., & Wang, S. (2016). CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Engineering, 142, 12–26. https://doi.org/10.1016/j.biosystemseng.2015.11.006spa
dc.relation.referencesKatzin, D., van Henten, E. J., & van Mourik, S. (2022). Process-based greenhouse climate models: Genealogy, current status, and future directions. Agricultural Systems, 198, 103388.spa
dc.relation.referencesZhang, D., Zhu, D., Wang, J., Wei, H., Zong, X., Tan, Y., & Liu, Q. (2014). Design and experiment of semi-automatic double-heat source forcing cultivation of temperature control for sweet cherry. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30(17), 228–234. https://doi.org/10.3969/j.issn.1002-6819.2014.17.029spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc010 - Bibliografía::011 - Bibliografías y catálogosspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc530 - Física::536 - Calorspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionadospa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembSistemas biológicosspa
dc.subject.lembBiological systemseng
dc.subject.lembInvernaderosspa
dc.subject.lembGreenhouseseng
dc.subject.lembPlantas de invernaderospa
dc.subject.lembGreenhouse plantseng
dc.subject.lembClimatología agrícolaspa
dc.subject.lembCrops and climateeng
dc.subject.proposalSimulación en CFDspa
dc.subject.proposalModelo de predicciónspa
dc.subject.proposalBalance de energíaspa
dc.subject.proposalControl climáticospa
dc.subject.proposalSuelo radiantespa
dc.subject.proposalPantalla térmicaspa
dc.subject.proposalBibliometríaspa
dc.subject.proposalCFD simulationeng
dc.subject.proposalPrediction modeleng
dc.subject.proposalEnergy balanceeng
dc.subject.proposalClimate controleng
dc.subject.proposalRadiant flooreng
dc.subject.proposalThermal screeneng
dc.subject.proposalBibliometricseng
dc.titleDiseño asistido por computador de un sistema de climatización para invernaderos ventilados naturalmente en el trópico altoandinospa
dc.title.translatedComputer-aided design of a natural ventilation climate control system for high Andean tropical greenhouseseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Fortalecimiento de las capacidades de I+D+i del centro de investigación Tibaitata para la generación, apropiación y divulgación de nuevo conocimiento como estrategia de adaptación al cambio climático en sistemas de producción agrícola ubicados en las zonas agroclimáticas del trópico alto colombiano.”spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020807325.2023.pdf
Tamaño:
6.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biosistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: