Variabilidad intraurbana del potencial oxidativo del PM2.5 en cinco ciudades de Colombia

dc.contributor.advisorRojas Roa, Néstor Yezid
dc.contributor.advisorGrisales Vargas, Sara Catalina
dc.contributor.authorVargas Ortiz, Oscar Alejandro
dc.contributor.researchgroupCalidad del Aire
dc.coverage.cityBogotá
dc.coverage.cityBarranquilla
dc.coverage.cityBucaramanga
dc.coverage.cityCali
dc.coverage.cityMedellín
dc.coverage.countryColombia
dc.coverage.temporal2021
dc.date.accessioned2026-01-21T16:59:26Z
dc.date.available2026-01-21T16:59:26Z
dc.date.issued2025
dc.descriptionilustraciones a color, mapasspa
dc.description.abstractLa evidencia sobre la toxicidad del material particulado (PM2.5) en Colombia es limitada. Este estudio tuvo como objetivo identificar las variables espaciales que explican la variabilidad intraurbana del potencial oxidativo (OP) de PM2.5 y generar mapas de su distribución en Bogotá, Barranquilla, Bucaramanga, Cali y Medellín. Se aplicó un enfoque cuantitativo correlacional, utilizando modelos de regresión de uso del suelo (LUR) a partir de mediciones de OP (con ensayos de ácido ascórbico - OPAA y glutatión - OPGSH) en 85 puntos de muestreo durante 2021. Los resultados mostraron una alta variabilidad del OP entre ciudades, con valores promedio de OPAA más altos en Cali (3.84%/m³) y Medellín (3.26%/m³). Los modelos LUR para OPAA fueron robustos, explicando hasta un 91.8% de la varianza (R²aj. en Barranquilla) y con validaciones cruzadas positivas. En contraste, los modelos para OPGSH resultaron inestables. Las variables de tráfico (longitud de vías, volumen vehicular) y el uso comercial del suelo fueron los predictores más consistentes del OP. Se concluye que el OP del PM2.5 presenta una notable variabilidad espacial que puede ser modelada eficazmente para OPAA mediante LUR. Los mapas generados identifican puntos calientes de toxicidad, ofreciendo una herramienta clave para la gestión de la calidad del aire basada en el riesgo a la salud. (Texto tomado de la fuente)spa
dc.description.abstractEvidence regarding the toxicity of particulate matter (PM2.5) in Colombia is limited. This study aimed to identify the spatial variables that explain the intra-urban variability of the oxidative potential (OP) of PM2.5 and to generate maps of its distribution in Bogotá, Barranquilla, Bucaramanga, Cali, and Medellín. A correlational quantitative approach was applied, using land use regression (LUR) models based on OP measurements (with ascorbic acid assays – OPAA and glutathione – OPGSH) collected at 85 sampling points during 2021. The results showed high variability of OP between cities, with higher average OPAA values in Cali (3.84%/m³) and Medellín (3.26%/m³). The LUR models for OPAA were robust, explaining up to 91.8% of the variance (adjusted R² in Barranquilla) and with positive cross-validation results. In contrast, the models for OPGSH proved unstable. Traffic-related variables (road length, vehicle volume) and commercial land use were the most consistent predictors of OP. It is concluded that the OP of PM2.5 exhibits notable spatial variability that can be effectively modeled for OPAA using LUR. The generated maps identify toxicity hotspots, offering a key tool for air quality management based on health risk.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en ingenieria ambiental
dc.description.methodsInvestigación de tipo correlacional con enfoque cuantitativoSe aplicó un enfoque cuantitativo correlacional, utilizando modelos de regresión de uso del suelo (LUR) a partir de mediciones de OP (con ensayos de ácido ascórbico - OPAA y glutatión - OPGSH) en 85 puntos de muestreo durante 2021.
dc.description.researchareaCalidad del aire
dc.format.extentxii, 65 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89282
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.relation.referencesAguilera, I., Eeftens, M., Meier, R., Ducret-Stich, R. E., Schindler, C., Ineichen, A., Phuleria, H. C., Probst-Hensch, N., Tsai, M. Y., & Künzli, N. (2015). Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study. Environmental Research, 140, 377–384. https://doi.org/10.1016/j.envres.2015.04.011
dc.relation.referencesAllen, R. W., Amram, O., Wheeler, A. J., & Brauer, M. (2011). The transferability of NO and NO2 land use regression models between cities and pollutants. Atmospheric Environment, 45(2), 369–378. https://doi.org/10.1016/j.atmosenv.2010.10.002
dc.relation.referencesAyres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio, A., Harrison, R. M., Hider, R., Kelly, F., Kooter, I. M., Marano, F., Maynard, R. L., Mudway, I., Nel, A., Sioutas, C., Smith, S., Baeza-Squiban, A., Cho, A., Duggan, S., & Froines, J. (2008). Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential - A workshop report and consensus statement. Inhalation Toxicology, 20(1), 75–99. https://doi.org/10.1080/08958370701665517
dc.relation.referencesBeelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M. Y., Künzli, N., Schikowski, T., Marcon, A., Eriksen, K. T., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., … de Hoogh, K. (2013). Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project. Atmospheric Environment, 72, 10–23. https://doi.org/10.1016/j.atmosenv.2013.02.037
dc.relation.referencesBertazzon, S., Johnson, M., Eccles, K., & Kaplan, G. G. (2015). Accounting for spatial effects in land use regression for urban air pollution modeling. Spatial and Spatio-Temporal Epidemiology, 14–15, 9–21. https://doi.org/10.1016/j.sste.2015.06.002
dc.relation.referencesBrauer, M., Lencar, C., Tamburic, L., Koehoorn, M., Demers, P., & Karr, C. (2008). A cohort study of traffic-related air pollution impacts on birth outcomes. Environmental Health Perspectives, 116(5), 680–686. https://doi.org/10.1289/ehp.10952
dc.relation.referencesBriggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., Pryl, K., Van Reeuwijk, H., Smallbone, K., & Van Der Veen, A. (1997). Mapping urban air pollution using gis: A regression-based approach. International Journal of Geographical Information Science, 11(7), 699–718. https://doi.org/10.1080/136588197242158
dc.relation.referencesBrook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1
dc.relation.referencesCattani, G., Gaeta, A., Di Menno di Bucchianico, A., De Santis, A., Gaddi, R., Cusano, M., Ancona, C., Badaloni, C., Forastiere, F., Gariazzo, C., Sozzi, R., Inglessis, M., Silibello, C., Salvatori, E., Manes, F., & Cesaroni, G. (2017). Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy. Atmospheric Environment, 156, 52–60. https://doi.org/10.1016/j.atmosenv.2017.02.028
dc.relation.referencesCesaroni, G., Porta, D., Badaloni, C., Stafoggia, M., Eeftens, M., Meliefste, K., & Forastiere, F. (2012). Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. http://www.ehjournal.net/content/11/1/48
dc.relation.referencesCharrier, J. G., & Anastasio, C. (2012). On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble \newline transition metals. Atmospheric Chemistry and Physics, 12(19), 9321–9333. https://doi.org/10.5194/acp-12-9321-2012
dc.relation.referencesCrouse, D. L., Goldberg, M. S., & Ross, N. A. (2009). A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada. Atmospheric Environment, 43(32), 5075–5084. https://doi.org/10.1016/j.atmosenv.2009.06.040
dc.relation.referencesde Hoogh, K., Chen, J., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U. A., Katsouyanni, K., Klompmaker, J., Martin, R. V., Samoli, E., Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., Vienneau, D., … Hoek, G. (2018). Spatial PM2.5, NO2, O3 and BC models for Western Europe – Evaluation of spatiotemporal stability. Environment International, 120, 81–92. https://doi.org/10.1016/j.envint.2018.07.036
dc.relation.referencesDirgawati, M., Heyworth, J. S., Wheeler, A. J., McCaul, K. A., Blake, D., Boeyen, J., Cope, M., Yeap, B. B., Nieuwenhuijsen, M., Brunekreef, B., & Hinwood, A. (2016). Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmospheric Environment, 144, 69–78. https://doi.org/10.1016/j.atmosenv.2016.08.013
dc.relation.referencesEeftens, M., Beelen, R., Fischer, P., Brunekreef, B., Meliefste, K., & Hoek, G. (2011). Stability of measured and modelled spatial contrasts in NO2 over time. Occupational and Environmental Medicine, 68(10), 765–770. https://doi.org/10.1136/oem.2010.061135
dc.relation.referencesGrisales, S. (2020). Modelos de regresión de usos del suelo para la caracterización espacial de la contaminación del aire por PM2.5 en la ciudad de Medellín-Colombia, 201. Universidad de Antioquia.
dc.relation.referencesGulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M. Y., Probst-Hensch, N., Eeftens, M., Imboden, M., Ducret-Stich, R., Naccarati, A., Galassi, C., Ranzi, A., Nieuwenhuijsen, M., Curto, A., Donaire-Gonzalez, D., Cirach, M., Vermeulen, R., Vineis, P., … Kelly, F. J. (2018a). Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas. Environmental Research, 160, 247–255. https://doi.org/10.1016/j.envres.2017.10.002
dc.relation.referencesGulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M. Y., Probst-Hensch, N., Eeftens, M., Imboden, M., Ducret-Stich, R., Naccarati, A., Galassi, C., Ranzi, A., Nieuwenhuijsen, M., Curto, A., Donaire-Gonzalez, D., Cirach, M., Vermeulen, R., Vineis, P., … Kelly, F. J. (2018b). Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas. Environmental Research, 160, 247–255. https://doi.org/10.1016/j.envres.2017.10.002
dc.relation.referencesHenderson, S. B., Beckerman, B., Jerrett, M., & Brauer, M. (2007). Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science and Technology, 41(7), 2422–2428. https://doi.org/10.1021/es0606780
dc.relation.referencesHuang, L., Zhang, C., & Bi, J. (2017). Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China. Environmental Research, 158, 542–552. https://doi.org/10.1016/j.envres.2017.07.010
dc.relation.referencesJedynska, A., Hoek, G., Wang, M., Yang, A., Eeftens, M., Cyrys, J., Keuken, M., Ampe, C., Beelen, R., Cesaroni, G., Forastiere, F., Cirach, M., de Hoogh, K., De Nazelle, A., Nystad, W., Akhlaghi, H. M., Declercq, C., Stempfelet, M., Eriksen, K. T., … Kooter, I. M. (2017). Spatial variations and development of land use regression models of oxidative potential in ten European study areas. Atmospheric Environment, 150, 24–32. https://doi.org/10.1016/j.atmosenv.2016.11.029
dc.relation.referencesJerrett, M., Arain, M. A., Kanaroglou, P., Beckerman, B., Crouse, D., Gilbert, N. L., Brook, J. R., Finkelstein, N., & Finkelstein, M. M. (2007). Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. Journal of Toxicology and Environmental Health - Part A: Current Issues, 70(3–4), 200–212. https://doi.org/10.1080/15287390600883018
dc.relation.referencesLi, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, 53, 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008
dc.relation.referencesLondoño, L., & Cañón, J. (2015). Metodología para la aplicación de modelos de regresión de usos del suelo en la estimación local de la concentración mensual de PM10 en Medellín. In Revista Politécnica (Vol. 11, Issue 21).
dc.relation.referencesNdiaye, A., Shen, Y., Kyriakou, K., Karssenberg, D., Schmitz, O., Flückiger, B., Hoogh, K. de, & Hoek, G. (2024). Hourly land-use regression modeling for NO2 and PM2.5 in the Netherlands. Environmental Research, 256. https://doi.org/10.1016/j.envres.2024.119233
dc.relation.referencesOMS. (2024). Contaminación del aire ambiente ( exterior ) y salud. 1–6.
dc.relation.referencesRodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024a). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w
dc.relation.referencesRodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024b). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w
dc.relation.referencesRodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024b). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w
dc.relation.referencesXu, X., Qin, N., Yang, Z., Liu, Y., Cao, S., Zou, B., Jin, L., Zhang, Y., & Duan, X. (2021). Potential for developing independent daytime/nighttime LUR models based on short-term mobile monitoring to improve model performance. Environmental Pollution, 268. https://doi.org/10.1016/j.envpol.2020.115951
dc.relation.referencesYang, A., Wang, M., Eeftens, M., Beelen, R., Dons, E., Leseman, D. L. A. C., Brunekreef, B., Cassee, F. R., Janssen, N. A. H., & Hoek, G. (2015). Spatial variation and land use regression modeling of the oxidative potential of fine particles. Environmental Health Perspectives, 123(11), 1187–1192. https://doi.org/10.1289/ehp.1408916
dc.relation.referencesYang, X., Zheng, Y., Geng, G., Liu, H., Man, H., Lv, Z., He, K., & de Hoogh, K. (2017). Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environmental Pollution, 226, 143–153. https://doi.org/10.1016/j.envpol.2017.03.079
dc.relation.referencesYanosky, J. D., Tonne, C. C., Beevers, S. D., Wilkinson, P., & Kelly, F. J. (2012). Modeling exposures to the oxidative potential of PM10. Environmental Science and Technology, 46(14), 7612–7620. https://doi.org/10.1021/es3010305
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.lembCONTAMINACION DEL AIRE-MEDICIONESspa
dc.subject.lembAir-pollution - Measurementeng
dc.subject.lembAIRE-ANALISISspa
dc.subject.lembAir - analysiseng
dc.subject.lembACIDO ASCORBICO-PRUEBASspa
dc.subject.lembAscorbic acid - testingeng
dc.subject.lembCONTROL AMBIENTALspa
dc.subject.lembEnvironmental laweng
dc.subject.proposalPotencial oxidativospa
dc.subject.proposalPM2.5spa
dc.subject.proposalModelos LURspa
dc.subject.proposalVariabilidad intraurbanaspa
dc.subject.proposalCalidad del airespa
dc.subject.proposalColombiaspa
dc.subject.proposalOxidative potentialeng
dc.subject.proposalLUR modelseng
dc.subject.proposalIntra-urban variabilityeng
dc.subject.proposalAir qualityeng
dc.titleVariabilidad intraurbana del potencial oxidativo del PM2.5 en cinco ciudades de Colombiaspa
dc.title.translatedIntra-urban variability of the oxidative potential of PM2.5 in five Colombian citieseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.contentImage
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DocumentoFinal1015448066.pdf
Tamaño:
3.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: