A rheological investigation of starch gels and solutions and its relationship with structural properties

dc.contributor.advisorPerilla Perilla, Jairo Ernesto
dc.contributor.authorSerrano Chávez, Claudio Alejandro
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2021-05-05T22:05:55Z
dc.date.available2021-05-05T22:05:55Z
dc.date.issued2021
dc.descriptiondiagramas, ilustraciones, tablasspa
dc.description.abstractSe estudió el comportamiento reológico de geles y soluciones de almidón. A escala microscópica, los geles de almidón de maíz son mezclas heterogéneas, altamente empaquetadas por restos de gránulos hinchados no birrefringentes; aquellos producidos a partir de yuca son homogéneos. Los primeros son sistemas rígidos, en los que el componente elástico predomina; los segundos muestran mayor disipación viscosa y dispersión en los mecanismos de relajación. La falta de desintegración total de los gránulos de almidón de maíz se asocia a una mayor estabilidad de su estructura cristalina y al contenido más alto de lípidos; esto a pesar de tener menor cristalinidad relativa y mayor contenido de amilopectina. Las soluciones de almidón en dimetil sulfóxido no muestran grandes diferencias en amplitud, oscilación y creep; sin embargo para la yuca, se observa mayor dispersión en los espectros de relajación; esto puede estar relacionado con una mayor polidispersidad y grado de ramificación. El comportamiento no lineal en creep, muestra que las soluciones de almidón de maíz tienden más rápidamente hacia la zona terminal sugiriendo un peso molecular menor. Los espectros de retardo obtenidos a partir de creep, tanto en viscoelasticidad lineal como no lineal, permitieron extender el régimen de frecuencias hacia valores más bajos; esto junto con algunos parámetros derivados de la teoría molecular como los tiempos de relajación de secciones de cadena entre puntos de enredamiento y los módulos de meseta, confirman los hallazgos mencionados anteriormente. Finalmente, la conversión de datos de oscilación en funciones creep, no mostró fuertes efectos inerciales (creep-ringing); esto permitió estudiar el comportamiento de creep a tiempos muy cortos sin necesidad de hacer correcciones de inercia.spa
dc.description.abstractRheological behavior of starch gels and solutions was investigated. At the microscopic level, corn starch gels are heterogeneous mixtures with a high packing-density of non-birefringent swollen granule remnants; those from cassava starch are instead homogenous. The former are rigid systems with a higher elastic component; the latter show greater viscous dissipation and higher dispersion in the relaxation processes. Granules from corn starch are less susceptible to disintegration during gelatinization; this has to do with a more stable crystalline structure and a higher lipid content, despite having a lower relative crystallinity and a higher amylopectin fraction. Amplitude, oscillatory and creep-recovery experiments did not show significant differences among starch/dimethyl sulfoxide solutions; however, higher dispersion is observed in the relaxation spectra for cassava starch solutions. This could be related to a higher polidispersity and degree of branching. Nonlinear creep showed that corn starch solutions tend more easily to the terminal region; this can be product of a lower molecular weight. Retardation spectra obtained from creep, whether within the linear or nonlinear viscoelastic region, allowed to extend the frequency domain of oscillatory data to lower regions; this, along with some parameters derived from the molecular theory, such as the relaxation time of strands between entanglement points and the plateau modulus, were useful to confirm the aforementioned findings. Finally, the conversion of experimental oscillatory data to creep functions did not show strong inertial effects (creep-ringing); this simplifies the study of the behavior at very short times of creep without inertia corrections.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaProcesos de polimerización y materialesspa
dc.format.extent1 recurso en línea (128 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79481
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] H. Münstedt, J. Rheol. (N. Y. N. Y). 2014, 58, 565.spa
dc.relation.references[2] H. G. Merkus, Particle Size Measurements, Particle Technology Series, First Edit., Vol. 17, Springer Netherlands, Dordrecht, 2009.spa
dc.relation.references[3] J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & sons, Inc., New York, 1980.spa
dc.relation.references[4] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.spa
dc.relation.references[5] R. H. Ewoldt, G. H. Mckinley, Rheol. Bull. 2007, 76, 4.spa
dc.relation.references[6] B. R. Bird, R. C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Second., John Wiley & sons, Inc., York, 1987.spa
dc.relation.references[7] M. Doi, S. F. Edwards, The theory of polymer dynamics, Oxford University Press, Oxford, UK, 1988.spa
dc.relation.references[8] H. Chi, K. Xu, X. Wu, Q. Chen, D. Xue, C. Song, W. Zhang, P. Wang, Food Chem. 2008, 106, 923.spa
dc.relation.references[9] J. W. Lawton (Retired), “Starch: Uses of Native Starch,” Encyclopedia of Food Grains, C. Wrigley, H. Corke, K. Seetharaman, J. Faubion, Eds., Elsevier, Waltham, MA 2016, Vol. 3, p. 274.spa
dc.relation.references[10] J. Waterschoot, S. V. Gomand, E. Fierens, J. A. Delcour, Starch/Staerke 2015, 67, 14.spa
dc.relation.references[11] I. Przetaczek-Rożnowska, T. Fortuna, Int. J. Biol. Macromol. 2017, 104, 339.spa
dc.relation.references[12] M. H. Chen, C. J. Bergman, Carbohydr. Polym. 2007, 69, 562.spa
dc.relation.references[13] I. M. Morrison, M. P. Cochrane, A. M. Cooper, M. F. B. Dale, C. M. Duffus, R. P. Ellis, A. Lynn, G. R. Mackay, L. J. Paterson, R. D. M. Prentice, J. S. Swanston, S. A. Tiller, J. Sci. Food Agric. 2001, 81, 319.spa
dc.relation.references[14] O. Pardo, J. Castañeda, C. Ortiz, Acta Agron. 2013, 62, 289.spa
dc.relation.references[15] W. Wang, H. Wang, X. Jin, H. Wang, T. Lin, Z. Zhu, Polymer (Guildf). 2018, 153, 643.spa
dc.relation.references[16] J. N. BeMiller, K. C. Huber, “Starch,” Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2011, Vol. 34, p. 1.spa
dc.relation.references[17] J. L. Willett, “Starch in polymer compostions,” Starch: chemistry and technology, J. BeMiller, R. Whistler, Eds., Third Edit., Academi Press 2008, p. 715.spa
dc.relation.references[18] R. P. Ellis, M. P. Cochrane, M. F. B. Dale, C. M. Duffus, A. Lynn, I. M. Morrison, R. D. M. Prentice, J. S. Swanston, S. A. Tiller, J. Sci. Food Agric. 1998, 77, 289.spa
dc.relation.references[19] J. J. M. Swinkels, Starch/Starke 1985, 37, 1.spa
dc.relation.references[20] L. Kong, G. R. Ziegler, Biomacromolecules 2012, 13, 2247.spa
dc.relation.references[21] L. A. Muñoz, F. Pedreschi, A. Leiva, J. M. Aguilera, J. Food Eng. 2015, 152, 65.spa
dc.relation.references[22] S. Pérez, E. Bertoft, Starch/Staerke 2010, 62, 389.spa
dc.relation.references[23] L. H. Sperling, Introduction to Physical Polymer Science, Fourth., Hoboken, NJ, USA, 2006.spa
dc.relation.references[24] M. J. Gidley, Carbohydr. Res. 1985, 139, 85.spa
dc.relation.references[25] G. Nilsson, K.-E. Bergquist, U. Nilsson, L. Gorton, Starch 1996, 10, 352.spa
dc.relation.references[26] T. A. Osswald, G. Menges, Materials Science of Polymers for Engineers, Third., Munich, Cincinnati, 2012.spa
dc.relation.references[27] J. Jane, Y. Chen, L. Lee, A. McPherson, K. Wong, M. Radosavljevic, T. Kasemsuwan, Cereal Chem. 1999, 76, 629.spa
dc.relation.references[28] J. Huang, Z. Shang, J. Man, Q. Liu, C. Zhu, C. Wei, Food Hydrocoll. 2015, 46, 172.spa
dc.relation.references[29] S. Hizukuri, Carbohydr. Res. 1986, 147, 342.spa
dc.relation.references[30] Y. Takeda, K. Shirasaka, S. Hizukuri, Carbohydr. Res. 1984, 132, 83.spa
dc.relation.references[31] T. Wang, T. Bogracheva, C. Hedley, J. Exp. Bot. 1998, 49, 481.spa
dc.relation.references[32] M. J. Miles, V. J. Morris, P. D. Orford, S. G. Ring, Carbohydr. Res. 1985, 135, 271.spa
dc.relation.references[33] S. Srichuwong, T. C. Sunarti, T. Mishima, N. Isono, M. Hisamatsu, Carbohydr. Polym. 2005, 62, 25.spa
dc.relation.references[34] A. Colombo, A. E. León, P. D. Ribotta, Starch/Staerke 2011, 63, 83.spa
dc.relation.references[35] L. B. Karam, C. Ferrero, M. N. Martino, N. E. Zaritzky, M. V. E. Grossmann, Int. J. Food Sci. Technol. 2006, 41, 805.spa
dc.relation.references[36] R. Wongsagonsup, T. Pujchakarn, S. Jitrakbumrung, W. Chaiwat, A. Fuongfuchat, S. Varavinit, S. Dangtip, M. Suphantharika, Carbohydr. Polym. 2014, 101, 656.spa
dc.relation.references[37] N. Koganti, J. R. Mitchell, R. N. Ibbett, T. J. Foster, Biomacromolecules 2011, 12, 2888.spa
dc.relation.references[38] S. Schmitz, A. C. Dona, P. Castignolles, R. G. Gilbert, M. Gaborieau, Macromol. Biosci. 2009, 9, 506.spa
dc.relation.references[39] A. Dona, C. W. W. Yuen, J. Peate, R. G. Gilbert, P. Castignolles, M. Gaborieau, Carbohydr. Res. 2007, 342, 2604.spa
dc.relation.references[40] Y. Li, C. Li, Z. Gu, Y. Hong, L. Cheng, Z. Li, Int. J. Biol. Macromol. 2017, 103, 630.spa
dc.relation.references[41] F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, L. Chen, J. Cereal Sci. 2009, 49, 371.spa
dc.relation.references[42] L. A. Bello-Perez, O. Paredes-López, Starch ‐ Stärke 1994, 46, 411.spa
dc.relation.references[43] G. Li, F. Zhu, Int. J. Biol. Macromol. 2018, 114, 767.spa
dc.relation.references[44] P. Noosuk, S. E. Hill, I. A. Farhat, J. R. Mitchell, P. Pradipasena, Starch/Staerke 2005, 57, 587.spa
dc.relation.references[45] N. Singh, N. Inouchi, K. Nishinari, Food Hydrocoll. 2006, 20, 923.spa
dc.relation.references[46] M. E. Villarreal, L. B. Iturriaga, Starch - Stärke 2016, 68, 1073.spa
dc.relation.references[47] M. Nayouf, C. Loisel, J. L. Doublier, J. Food Eng. 2003, 59, 209.spa
dc.relation.references[48] A. Eliasson, L. Bohlin, Starch ‐ Stärke 1982, 34, 267.spa
dc.relation.references[49] P. Ptaszek, M. Lukasiewicz, A. Ptaszek, M. Grzesik, J. Skrzypek, M. Kulawska, Starch/Staerke 2011, 63, 181.spa
dc.relation.references[50] B. Kapoor, M. Bhattacharya, Carbohydr. Polym. 2000, 42, 323.spa
dc.relation.references[51] B. Kapoor, M. Bhattacharya, Carbohydr. Polym. 2001, 44, 217.spa
dc.relation.references[52] G. Liu, N. Ji, Z. Gu, Y. Hong, L. Cheng, C. Li, Food Hydrocoll. 2018, 84, 166.spa
dc.relation.references[53] K. Ninomiya, J. D. Ferry, J. Colloid Sci. 1959, 14, 36.spa
dc.relation.references[54] J. Orozco-Parra, C. M. Mejía, C. C. Villa, Food Hydrocoll. 2020, 104, 105754.spa
dc.relation.references[55] Association of Official Analytical Chemists (AOAC), “Official Methods of Analysis-Method 960.39,” Official Methods of Analysis, 2002.spa
dc.relation.references[56] ISO, Rice-Determination of amylose content-Part 1: Reference method. ISO 6647-1, 2007.spa
dc.relation.references[57] J. Wang, Y. Li, Y. Tian, X. Xu, X. Ji, X. Cao, Z. Jin, Starch/Staerke 2010, 62, 508.spa
dc.relation.references[58] T. Komiya, S. Nara, Starch - Stärke 1986, 38, 9.spa
dc.relation.references[59] A. Lopez, B. M. Flanagan, E. P. Gilbert, M. J. Gidley, Biopolymers 2008, 89, 761.spa
dc.relation.references[60] J. Cai, C. Cai, J. Man, W. Zhou, C. Wei, Carbohydr. Polym. 2014, 101, 289.spa
dc.relation.references[61] N. W. H. Cheetham, L. Tao, Carbohydr. Polym. 1998, 36, 277.spa
dc.relation.references[62] O. E. Dudu, L. Li, A. B. Oyedeji, S. A. Oyeyinka, Y. Ma, Int. J. Biol. Macromol. 2019, 133, 1219.spa
dc.relation.references[63] C. Gernat, S. Radosta, H. Anger, G. Damaschun, Starch ‐ Stärke 1993, 45, 309.spa
dc.relation.references[64] G. Liu, Y. Hong, Z. Gu, Z. Li, L. Cheng, Food Hydrocoll. 2015, 45, 351.spa
dc.relation.references[65] J. Wang, K. Guo, X. Fan, G. Feng, C. Wei, Molecules 2018, 23, 5.spa
dc.relation.references[66] P. Cairns, T. Y. Bogracheva, S. G. Ring, C. L. Hedley, V. J. Morris, Carbohydr. Polym. 1997, 32, 275.spa
dc.relation.references[67] M. J. Tizzotti, M. C. Sweedman, D. Tang, C. Schaefer, R. G. Gilbert, J. Agric. Food Chem. 2011, 59, 6913.spa
dc.relation.references[68] R. E. Hoffman, Magn. Reson. Chem. 2006, 44, 606.spa
dc.relation.references[69] Q. J. Peng, A. S. Perlin, Carbohydr. Res. 1987, 160, 57.spa
dc.relation.references[70] H. Falk, M. Stanek, Monatshefte fur Chemie 1997, 128, 777.spa
dc.relation.references[71] T. Usui, M. Yokoyama, N. Yamaoka, K. Matsuda, K. Tuzimira, Carbohydr. Res. 1974, 33, 105.spa
dc.relation.references[72] X. Kong, S. Kasapis, E. Bertoft, H. Corke, Starch - Stärke 2010, 62, 302.spa
dc.relation.references[73] N. Singh, N. Isono, S. Srichuwong, T. Noda, K. Nishinari, Food Hydrocoll. 2008, 22, 979.spa
dc.relation.references[74] C. W. Macosko, Rheology: Principles, Measurements, and Applications, First Edit., Vol. 40, John Wiley & sons, Inc., United States of America, 1994.spa
dc.relation.references[75] M. T. Shaw, W. J. MacKnight, Introduction to Polymer Viscoelasticity, Third Edit., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005.spa
dc.relation.references[76] S. Q. Wang, Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation, Wiley, Hoboken, NJ, 2017.spa
dc.relation.references[77] U. Zolzer, H. F. Eicke, Rheol. Acta 1993, 32, 104.spa
dc.relation.references[78] C. Gabriel, J. Kaschta, Rheol. Acta 1998, 37, 358.spa
dc.relation.references[79] A. Takeh, S. Shanbhag, Appl. Rheol. 2013, 23, 1.spa
dc.relation.references[80] J. Kaschta, R. R. Schwarzl, Rheol. Acta 1994, 33, 517.spa
dc.relation.references[81] L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society of Industrial and Applied Mathematics, Philadelphia, 1997.spa
dc.relation.references[82] J. Kaschta, F. R. Schwarzl, Rheol. Acta 1994, 33, 530.spa
dc.relation.references[83] A. Gunaratne, H. Corke, Starch: Anaylisis of Quality. Encycl. Food Grains 2nd Ed. Vol. 2 2016, 198–207.spa
dc.relation.references[84] A. Buléon, C. Gérard, C. Riekel, R. Vuong, H. Chanzy, Macromolecules 1998, 31, 6605.spa
dc.relation.references[85] C. Cai, C. Wei, Carbohydr. Polym. 2013, 92, 469.spa
dc.relation.references[86] A. Buléon, P. Colonna, V. Planchot, S. Ball, Int. J. Biol. Macromol. 1998, 23, 85.spa
dc.relation.references[87] V. Singh, S. Z. Ali, R. Somashekar, P. S. Mukherjee, Int. J. Food Prop. 2006, 9, 845.spa
dc.relation.references[88] C. D. Han, Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology, Vol. 1, Oxford University Press, New York, New York, 2007.spa
dc.relation.references[89] C. Liu, J. He, E. van Ruymbeke, R. Keunings, C. Bailly, Polymer (Guildf). 2006, 47, 4461.spa
dc.relation.references[90] C. D. Han, Rheology and Processing of Polymeric Materials, Vol. 1, Oxford University Press, Oxford, 2007.spa
dc.relation.references[91] R. G. Larson, T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, T. C. B. McLeish, J. Rheol. (N. Y. N. Y). 2003, 47, 809.spa
dc.relation.references[92] M. Zamponi, M. Monkenbusch, L. Willner, A. Wischnewski, B. Farago, D. Richter, Europhys. Lett. 2005, 72, 1039.spa
dc.relation.references[93] F. L. Stoddard, “Starch: Chemistry,” Encyclopedia of Food Grains, Vol. 2, C. Wrigley, H. Corke, K. Seetharaman, J. Faoubion, Eds., Elsevier, Waltham, MA 2016, p. 174.spa
dc.relation.references[94] O. García, M. Pinzón, L. Sánchez, @LIMENTECH Cienc. Y Tecnol. Aliment. 2013, 11, 13.spa
dc.relation.references[95] A. Kaur, N. Singh, R. Ezekiel, H. S. Guraya, Food Chem. 2007, 101, 643.spa
dc.relation.references[96] J. Shannon, D. Garwood, C. Boyer, “Genetics and Physiology of Starch Development,” Starch: chemistry and technology, J. N. BeMiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.spa
dc.relation.references[97] K. Thitipraphunkul, D. Uttapap, K. Piyachomkwan, Y. Takeda, Carbohydr. Polym. 2003, 54, 489.spa
dc.relation.references[98] P. Noosuk, S. E. Hill, P. Pradipasena, J. R. Mitchell, Starch/Staerke 2003, 55, 337.spa
dc.relation.references[99] W. Breuninger, K. Piyachomkwan, K. Sriroth, “Tapioca/Cassava Starch: Production and Use,” Starch: chemistry and technology, J. N. Bemiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.spa
dc.relation.references[100] S. Pérez, P. Baldwin, D. Gallant, “Structural Features of Starch Granules I,” Starch: chemistry and technology, J. N. BeMiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.spa
dc.relation.references[101] N. I. Davydova, S. P. Leont’ev, Y. V. Genin, A. Y. Sasov, T. Y. Bogracheva, Carbohydr. Polym. 1995, 27, 109.spa
dc.relation.references[102] J. E. Fannon, R. J. Hauber, J. N. Bemiller, Cereal Chem. 1992, 69, 284.spa
dc.relation.references[103] J. E. Fannon, J. M. Shull, J. N. BeMiller, Cereal Chem. 1993, 70, 611.spa
dc.relation.references[104] K. Guo, L. Zhang, X. Bian, Q. Cao, C. Wei, Food Hydrocoll. 2020, 98, 105279.spa
dc.relation.references[105] W. He, C. Wei, Food Hydrocoll. 2017, 73, 162.spa
dc.relation.references[106] Y. I. Matveev, J. J. G. Van Soest, C. Nieman, L. A. Wasserman, V. A. Protserov, M. Ezernitskaja, V. P. Yuryev, Carbohydr. Polym. 2001, 44, 151.spa
dc.relation.references[107] A. Sarko, H. ‐C H. Wu, Starch ‐ Stärke 1978, 30, 73.spa
dc.relation.references[108] R. Hoover, Carbohydr. Polym. 2001, 45, 253.spa
dc.relation.references[109] A. Imberty, A. Buléon, V. Tran, S. Pérez, Starch ‐ Stärke 1991, 43, 375.spa
dc.relation.references[110] Y. I. Matveev, N. Y. Elankin, E. N. Kalistrova, A. N. Danilenko, C. Niemann, V. P. Yuryev, Starch - Stärke 1998, 50, 141.spa
dc.relation.references[111] J. Robin, C. Mercier, R. Charbonniere, A. Guilbot, Lintnerized Starches. Gel Filtration and Enzymatic Studies of Insoluble Residues from Prolonged Acid Treatment of Potato Starch. Cereal Chem. 1974, 51, 389–405.spa
dc.relation.references[112] V. Vamadevan, E. Bertoft, Starch/Staerke 2015, 67, 55.spa
dc.relation.references[113] M. A. Whittam, T. R. Noel, S. G. Ring, Int. J. Biol. Macromol. 1990, 12, 359.spa
dc.relation.references[114] R. F. Tester, W. R. Morrison, Cereal Chem. 1990, 67, 558.spa
dc.relation.references[115] J. Jane, “Structural Features of Starch Granules II,” Starch: chemistry and technology, J. BeMiller, R. Whistler, Eds., Academic Press, Burlington, MA 2009, p. 196.spa
dc.relation.references[116] S. A. S. Craig, C. C. Maningat, P. A. Seib, R. C. Hoseney, Starch paste clarity. Cereal Chem 1989, 66, 173–182.spa
dc.relation.references[117] S. V. Gomand, L. Lamberts, R. G. F. Visser, J. A. Delcour, Food Hydrocoll. 2010, 24, 424.spa
dc.relation.references[118] V. Vamadevan, E. Bertoft, K. Seetharaman, Carbohydr. Polym. 2013, 92, 1653.spa
dc.relation.references[119] P. Colonna, A. Buléon, “Thermal transitions of starches,” Starches: Characterization, Properties and Applications, A. Bertolini, Ed., First Edti., CRC Press, Boca Raton 2010, p. 71.spa
dc.relation.references[120] R. F. Tester, W. R. Morrison, Cereal Chem. 1990, 67, 551.spa
dc.relation.references[121] S. G. Ring, K. J. l’Anson, V. J. Morris, Macromolecules 1985, 18, 182.spa
dc.relation.references[122] V. M. Leloup, P. Colonna, A. Buleon, J. Cereal Sci. 1991, 13, 1.spa
dc.relation.references[123] A.-C. Eliasson, “Starch: Physicochemical and Functional Aspects,” Carbohydrates in food, A.-C. Eliasson, Ed., Third Edit., CRC Press 2017, p. 479.spa
dc.relation.references[124] R. Mukerjea, R. Mukerjea, J. F. Robyt, Carbohydr. Res. 2006, 341, 757.spa
dc.relation.references[125] D. M. Hall, J. G. Sayre, Text. Res. J. 1971, 41, 404.spa
dc.relation.references[126] N. Y. Yao, R. J. Larsen, D. A. Weitz, J. Rheol. (N. Y. N. Y). 2008, 52, 1013.spa
dc.relation.references[127] J. R. Mitchell, J. Texture Stud. 1980, 11, 315.spa
dc.relation.references[128] M. Q. Guo, X. Hu, C. Wang, L. Ai, “Polysaccharides: Structure and Solubility,” Solubility of Polysaccharides, InTech 2017.spa
dc.relation.references[129] R. Whistler, “Solubility of Polysaccharides and Their Behavior in Solution,” Carbohydrates in solution, H. Isbell, Ed., First., American chemical society 1973, p. 242.spa
dc.relation.references[130] S. B. Ross-Murphy, K. P. Shatwell, Biorheology 1983, 30, 217.spa
dc.relation.references[131] D. R. Picout, S. B. Ross-Murphy, ScientificWorldJournal. 2003, 3, 105.spa
dc.relation.references[132] G. M. Kavanagh, S. B. Ross-Murphy, Prog. Polym. Sci. 1998, 23, 533.spa
dc.relation.references[133] A. H. Clark, S. B. Ross-Murphy, “Structural and mechanical properties of biopolymer gels,” Biopolymers, Springer-Verlag, Berlin/Heidelberg 2005, p. 57.spa
dc.relation.references[134] S. J. McGrane, D. E. Mainwaring, H. J. Cornell, C. J. Rix, Starch/Staerke 2004, 56, 122.spa
dc.relation.references[135] P. T. Marques, C. Pérégo, J. F. Le Meins, R. Borsali, V. Soldi, Carbohydr. Polym. 2006, 66, 396.spa
dc.relation.references[136] R. A. Freitas, R. C. Paula, J. P. A. Feitosa, S. Rocha, M. R. Sierakowski, Carbohydr. Polym. 2004, 55, 3.spa
dc.relation.references[137] A. Sayuri, S. Sawayama, A. Kawabata, J. Texture Stud. 1995, 26, 489.spa
dc.relation.references[138] E. Cengiz, S. Karaman, M. Dogan, Int. J. Food Prop. 2016, 19, 1391.spa
dc.relation.references[139] C. Gabriel, D. Lilge, Rheol. Acta 2006, 45, 995.spa
dc.relation.references[140] Y. H. Lin, Macromolecules 1986, 19, 159.spa
dc.relation.references[141] H. Münstedt, Soft Matter 2011, 7, 2273.spa
dc.relation.references[142] P. E. Rouse, J. Chem. Phys. 1953, 21, 1272.spa
dc.relation.references[143] B. H. Zimm, J. Chem. Phys. 1956, 24, 269.spa
dc.relation.references[144] T. C. B. Mcleish, R. G. Larson, J. Rheol. (N. Y. N. Y). 1998, 81.spa
dc.relation.references[145] H. H. Winter, “The Critical Gel,” Structure and Dynamics of Polymer and Colloidal Systems, Springer Netherlands, Dordrecht 2002, p. 439.spa
dc.relation.references[146] J. D. Ferry, J. Res. Natl. Bur. Stand. (1934). 1948, 41, 53.spa
dc.relation.references[147] R. G. Larson, The structure and rheology of complex fluids, First Edit., Oxford University Press, New York-Oxford, 1999.spa
dc.relation.references[148] M. Li, P. Liu, W. Zou, L. Yu, F. Xie, H. Pu, H. Liu, L. Chen, J. Food Eng. 2011, 106, 95.spa
dc.relation.references[149] S. G. Ring, M. J. Miles, V. J. Morris, R. Turner, P. Colonna, Int. J. Biol. Macromol. 1987, 9, 158.spa
dc.relation.references[150] J. M. Hernández, M. Gaborieau, P. Castignolles, M. J. Gidley, A. M. Myers, R. G. Gilbert, Biomacromolecules 2008, 9, 954.spa
dc.relation.references[151] S. Precha-Atsawanan, S. Puncha-arnon, Y. Wandee, D. Uttapap, C. Puttanlek, V. Rungsardthong, Food Hydrocoll. 2018, 79, 71.spa
dc.relation.references[152] J. Shi, M. C. Sweedman, Y. C. Shi, Carbohydr. Polym. 2018, 194, 350.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocAlmidón de maíz
dc.subject.agrovocCorn starch
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalAlmidónspa
dc.subject.proposalReologíaspa
dc.subject.proposalGelesspa
dc.subject.proposalSolucionesspa
dc.subject.proposalEspectro de relajaciónspa
dc.subject.proposalEspectro de retardospa
dc.subject.proposalStarcheng
dc.subject.proposalRheologyeng
dc.subject.proposalGelseng
dc.subject.proposalSolutionseng
dc.subject.proposalRelaxation spectraeng
dc.subject.proposalRetardation spectraeng
dc.subject.unescoReología
dc.subject.unescoRheology
dc.titleA rheological investigation of starch gels and solutions and its relationship with structural propertieseng
dc.title.translatedEstudio reológico de geles y soluciones de almidón y su relación con propiedades estructuralesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
860181819.2021.pdf
Tamaño:
4.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química
Cargando...
Miniatura
Nombre:
Supplementary files.rar
Tamaño:
16.47 MB
Formato:
Unknown data format
Descripción:
Anexos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: