Simulación de los efectos radiobiológicos en el ADN inducidos por partículas alfa del Ra223 utilizando Geant4-DNA

dc.contributor.advisorBernal Rodriguez, Mario Antonio
dc.contributor.advisorPlazas, María Cristina
dc.contributor.authorMontufar Hidalgo, Diego Luis
dc.contributor.datamanagerCarlos Arturo Clavijo Ramírez
dc.date.accessioned2021-07-26T22:17:46Z
dc.date.available2021-07-26T22:17:46Z
dc.date.issued2021-07-23
dc.descriptionilustraciones, tablasspa
dc.description.abstractEl efecto directo de las partículas alfa generadas del decaimiento radiactivo del Radio 223 hacia una molécula de ADN-B (1ZBB) del Protein Data Bank (PDB) como punto final biológico, se investigó utilizando las extensiones de Geant4-DNA simulando el transporte de partículas alfa primarias con energías de 3 a 20 MeV y sus partículas secundarias en agua líquida para estudiar el daño radiobiológico en forma de SSB y DSB. Las simulaciones se realizaron en un medio de agua esférico el cual contiene la molécula de ADN, en el que se emitieron partículas alfa de forma isotrópica que irradien uniformemente el volumen de agua. Se asumió que las deposiciones de energía de más de 8,22 eV conducen a rupturas de la cadena de ADN. Además, se calcularon los rendimientos directos de SSB y DSB para partículas alfa con diferentes energías incidentes en términos del LET. Los resultados presentaron un acuerdo razonable en términos de tendencia y valor entre los resultados de rendimiento de DSB de este trabajo, otras simulaciones y los datos experimentales disponibles. Se evaluó la efectividad biológica relativa (RBE) para la inducción de rupturas directas de doble cadena de ADN (RBE_DSB) en el ADN que producen los radionúclidos utilizados en terapias dirigidas como emisores de partículas alfa.spa
dc.description.abstractThe direct effect of the alpha particles generated from the radioactive decay of Radium 223 towards a DNA-B molecule (1ZBB) of the Protein Data Bank (PDB) as a biological end point, was investigated using Geant4-DNA extensions simulating the transport of alpha primary particles with energies from 3 to 20 MeV and their secondary particles in liquid water to study radiobiological damage in form of SSB and DSB. The simulations were carried out in a spherical water medium which contains the DNA molecule, in which alpha particles were emitted in an isotropic way that irradiate uniformly the volume of water. Energy deposition of more than 8.22 eV was assumed to lead to DNA strand breaks. Furthermore, direct SSB and DSB yields were calculated for alpha particles with different incident energies in terms of the LET. The results presented a reasonable agreement in terms of trend and value between the DSB performance results of this work, other simulations and the available experimental data. The relative biological effectiveness (RBE) was evaluated for the induction of direct DNA double strand breaks (RBE_DSB) in the DNA that radionuclides used in targeted therapies as emitters of alpha particles produce.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.researchareaRadiobiologíaspa
dc.format.extent135 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79848
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.references[1] P. Brown, “American Martyrs to Science Through the Roentgen Ray,” Radiology, vol. 28, no. 5, pp. 633–633, May 1937.spa
dc.relation.references[2] E. J. H. and A. J. Giaccia, Radiobiology for the radiologist, 7th ed. Philadelphia, PA 19103 USA: Springer Science and Business Media LLC, 2012.spa
dc.relation.references[3] C. S. Sureka and C. Armpilia, Radiation Biology for Medical Physicists. CRC Press, Taylor & Francis Group, 2017.spa
dc.relation.references[4] N. Tang, M. Bueno, S. Meylan, S. Incerti, I. Clairand, and C. Villagrasa, “SIMULATION OF EARLY RADIATION-INDUCED DNA DAMAGE ON DIFFERENT TYPES OF CELL NUCLEI,” Radiat. Prot. Dosimetry, vol. 183, no. 1–2, pp. 26–31, May 2019.spa
dc.relation.references[5] S. Meylan et al., “Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA,” Sci. Rep., vol. 7, no. 1, p. 11923, Dec. 2017.spa
dc.relation.references[6] N. Lampe et al., “Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell,” Phys. Medica, vol. 48, pp. 146–155, Apr. 2018.spa
dc.relation.references[7] D. Sakata et al., “Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA,” Phys. Medica, vol. 62, pp. 152–157, Jun. 2019.spa
dc.relation.references[8] E. Burgio, P. Piscitelli, and L. Migliore, “Ionizing Radiation and Human Health: Reviewing Models of Exposure and Mechanisms of Cellular Damage. An Epigenetic Perspective,” Int. J. Environ. Res. Public Health, vol. 15, no. 9, p. 1971, Sep. 2018.spa
dc.relation.references[9] S. Agostinelli et al., “GEANT4 - A simulation toolkit,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 506, no. 3, pp. 250–303, Jul. 2003.spa
dc.relation.references[10] D. T. Goodhead, J. Thacker, and R. Cox, “Effects of Radiations of Different Qualities on Cells: Molecular Mechanisms of Damage and Repair,” Int. J. Radiat. Biol., vol. 63, no. 5, pp. 543–556, Jan. 1993.spa
dc.relation.references[11] E. Delage et al., “PDB4DNA: Implementation of DNA geometry from the Protein Data Bank (PDB) description for Geant4-DNA Monte-Carlo simulations,” Comput. Phys. Commun., vol. 192, pp. 282–288, Jul. 2015.spa
dc.relation.references[12] H. M. Berman, G. J. Kleywegt, H. Nakamura, and J. L. Markley, “The protein data bank at 40: Reflecting on the past to prepare for the future,” in Structure, 2012, vol. 20, no. 3, pp. 391–396.spa
dc.relation.references[13] A. J. Astudillo-Velázquez and L. Paredes-Gutiérrez, “Reflexiones sobre el uso terapéutico de 223 RaCl 2 para metástasis ósea derivada de cáncer de próstata resistente a la castración,” 2015.spa
dc.relation.references[14] United Nations Scientific Committee on the Effects Radiation of Atomic Radiation (UNSCEAR), “Sources, Effects and Risks of Ionizing Radiation,” New York, 1988.spa
dc.relation.references[15] Sociedad Española de Física Médica, Fundamentos de Física Médica: Volumen 8. Radiobiología y principios de Oncología, ADI Servic. Madrid, 2016.spa
dc.relation.references[16] U. H. Ehling, “Quantification of the Genetic Risk of Environmental Mutagens,” Risk Anal., vol. 8, no. 1, pp. 45–57, 1988.spa
dc.relation.references[17] K. Sankaranarayanan, “Genetic effects of ionising radiation in man,” Annals of the ICRP, vol. 22, no. 1. No longer published by Elsevier, pp. 75–94, 01-Jan-1991.spa
dc.relation.references[18] J. Boice Jr et al., “ICRP Publication 118. ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in a Radiation Protection Context,” 2011.spa
dc.relation.references[19] L. de la F. Rosales, “A Monte Carlo Study of the Direct and Indirect DNA Damage Induced by Ionizing Radiation .,” p. 131, 2018.spa
dc.relation.references[20] S. Incerti et al., “The Geant4-DNA project,” Int. J. Model. Simulation, Sci. Comput., vol. 1, no. 2, pp. 157–178, 2010.spa
dc.relation.references[21] S. Incerti, M. Douglass, S. Penfold, S. Guatelli, and E. Bezak, “Review of Geant4-DNA applications for micro and nanoscale simulations,” Phys. Medica, vol. 32, no. 10, pp. 1187–1200, Oct. 2016.spa
dc.relation.references[22] I. Plante and F. A., “Monte-Carlo Simulation of Ionizing Radiation Tracks,” in Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science, InTech, 2011.spa
dc.relation.references[23] J. C. Forster, M. J. J. Douglass, W. M. Phillips, and E. Bezak, “Monte Carlo Simulation of the Oxygen Effect in DNA Damage Induction by Ionizing Radiation,” Radiat. Res., vol. 190, no. 3, p. 248, Jun. 2018.spa
dc.relation.references[24] S. Incerti et al., “Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project,” Med. Phys., vol. 45, no. 8, pp. e722–e739, Aug. 2018.spa
dc.relation.references[25] G. Sgouros et al., “MIRD pamphlet No. 22 (Abridged): Radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy,” Journal of Nuclear Medicine, vol. 51, no. 2. J Nucl Med, pp. 311–328, 01-Feb-2010.spa
dc.relation.references[26] C. Villagrasa, Z. Francis, and S. Incerti, “Physical models implemented in the GEANT4-DNA extension of the GEANT-4 toolkit for calculating initial radiation damage at the molecular level.,” Radiat. Prot. Dosimetry, vol. 143, no. 2–4, pp. 214–8, Feb. 2011.spa
dc.relation.references[27] S. Meylan, U. Vimont, S. Incerti, I. Clairand, and C. Villagrasa, “Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool,” Comput. Phys. Commun., vol. 204, pp. 159–169, Jul. 2016.spa
dc.relation.references[28] C. Villagrasa et al., “Geant4-DNA simulation of DNA damage caused by direct and indirect radiation effects and comparison with biological data.,” EPJ Web Conf., vol. 153, p. 04019, 2017.spa
dc.relation.references[29] M. B. Tavakoli, H. Moradi, H. Khanahmad, and M. Hosseini, “Circular Mitochondrial DNA: A Geant4-DNA User Application for Evaluating Radiation-induced Damage in Circular Mitochondrial DNA.,” J. Med. Signals Sens., vol. 7, no. 4, pp. 213–219, 2017.spa
dc.relation.references[30] K. P. Chatzipapas et al., “Quantification of <scp>DNA</scp> double‐strand breaks using Geant4‐ <scp>DNA</scp>,” Med. Phys., vol. 46, no. 1, p. mp.13290, Dec. 2018.spa
dc.relation.references[31] P. Shamshiri, G. Forozani, and A. Zabihi, “An investigation of the physics mechanism based on DNA damage produced by protons and alpha particles in a realistic DNA model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 454, pp. 40–44, Sep. 2019.spa
dc.relation.references[32] Y. Alexandra and P. Giron, “Aproximación computacional vía geant4 a la esterilización de membranas amnióticas humanas usando radiación ionizante,” 2017.spa
dc.relation.references[33] A. Marcela and F. Torres, “Estimation of the relative biological effectiveness of heavy ions using the dose-mean transfer energy,” 2019.spa
dc.relation.references[34] “PDB-101: Molecule of the Month: DNA.” [Online]. Available: http://pdb101.rcsb.org/motm/23. [Accessed: 26-Nov-2020].spa
dc.relation.references[35] A. H.-J. Wang et al., “Molecular structure of a left-handed double helical DNA fragment at atomic resolution,” Nature, vol. 282, no. 5740, pp. 680–686, Dec. 1979.spa
dc.relation.references[36] R. E. Dickerson, “The DNA Helix and How it is Read,” Sci. Am., vol. 249, no. 6, pp. 94–111, Dec. 1983.spa
dc.relation.references[37] T. Schalch, S. Duda, D. F. Sargent, and T. J. Richmond, “X-ray structure of a tetranucleosome and its implications for the chromatin fibre,” Nature, vol. 436, no. 7047, pp. 138–141, Jul. 2005.spa
dc.relation.references[38] M. Pertea and S. L. Salzberg, “Between a chicken and a grape: estimating the number of human genes,” Genome Biol., vol. 11, no. 5, p. 206, May 2010.spa
dc.relation.references[39] H. R. Drew et al., “Structure of a B-DNA dodecamer: conformation and dynamics.,” Proc. Natl. Acad. Sci., vol. 78, no. 4, pp. 2179–2183, Apr. 1981.spa
dc.relation.references[40] B. N. Conner, C. Yoon, J. L. Dickerson, and R. E. Dickerson, “Helix geometry and hydration in an A-DNA tetramer: IC-C-G-G,” J. Mol. Biol., vol. 174, no. 4, pp. 663–695, Apr. 1984.spa
dc.relation.references[41] F. M. Khan, L. Wilkins, and Williams, The Physics of Radiation Therapy, 4th ed., vol. 37, no. 3. Baltimore and Philadelphia: Wiley-Blackwell, 2010.spa
dc.relation.references[42] D. T. B. Pedro Andreo and and F. H. A. Alan E. Nahum, Jan Seuntjens, Fundamentals of Ionizing Radiation Dosimetry, vol. 2. Wiley, 2017.spa
dc.relation.references[43] E. B. Podgorsak, Radiation Physics for Medical Physicists. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.spa
dc.relation.references[44] M. J. Berger et al., Stopping powers and ranges for protons and alpha particles. ICRU report 49, vol. os25, no. 2. SAGE Publications, 1993.spa
dc.relation.references[45] M. J. Berger et al., Stopping Powers for Electrons and Positrons. ICRU Report 37, vol. os19, no. 2. 1984.spa
dc.relation.references[46] A. Allisy, W. A. Jennings, A. M. Kellerer, J. W. Müller, H. H. Rossi, and S. M. Seltzer, “International Commission on Radiation Units and Measurements. Report 60,” J. Int. Comm. Radiat. Units Meas., vol. os31, no. 1, p. NP-NP, Dec. 1998.spa
dc.relation.references[47] L. T. Dauer et al., “Radiation safety considerations for the use of 223RaCl2 de in men with castration-resistant prostate cancer,” Health Phys., vol. 106, no. 4, pp. 494–504, Apr. 2014.spa
dc.relation.references[48] Z. Ahmadi Ganjeh, M. Eslami-Kalantari, M. Ebrahimi Loushab, and A. A. Mowlavi, “Simulation of direct DNA damages caused by alpha particles versus protons,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 473, pp. 10–15, Jun. 2020.spa
dc.relation.references[49] E. Herranz Muelas, “Simulaciones Monte Carlo para radioterapia intraoperatoria con haces de electrones,” Universidad Complutense de Madrid, 2013.spa
dc.relation.references[50] P. B. Ibáñez Cuenca, “Implementation and validation of ultra-fast dosimetric tools for IORT,” Universidad Complutense de Madrid, 2018.spa
dc.relation.references[51] R. Shukla, N. P. Patel, H. P. Yadav, and V. Kaushal, “A Monte Carlo simulation study on the effectiveness of electron filters designed for telecobalt radiation therapy treatment,” Int. J. Radiat. Res., vol. 17, No. 2, p. 12, 2019.spa
dc.relation.references[52] F. J. García Cases, “Protección radiológica en radioterapia intraoperatoria mediante un acelerador portátil de electrones,” Universidad Católica de Murcia, 2016.spa
dc.relation.references[53] S. INCERTI et al., “THE GEANT4-DNA PROJECT,” Int. J. Model. Simulation, Sci. Comput., vol. 01, no. 02, pp. 157–178, Jun. 2010.spa
dc.relation.references[54] S. Incerti et al., “Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project,” Med. Phys., vol. 45, no. 8, pp. e722–e739, Aug. 2018.spa
dc.relation.references[55] “Physics List.” [Online]. Available: http://geant4-dna.in2p3.fr/styled-3/styled-9/index.html. [Accessed: 04-Mar-2021].spa
dc.relation.references[56] “Geant4 General Particle Source — Book For Application Developers 10.7 documentation.” [Online]. Available: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html#g4gps. [Accessed: 04-Mar-2021].spa
dc.relation.references[57] E. Choi, K. S. Chon, and M. G. Yoon, “Evaluating direct and indirect effects of low-energy electrons using Geant4-DNA,” Radiat. Eff. Defects Solids, vol. 175, no. 11–12, pp. 1042–1051, Nov. 2020.spa
dc.relation.references[58] “Plot Digitizer.” [Online]. Available: http://plotdigitizer.sourceforge.net/. [Accessed: 03-Apr-2021].spa
dc.relation.references[59] A. Ottolenghi, M. Merzagora, and H. G. Paretzke, “DNA complex lesions induced by protons and α-particles: Track structure characteristics determining linear energy transfer and particle type dependence,” Radiat. Environ. Biophys., vol. 36, no. 2, pp. 97–103, Jun. 1997.spa
dc.relation.references[60] M. A. Bernal, C. E. deAlmeida, C. Sampaio, S. Incerti, C. Champion, and P. Nieminen, “The invariance of the total direct DNA strand break yield,” Med. Phys., vol. 38, no. 7, pp. 4147–4153, Jun. 2011.spa
dc.relation.references[61] P. Pater et al., “Proton and light ion RBE for the induction of direct DNA double strand breaks,” Med. Phys., vol. 43, no. 5, pp. 2131–2140, Apr. 2016.spa
dc.relation.references[62] S. Incerti et al., “Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 306, pp. 158–164, Jul. 2013.spa
dc.relation.references[63] “IAEA. Relative biological effectiveness in ion beam therapy.”spa
dc.relation.references[64] A. Zabihi et al., “Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank,” Phys. Rev. E, vol. 99, no. 5, p. 052404, May 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.decsEfectos de la radiación
dc.subject.decsRadiation effects
dc.subject.decsGenética
dc.subject.decsGenetics
dc.subject.proposalRadiobiologíaspa
dc.subject.proposalRadio 223spa
dc.subject.proposalPartículas alfaspa
dc.subject.proposalRadiación Ionizantespa
dc.subject.proposalADNspa
dc.subject.proposalDaño directo al ADNspa
dc.subject.proposalProtein Data Bankeng
dc.subject.proposalMonte Carlospa
dc.subject.proposalGeant4-DNAspa
dc.subject.proposalRadiobiologyeng
dc.subject.proposalRadium 223eng
dc.subject.proposalAlpha Particleseng
dc.subject.proposalIonizing Radiationeng
dc.subject.proposalDNAeng
dc.subject.proposalDirect DNA Damageeng
dc.subject.proposalProtein Data Bankeng
dc.subject.proposalMonte Carloeng
dc.subject.proposalGeant4-DNAeng
dc.titleSimulación de los efectos radiobiológicos en el ADN inducidos por partículas alfa del Ra223 utilizando Geant4-DNAspa
dc.title.translatedSimulation of radiobiological effects on DNA induced by alpha particles of Ra223 using Geant4-DNAeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085282844.2021.pdf
Tamaño:
4.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: