Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x

dc.contributor.advisorMartínez Martínez, Roberto Enrique
dc.contributor.authorBasto Vega, Jhon Jairo
dc.contributor.researchgroupGrupo de Física Teórica de Altas Energíasspa
dc.date.accessioned2022-06-28T15:29:11Z
dc.date.available2022-06-28T15:29:11Z
dc.date.issued2022-02-13
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn el presente proyecto se realiza un estudio detallado del modelo estándar, en el que se tuvo en cuenta el Lagrangiano fermionico, bosonico y Yukawa para la descripción de la respectivas interacciones que ocurren en la naturaleza, y posteriormente con el uso del rompimiento espontáneo de la simetría y el mecanismo de Higgs para explicar la obtención de la masa de las partículas elementales. Además se analiza que al rotar el Lagrangiano fermionico, en este caso el sector de los Quarks, y llevarlo al estado base de masa aparece la matriz de mezcla (CKM) que explica los cambios de sabor [ 1 ], y también se consigue el invariante de Jarlskog que es una medida de la violación (CP) [2]. Uno de los objetivos de este trabajo es comprender la fenomenología detrás de la mezcla de Quarks y la violación (CP), para ello se usa las texturas de masa tipo Fritzsch, donde se demuestra que las matrices con textura de seis ceros no fueron compatibles [ 3 ] con los resultados experimentales por tener un elemento fijo, sin embargo las de cinco ceros propuestas por Ramond y colaboradores [ 4 ] logran tener resultados favorables, ya que los elementos de la matriz de mezcla están muy cercanos a los valores experimentales, y el invariante Jarlskog para cada tipo de textura de ceros se encuentra dentro del intervalo experimental, los cuales son presentados en la DPG [5]. Otro objetivo es la explicación de la jerarquía de masas de los fermiónes en especial para los Quarks, siendo la más indicadas para describir este fenómeno, las extensiones Abelianas no universales del MS. Para lo cual se utiliza el modelo U(1)’x quiral libre de anomalías y que es propuesto por [ 6 ], en el que aparecen unas ciertas consecuencias, las cuales son: Un nuevo bóson exótico Z’ que tiene efectos directos en los cambios de sabor, también aparecen tres nuevos Quarks pesados (J1), (J2) y (T) debido a la diagonalización por bloques de las matrices de masa de los sectores Up y Down de los Quarks, sin embargo algunas partículas elementales como el Quark up (u), down (d) y strange (s) quedan sin masa por lo que se recurre a la corrección radiativa para resolver este problema. (Texto tomado de la fuente)spa
dc.description.abstractIn the present project a detailed study of the standard model is carried out, in which the fermionic, bosonic and Yukawa Lagrangian was taken into account for the description of the respective interactions that occur in nature, and later with the use of the spontaneous symmetry breaking and the Higgs mechanism to explain the obtaining of the mass of elementary particles. It is also analyzed that by rotating the fermionic Lagrangian, in this case the Quark sector, and bringing it to the ground state of mass, the mixing matrix (CKM) appears, which explains the flavor changes [1], and also the Jarlskog invariant is obtained, which is a measure of the violation (CP) [2]. One of the objectives of this work is to understand the phenomenology behind Quark mixing and violation (CP), for this we use the Fritzsch-type mass textures, where it is shown that the six-zero textured matrices were not compatible with the experimental results because they have a fixed element, however, those with five zeros proposed by Ramond and collaborators [4] achieve favorable results, since the elements of the mixing matrix are very close to the experimental values, and the Jarlskog invariant for each type of texture of zeros is within the experimental range, which are presented in the DPG [5]. Another objective is the explanation of the mass hierarchy of the fermions, especially for the Quarks, being the most indicated to describe this phenomenon, the non-universal Abelian extensions of the DM. For which the anomaly-free chiral U(1)’x model proposed by [6] is used, in which certain consequences appear, which are: A new exotic boson Z’ which has direct effects on the flavor changes, also appear three new heavy Quarks (J 1 ), (J 2 ) and (T) due to the block diagonalization of the mass matrices of the Up and Down sectors of the Quarks, however some elementary particles as the Quark up (u), down (d) and strange (s) remain without mass so we resort to the radiative correction to solve this problem.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFísica Teórica en Altas Energíasspa
dc.format.extent84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81632
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.references[1] David Griffiths. Introduction to elementary particles. John Wiley & Sons, 2008.spa
dc.relation.references[2] Cecilia Jarlskog. CP violation, volume 3. World Scientific, 1989.spa
dc.relation.references[3] Yithsbey Giraldo. Reply to “comment on ‘texture zeros and weak basis transformations in the quark sector of the standard model”’. Physical Review D, 91(3):038302, 2015.spa
dc.relation.references[4] P Ramond, RG Roberts, and Graham G Ross. Stitching the yukawa quilt. Nuclear Physics B, 406(1-2):19–42, 1993.spa
dc.relation.references[5] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.spa
dc.relation.references[6] SF Mantilla, R Martinez, and F Ochoa. Neutrino and c p-even higgs boson masses in a nonuniversal u(1)’ extension. Physical Review D, 95(9):095037, 2017.spa
dc.relation.references[7] Chong-sa Lim, Toshiyuki Morii, and Shankar Nath Mukherjee. The physics of the standard model and beyond. World Scientific, 2004.spa
dc.relation.references[8] J Hosaka, K Ishihara, J Kameda, Yusuke Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in super- kamiokande-i. Physical Review D, 73(11):112001, 2006.spa
dc.relation.references[9] MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of icecube deepcore data. Physical Review D, 91(7):072004, 2015.spa
dc.relation.references[10] Investigación y Ciencia. Física del sabor. https://www.investigacionyciencia.es/blogs/fisica- y-quimica/29/posts/fsica-de-sabores-10736.spa
dc.relation.references[11] Gustavo Castello Branco, David Emmanuel-Costa, and R Gonzalez Felipe. Texture zeros and weak basis transformations. Physics Letters B, 477(1-3):147–155, 2000.spa
dc.relation.references[12] H Nishiura, K Matsuda, and T Fukuyama. Lepton and quark mass matrices. Physical Review D, 60(1):013006, 1999.spa
dc.relation.references[13] L Lavoura. New texture-zero patterns for lepton mixing. Journal of Physics G: Nuclear and Particle Physics, 42(10):105004, 2015.spa
dc.relation.references[14] Savas Dimopoulos, Lawrence J Hall, and Stuart Raby. Predictive framework for fermion masses in supersymmetric theories. Physical Review Letters, 68(13):1984, 1992.spa
dc.relation.references[15] Howard Georgi and C Jarlskog. A new lepton-quark mass relation in a unified theory. Physics Letters B, 86(3-4):297–300, 1979.spa
dc.relation.references[16] Harald Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436–440, 1977.spa
dc.relation.references[17] Harald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978.spa
dc.relation.references[18] Harald Fritzsch. Quark masses and flavor mixing. Nuclear Physics B, 155(1):189–207, 1979.spa
dc.relation.references[19] Yithsbey Giraldo. Ceros de textura en el sector de quarks del modelo estándar. 2016.spa
dc.relation.references[20] Manmohan Gupta and Gulsheen Ahuja. Flavor mixings and textures of the fermion mass matrices. International Journal of Modern Physics A, 27(31):1230033, 2012.spa
dc.relation.references[21] Camilo Alejandro Rojas Pacheco. Texturas de masa para el sector de quarks bajo el modelo electrodébil. 2014.spa
dc.relation.references[22] Dong-sheng Du and Zhi-zhong Xing. A modified fritzsch ansatz with additional first- order perturbation. Technical report, P00005208, 1992.spa
dc.relation.references[23] Dongsheng Du and Zhi-zhong Xing. Quark mass matrices with full first-order perturba- tion. Physical Review D, 48(5):2349, 1993.spa
dc.relation.references[24] A Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of yukawa coupling matrices in the two higgs doublet model type iii. The European Physical Journal C, 50(4):935–948, 2007.spa
dc.relation.references[25] Elena Accomando, Claudio Coriano, Luigi Delle Rose, Juri Fiaschi, Carlo Marzo, and Stefano Moretti. Z’, higgses and heavy neutrinos in u (1)’ models: from the lhc to the gut scale. Journal of High Energy Physics, 2016(7):86, 2016.spa
dc.relation.references[26] R Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1)’ model. Physical Review D, 89(5):056008, 2014.spa
dc.relation.references[27] Lisa L Everett, Jing Jiang, Paul G Langacker, and Tao Liu. Phenomenological implications of supersymmetric family nonuniversal u (1) models. Physical Review D, 82(9):094024, 2010.spa
dc.relation.references[28] A Leike. The phenomenology of extra neutral gauge bosons, phys, 1999.spa
dc.relation.references[29] Paul Langacker and Michael Plümacher. Flavor changing effects in theories with a heavy z’ boson with family nonuniversal couplings. Physical Review D, 62(1):013006, 2000.spa
dc.relation.references[30] Marco Antonio Moreira. El modelo estándar de la física de partículas. Revista Brasileña de Enseñanza de Física, 31(1):1306, 2009.spa
dc.relation.references[31] Patricia Castiella Esparza. Física del bosón de higgs en el lhc.spa
dc.relation.references[32] Ta-Pei Cheng and Ling-Fong Li. Gauge theory of elementary particle physics. Oxford university press, 1994.spa
dc.relation.references[33] Roberto Martínez. Teoría cuántica de campos. Universidad Nacional de Colombia, 2007.spa
dc.relation.references[34] Georges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, R Aben, B Abi, M Abolins, OS AbouZeid, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012.spa
dc.relation.references[35] Serguei Chatrchyan, Vardan Khachatryan, Albert M Sirunyan, Armen Tumasyan, Wolf- gang Adam, Ernest Aguilo, Thomas Bergauer, M Dragicevic, J Erö, C Fabjan, et al. Obser- vation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–61, 2012.spa
dc.relation.references[36] M Gomez-Bock, M Mondragon, M Muhlleitner, R Noriega-Papaqui, I Pedraza, M Spira, and PM Zerwas. Rompimiento de la simetria electrodebil y la fisica del higgs: Conceptos basicos. arXiv preprint hep-ph/0509077, 2005.spa
dc.relation.references[37] Nestor Quintero Poveda. Una descripción sencilla de las teorías gauge. Revista Tumbaga, 1(4), 2009.spa
dc.relation.references[38] LL Salcedo. Física matemática. grupos de lie, rotaciones, unitarios, poincaré. monte carlo.spa
dc.relation.references[39] Antonio Pich. The standard model of electroweak interactions. arXiv preprint ar- Xiv:1201.0537, 2012.spa
dc.relation.references[40] Sérgio Ferraz Novaes. Standard model: An introduction. arXiv preprint hep-ph/0001283, 2000.spa
dc.relation.references[41] M Herrero. The standard model. In Techniques and Concepts of High Energy Physics X, pages 1–59. Springer, 1999.spa
dc.relation.references[42] Paul Langacker. The standard model and beyond. Taylor & Francis, 2017.spa
dc.relation.references[43] Jeffrey Goldstone. Field theories with «superconductor» solutions. Il Nuovo Cimento (1955-1965), 19(1):154–164, 1961.spa
dc.relation.references[44] John F Gunion, Howard E Haber, Gordon Kane, and Dawson Sally. The Higgs hunter’s guide. CRC Press, 2018.spa
dc.relation.references[45] Luis G Cabral-Rosetti. Introducción al modelo estándar en el background field method electrodebil. Revista mexicana de física, 48(2):155–181, 2002.spa
dc.relation.references[46] IS Towner and JC Hardy. The evaluation of vud and its impact on the unitarity of the cabibbo–kobayashi–maskawa quark-mixing matrix. Reports on Progress in Physics, 73(4):046301, 2010.spa
dc.relation.references[47] Lincoln Wolfenstein. Parametrization of the kobayashi-maskawa matrix. Physical Review Letters, 51(21):1945, 1983.spa
dc.relation.references[48] Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.spa
dc.relation.references[49] Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of theoretical physics, 49(2):652–657, 1973.spa
dc.relation.references[50] Ling-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the kobayashi- maskawa matrix. Physical Review Letters, 53(19):1802, 1984.spa
dc.relation.references[51] Yithsbey Giraldo. Texture zeros and weak basis transformations in the quark sector of the standard model. Physical Review D, 86(9):093021, 2012.spa
dc.relation.references[52] Davi B Costa, Bogdan A Dobrescu, and Patrick J Fox. General solution to the u (1) anomaly equations. Physical review letters, 123(15):151601, 2019.spa
dc.relation.references[53] Samandeep Sharma, Priyanka Fakay, Gulsheen Ahuja, and Manmohan Gupta. Comment on “texture zeros and weak basis transformations in the quark sector of the standard model”. Physical Review D, 91(3):038301, 2015.spa
dc.relation.references[54] Samandeep Sharma, Priyanka Fakay, Gulsheen Ahuja, and Manmohan Gupta. Clues towards unified textures. International Journal of Modern Physics A, 29(21):1444005, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembQuarks
dc.subject.lembParticles (Nuclear physics)eng
dc.subject.lembPARTICULAS (FISICA NUCLEAR)spa
dc.subject.proposalModelo estándarspa
dc.subject.proposalTextura de masaspa
dc.subject.proposalPartículas exóticasspa
dc.subject.proposalModelo U(1)’x
dc.subject.proposalCKMspa
dc.subject.proposalInvariante de Jarlskogspa
dc.subject.proposalAnomalías quiralesspa
dc.subject.proposalStandard Modeleng
dc.subject.proposalMass Textureeng
dc.subject.proposalExotic Particleseng
dc.subject.proposalU(1)’x Modeleng
dc.subject.proposalJarlskog Invarianteng
dc.subject.proposalChiral Anomalieseng
dc.titleCambios de sabor en el sector down de los Quarks en modelos modelo U(1)’xspa
dc.title.translatedFlavor changes in the down sector of Quarks in U(1)'_{x} modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014255782.2022.pdf
Tamaño:
545.06 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: