Variabilidad intraurbana del potencial oxidativo del PM2.5 en cinco ciudades de Colombia
| dc.contributor.advisor | Rojas Roa, Néstor Yezid | |
| dc.contributor.advisor | Grisales Vargas, Sara Catalina | |
| dc.contributor.author | Vargas Ortiz, Oscar Alejandro | |
| dc.contributor.researchgroup | Calidad del Aire | |
| dc.coverage.city | Bogotá | |
| dc.coverage.city | Barranquilla | |
| dc.coverage.city | Bucaramanga | |
| dc.coverage.city | Cali | |
| dc.coverage.city | Medellín | |
| dc.coverage.country | Colombia | |
| dc.coverage.temporal | 2021 | |
| dc.date.accessioned | 2026-01-21T16:59:26Z | |
| dc.date.available | 2026-01-21T16:59:26Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a color, mapas | spa |
| dc.description.abstract | La evidencia sobre la toxicidad del material particulado (PM2.5) en Colombia es limitada. Este estudio tuvo como objetivo identificar las variables espaciales que explican la variabilidad intraurbana del potencial oxidativo (OP) de PM2.5 y generar mapas de su distribución en Bogotá, Barranquilla, Bucaramanga, Cali y Medellín. Se aplicó un enfoque cuantitativo correlacional, utilizando modelos de regresión de uso del suelo (LUR) a partir de mediciones de OP (con ensayos de ácido ascórbico - OPAA y glutatión - OPGSH) en 85 puntos de muestreo durante 2021. Los resultados mostraron una alta variabilidad del OP entre ciudades, con valores promedio de OPAA más altos en Cali (3.84%/m³) y Medellín (3.26%/m³). Los modelos LUR para OPAA fueron robustos, explicando hasta un 91.8% de la varianza (R²aj. en Barranquilla) y con validaciones cruzadas positivas. En contraste, los modelos para OPGSH resultaron inestables. Las variables de tráfico (longitud de vías, volumen vehicular) y el uso comercial del suelo fueron los predictores más consistentes del OP. Se concluye que el OP del PM2.5 presenta una notable variabilidad espacial que puede ser modelada eficazmente para OPAA mediante LUR. Los mapas generados identifican puntos calientes de toxicidad, ofreciendo una herramienta clave para la gestión de la calidad del aire basada en el riesgo a la salud. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Evidence regarding the toxicity of particulate matter (PM2.5) in Colombia is limited. This study aimed to identify the spatial variables that explain the intra-urban variability of the oxidative potential (OP) of PM2.5 and to generate maps of its distribution in Bogotá, Barranquilla, Bucaramanga, Cali, and Medellín. A correlational quantitative approach was applied, using land use regression (LUR) models based on OP measurements (with ascorbic acid assays – OPAA and glutathione – OPGSH) collected at 85 sampling points during 2021. The results showed high variability of OP between cities, with higher average OPAA values in Cali (3.84%/m³) and Medellín (3.26%/m³). The LUR models for OPAA were robust, explaining up to 91.8% of the variance (adjusted R² in Barranquilla) and with positive cross-validation results. In contrast, the models for OPGSH proved unstable. Traffic-related variables (road length, vehicle volume) and commercial land use were the most consistent predictors of OP. It is concluded that the OP of PM2.5 exhibits notable spatial variability that can be effectively modeled for OPAA using LUR. The generated maps identify toxicity hotspots, offering a key tool for air quality management based on health risk. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en ingenieria ambiental | |
| dc.description.methods | Investigación de tipo correlacional con enfoque cuantitativoSe aplicó un enfoque cuantitativo correlacional, utilizando modelos de regresión de uso del suelo (LUR) a partir de mediciones de OP (con ensayos de ácido ascórbico - OPAA y glutatión - OPGSH) en 85 puntos de muestreo durante 2021. | |
| dc.description.researcharea | Calidad del aire | |
| dc.format.extent | xii, 65 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89282 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ingeniería | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | |
| dc.relation.references | Aguilera, I., Eeftens, M., Meier, R., Ducret-Stich, R. E., Schindler, C., Ineichen, A., Phuleria, H. C., Probst-Hensch, N., Tsai, M. Y., & Künzli, N. (2015). Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study. Environmental Research, 140, 377–384. https://doi.org/10.1016/j.envres.2015.04.011 | |
| dc.relation.references | Allen, R. W., Amram, O., Wheeler, A. J., & Brauer, M. (2011). The transferability of NO and NO2 land use regression models between cities and pollutants. Atmospheric Environment, 45(2), 369–378. https://doi.org/10.1016/j.atmosenv.2010.10.002 | |
| dc.relation.references | Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio, A., Harrison, R. M., Hider, R., Kelly, F., Kooter, I. M., Marano, F., Maynard, R. L., Mudway, I., Nel, A., Sioutas, C., Smith, S., Baeza-Squiban, A., Cho, A., Duggan, S., & Froines, J. (2008). Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential - A workshop report and consensus statement. Inhalation Toxicology, 20(1), 75–99. https://doi.org/10.1080/08958370701665517 | |
| dc.relation.references | Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M. Y., Künzli, N., Schikowski, T., Marcon, A., Eriksen, K. T., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., … de Hoogh, K. (2013). Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project. Atmospheric Environment, 72, 10–23. https://doi.org/10.1016/j.atmosenv.2013.02.037 | |
| dc.relation.references | Bertazzon, S., Johnson, M., Eccles, K., & Kaplan, G. G. (2015). Accounting for spatial effects in land use regression for urban air pollution modeling. Spatial and Spatio-Temporal Epidemiology, 14–15, 9–21. https://doi.org/10.1016/j.sste.2015.06.002 | |
| dc.relation.references | Brauer, M., Lencar, C., Tamburic, L., Koehoorn, M., Demers, P., & Karr, C. (2008). A cohort study of traffic-related air pollution impacts on birth outcomes. Environmental Health Perspectives, 116(5), 680–686. https://doi.org/10.1289/ehp.10952 | |
| dc.relation.references | Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., Pryl, K., Van Reeuwijk, H., Smallbone, K., & Van Der Veen, A. (1997). Mapping urban air pollution using gis: A regression-based approach. International Journal of Geographical Information Science, 11(7), 699–718. https://doi.org/10.1080/136588197242158 | |
| dc.relation.references | Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1 | |
| dc.relation.references | Cattani, G., Gaeta, A., Di Menno di Bucchianico, A., De Santis, A., Gaddi, R., Cusano, M., Ancona, C., Badaloni, C., Forastiere, F., Gariazzo, C., Sozzi, R., Inglessis, M., Silibello, C., Salvatori, E., Manes, F., & Cesaroni, G. (2017). Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy. Atmospheric Environment, 156, 52–60. https://doi.org/10.1016/j.atmosenv.2017.02.028 | |
| dc.relation.references | Cesaroni, G., Porta, D., Badaloni, C., Stafoggia, M., Eeftens, M., Meliefste, K., & Forastiere, F. (2012). Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. http://www.ehjournal.net/content/11/1/48 | |
| dc.relation.references | Charrier, J. G., & Anastasio, C. (2012). On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble \newline transition metals. Atmospheric Chemistry and Physics, 12(19), 9321–9333. https://doi.org/10.5194/acp-12-9321-2012 | |
| dc.relation.references | Crouse, D. L., Goldberg, M. S., & Ross, N. A. (2009). A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada. Atmospheric Environment, 43(32), 5075–5084. https://doi.org/10.1016/j.atmosenv.2009.06.040 | |
| dc.relation.references | de Hoogh, K., Chen, J., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U. A., Katsouyanni, K., Klompmaker, J., Martin, R. V., Samoli, E., Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., Vienneau, D., … Hoek, G. (2018). Spatial PM2.5, NO2, O3 and BC models for Western Europe – Evaluation of spatiotemporal stability. Environment International, 120, 81–92. https://doi.org/10.1016/j.envint.2018.07.036 | |
| dc.relation.references | Dirgawati, M., Heyworth, J. S., Wheeler, A. J., McCaul, K. A., Blake, D., Boeyen, J., Cope, M., Yeap, B. B., Nieuwenhuijsen, M., Brunekreef, B., & Hinwood, A. (2016). Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmospheric Environment, 144, 69–78. https://doi.org/10.1016/j.atmosenv.2016.08.013 | |
| dc.relation.references | Eeftens, M., Beelen, R., Fischer, P., Brunekreef, B., Meliefste, K., & Hoek, G. (2011). Stability of measured and modelled spatial contrasts in NO2 over time. Occupational and Environmental Medicine, 68(10), 765–770. https://doi.org/10.1136/oem.2010.061135 | |
| dc.relation.references | Grisales, S. (2020). Modelos de regresión de usos del suelo para la caracterización espacial de la contaminación del aire por PM2.5 en la ciudad de Medellín-Colombia, 201. Universidad de Antioquia. | |
| dc.relation.references | Gulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M. Y., Probst-Hensch, N., Eeftens, M., Imboden, M., Ducret-Stich, R., Naccarati, A., Galassi, C., Ranzi, A., Nieuwenhuijsen, M., Curto, A., Donaire-Gonzalez, D., Cirach, M., Vermeulen, R., Vineis, P., … Kelly, F. J. (2018a). Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas. Environmental Research, 160, 247–255. https://doi.org/10.1016/j.envres.2017.10.002 | |
| dc.relation.references | Gulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M. Y., Probst-Hensch, N., Eeftens, M., Imboden, M., Ducret-Stich, R., Naccarati, A., Galassi, C., Ranzi, A., Nieuwenhuijsen, M., Curto, A., Donaire-Gonzalez, D., Cirach, M., Vermeulen, R., Vineis, P., … Kelly, F. J. (2018b). Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas. Environmental Research, 160, 247–255. https://doi.org/10.1016/j.envres.2017.10.002 | |
| dc.relation.references | Henderson, S. B., Beckerman, B., Jerrett, M., & Brauer, M. (2007). Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science and Technology, 41(7), 2422–2428. https://doi.org/10.1021/es0606780 | |
| dc.relation.references | Huang, L., Zhang, C., & Bi, J. (2017). Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China. Environmental Research, 158, 542–552. https://doi.org/10.1016/j.envres.2017.07.010 | |
| dc.relation.references | Jedynska, A., Hoek, G., Wang, M., Yang, A., Eeftens, M., Cyrys, J., Keuken, M., Ampe, C., Beelen, R., Cesaroni, G., Forastiere, F., Cirach, M., de Hoogh, K., De Nazelle, A., Nystad, W., Akhlaghi, H. M., Declercq, C., Stempfelet, M., Eriksen, K. T., … Kooter, I. M. (2017). Spatial variations and development of land use regression models of oxidative potential in ten European study areas. Atmospheric Environment, 150, 24–32. https://doi.org/10.1016/j.atmosenv.2016.11.029 | |
| dc.relation.references | Jerrett, M., Arain, M. A., Kanaroglou, P., Beckerman, B., Crouse, D., Gilbert, N. L., Brook, J. R., Finkelstein, N., & Finkelstein, M. M. (2007). Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. Journal of Toxicology and Environmental Health - Part A: Current Issues, 70(3–4), 200–212. https://doi.org/10.1080/15287390600883018 | |
| dc.relation.references | Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, 53, 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008 | |
| dc.relation.references | Londoño, L., & Cañón, J. (2015). Metodología para la aplicación de modelos de regresión de usos del suelo en la estimación local de la concentración mensual de PM10 en Medellín. In Revista Politécnica (Vol. 11, Issue 21). | |
| dc.relation.references | Ndiaye, A., Shen, Y., Kyriakou, K., Karssenberg, D., Schmitz, O., Flückiger, B., Hoogh, K. de, & Hoek, G. (2024). Hourly land-use regression modeling for NO2 and PM2.5 in the Netherlands. Environmental Research, 256. https://doi.org/10.1016/j.envres.2024.119233 | |
| dc.relation.references | OMS. (2024). Contaminación del aire ambiente ( exterior ) y salud. 1–6. | |
| dc.relation.references | Rodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024a). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w | |
| dc.relation.references | Rodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024b). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w | |
| dc.relation.references | Rodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024b). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w | |
| dc.relation.references | Xu, X., Qin, N., Yang, Z., Liu, Y., Cao, S., Zou, B., Jin, L., Zhang, Y., & Duan, X. (2021). Potential for developing independent daytime/nighttime LUR models based on short-term mobile monitoring to improve model performance. Environmental Pollution, 268. https://doi.org/10.1016/j.envpol.2020.115951 | |
| dc.relation.references | Yang, A., Wang, M., Eeftens, M., Beelen, R., Dons, E., Leseman, D. L. A. C., Brunekreef, B., Cassee, F. R., Janssen, N. A. H., & Hoek, G. (2015). Spatial variation and land use regression modeling of the oxidative potential of fine particles. Environmental Health Perspectives, 123(11), 1187–1192. https://doi.org/10.1289/ehp.1408916 | |
| dc.relation.references | Yang, X., Zheng, Y., Geng, G., Liu, H., Man, H., Lv, Z., He, K., & de Hoogh, K. (2017). Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environmental Pollution, 226, 143–153. https://doi.org/10.1016/j.envpol.2017.03.079 | |
| dc.relation.references | Yanosky, J. D., Tonne, C. C., Beevers, S. D., Wilkinson, P., & Kelly, F. J. (2012). Modeling exposures to the oxidative potential of PM10. Environmental Science and Technology, 46(14), 7612–7620. https://doi.org/10.1021/es3010305 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | |
| dc.subject.lemb | CONTAMINACION DEL AIRE-MEDICIONES | spa |
| dc.subject.lemb | Air-pollution - Measurement | eng |
| dc.subject.lemb | AIRE-ANALISIS | spa |
| dc.subject.lemb | Air - analysis | eng |
| dc.subject.lemb | ACIDO ASCORBICO-PRUEBAS | spa |
| dc.subject.lemb | Ascorbic acid - testing | eng |
| dc.subject.lemb | CONTROL AMBIENTAL | spa |
| dc.subject.lemb | Environmental law | eng |
| dc.subject.proposal | Potencial oxidativo | spa |
| dc.subject.proposal | PM2.5 | spa |
| dc.subject.proposal | Modelos LUR | spa |
| dc.subject.proposal | Variabilidad intraurbana | spa |
| dc.subject.proposal | Calidad del aire | spa |
| dc.subject.proposal | Colombia | spa |
| dc.subject.proposal | Oxidative potential | eng |
| dc.subject.proposal | LUR models | eng |
| dc.subject.proposal | Intra-urban variability | eng |
| dc.subject.proposal | Air quality | eng |
| dc.title | Variabilidad intraurbana del potencial oxidativo del PM2.5 en cinco ciudades de Colombia | spa |
| dc.title.translated | Intra-urban variability of the oxidative potential of PM2.5 in five Colombian cities | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.content | Image | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Responsables políticos | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- DocumentoFinal1015448066.pdf
- Tamaño:
- 3.05 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

