Factores que influyen en el tamaño corporal en poblaciones de Glossophaga longirostris Miller, 1898 (Chiroptera: Phyllostomidae)
| dc.contributor.advisor | Vargas Ramírez, Mario | |
| dc.contributor.advisor | López Arévalo, Hugo Fernando | |
| dc.contributor.author | Alemán González, Nelson David | |
| dc.contributor.researchgroup | Biodiversidad y Conservación Genética | spa |
| dc.date.accessioned | 2025-04-22T19:34:33Z | |
| dc.date.available | 2025-04-22T19:34:33Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones, diagramas, fotografías, mapas | spa |
| dc.description.abstract | La familia de murciélagos Phyllostomidae ha experimentado un incremento en su diversidad gracias a estudios morfológicos y técnicas moleculares, y el género Glossophaga no han sido la excepción. Actualmente se reconocen nueve especies dentro de este género, distribuidos en Centro y Suramérica, siendo Glossophaga longirostris la especie de mayor tamaño en la mayoría de las medidas craneales. Para esta especie se reconocen seis subespecies, diferenciadas principalmente por su tamaño corporal. En Colombia, están presentes tres de ellas: G. l. major, G. l. longirostris y G. l. reclusa, aunque existen pocos registros en colecciones y estudios. En trabajo evalúa los posibles factores que influyen en la variación morfológica de Glossophaga longirostris, así como la sistemática y la distribución de las tres subespecies presentes en Colombia, utilizando tres líneas de evidencia: morfológica, molecular y modelos de distribución. La evidencia morfológica se basó en el análisis de nueve medidas craneales de 103 individuos, utilizando PERMANOVA y un análisis discriminante para evaluar la diferenciación morfológica de los grupos. La línea de evidencia molecular incluyó la amplificación y análisis del gen Citocromo Oxidasa l (COI). Se realizó un análisis de Inferencia Bayesiana para explorar las relaciones filogenéticas, un análisis de distancias genéticas, una red de haplotipos y un análisis de diferenciación poblacional usando el índice de fijación FST. Además, se realizó un Modelamiento de Distribución (MD) para dos períodos: el Último Glacial Máximo (hace 21.000 años aproximadamente) y el presente, con el objetivo de evaluar si las poblaciones actualmente alopátricas estuvieron conectadas en el pasado. Los resultados mostraron diferencias morfológicas significativas entre las tres unidades taxonómicas operativas (OTUs) evaluadas (F = 16.25; p = 0.0001). Sin embargo, la variación sigue un patrón en el tamaño del cráneo y sin formar grupos discretos. El análisis filogenético del gen COI resultó en una politomía, con clados débilmente soportados. La red de haplotipos reveló que las agrupaciones no corresponden completamente con las localidades geográficas. Las distancias genéticas entre los clados fueron pequeñas, sugiriendo que las secuencias analizadas pertenecen al mismo linaje evolutivo (especie). No obstante, el análisis de diferenciación poblacional (FST) mostró diferencias significativas entre las OTUs, indicando la existencia de poblaciones diferenciadas que podrían considerarse Unidades de Manejo Independiente. El MD actual reveló áreas de distribución diferenciales para cada grupo. Sin embargo, el análisis para el Último Glacial Máximo sugirió una conexión entre los rangos proyectados. Con base en estas evidencias, se concluye que Glossophaga longirostris en Colombia está representada por un solo linaje evolutivo, cuyas poblaciones presentan una clina de variación morfológica que podría ser resultado del aislamiento geográfico actual (Texto tomado de la fuente). | spa |
| dc.description.abstract | The bat family Phyllostomidae has shown an increase in its diversity due to morphological studies and molecular techniques, and the genus Glossophaga is no exception. Currently, nine species are recognized within this genus, distributed across Central and South America, with Glossophaga longirostris being the largest species in most cranial measurements. Six subspecies are recognized for this species, primarily differentiated by body size. In Colombia, three of these subspecies are present: G. l. major, G. l. longirostris, and G. l. reclusa, although there are few records in collections and studies. This work evaluates the potential factors influencing the morphological variation of Glossophaga longirostris, as well as the systematics and distribution of the three subspecies present in Colombia, using three lines of evidence: morphological, molecular, and ecological niche modeling. The morphological evidence was based on the analysis of nine cranial measurements from 103 individuals, using PERMANOVA and discriminant analysis to assess morphological differentiation among groups. The molecular evidence included the amplification and analysis of the Cytochrome Oxidase I (COI) gene. A Bayesian Inference analysis was conducted to explore phylogenetic relationships, along with a genetic distance analysis, a haplotype network, and a population differentiation analysis (FST). Additionally, species distribution modeling (SDM) was performed for two periods: the Last Glacial Maximum (21,000 years ago) and the present, aiming to evaluate whether currently allopatric populations were connected in the past. The results showed significant morphological differences among the three operational taxonomic units (OTUs) evaluated (F = 16.25; p = 0.0001). However, the variation follows a clinal pattern in skull size, without forming discrete groups. The phylogenetic analysis of the COI gene resulted in a polytomy, with clades showing low statistical support. The haplotype network revealed that the groupings do not fully correspond to geographic locations. Genetic distances between clades were small, suggesting that the analyzed sequences belong to the same evolutionary lineage (species). Nonetheless, the population differentiation analysis (FST) showed significant differences among OTUs, indicating the existence of differentiated populations that could be considered Independent Management Units. The current SDM revealed differential distribution areas for each group. However, the analysis for the Last Glacial Maximum suggested a connection between the projected ranges. Based on this evidence, it is concluded that Glossophaga longirostris in Colombia is represented by a single evolutionary lineage, with populations exhibiting a clinal morphological variation that may result from current geographic isolation. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | xv, 66 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88060 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
| dc.relation.references | Baker, R. J., & Bradley, R. D. (2006). Speciation in mammals and the genetic species concept. Journal of Mammalogy 87(4), 643-662. https://doi.org/10.1644/06-MAMM-F-038R2.1 | spa |
| dc.relation.references | Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). Paleoclim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.254 | spa |
| dc.relation.references | Burgin, C. J., Colella, J. P., Kahn, P. L., & Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy, 99(1), 1-14. https://doi.org/10.1093/jmammal/gyx147 | spa |
| dc.relation.references | Burbrink, F. T., Crother, B. I., Murray, C. M., Smith, B. T., Ruane, S., Myers, E. A., & Pyron, R. A. (2022). Empirical and philosophical problems with the subspecies rank. Ecology and Evolution, 12(7), 1-17. https://doi.org/10.1002/ece3.9069 | spa |
| dc.relation.references | Burnaby, T. P. 1966. Growth-Invariant discriminant functions and generalized distances. Biometrics 22 (1), 96-110. https://doi.org/10.2307/2528217 | spa |
| dc.relation.references | Calahorra-Oliart, A., Ospina-Garcés, S.M., & León‐Paniagua, L. (2021). Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? Journal of Mammalogy, 102, 54-68. https://doi.org/10.1093/jmammal/gyaa116 | spa |
| dc.relation.references | Cárdenas-González C., Fernández-Rodríguez R. C., Rodríguez-Posada M. E. (2012). Variación craneométrica y distribución intraespecífica de Glossophaga longirostris Miller, 1898 en Colombia. En II Congreso Latinoamericano y XXV Jornadas Argentinas de Mastozoología: Libro de resúmenes (pp. 94-95). Comisión Organizadora Local. | spa |
| dc.relation.references | Clare, E. L., Lim, B. K., Fenton, M. B., & Hebert, P. D. N. (2011). Neotropical bats: Estimating species diversity with DNA barcodes. PLoS ONE, 6(7), 1-14. https://doi.org/10.1371/journal.pone.0022648 | spa |
| dc.relation.references | Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular ecology, 9(10), 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x | spa |
| dc.relation.references | Díaz, M. M., Solari, S., Gregorin, R., Aguirre, L. F., Barquez, R. M. (2021). Clave de Identificación de los murciélagos Neotropicales. Programa de Conservación de los Murciélagos de Argentina, No 4. | spa |
| dc.relation.references | Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leath-wick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz & N. E. Zimmermann (2006): Novel methods improve prediction of species’ distributions form occurrence data. Ecography, 29 (129–151). | spa |
| dc.relation.references | Emmons, L. H., (1997) Neotropical Rainforest Mammals: A Field Guide. 2nd Edition, The University of Chicago Press, Chicago and London. | spa |
| dc.relation.references | Esquivel, D. A., Penagos, A. P., García-R., S., & Bennett, D. (2020). New records of pygmy round-eared bat, Lophostoma brasiliense peters, 1867 (Chiroptera, Phyllostomidae), and updated distribution in Colombia. Check List, 16(2), 277-285 https://doi.org/10.15560/16.2.277 | spa |
| dc.relation.references | Excoffier, L., Lischer, H. (2010). Arlequin suite ver 3.5: A new series of program to perform population genets analyses under Linux and Windows. Molecular ecology Resources. 10 (564-567). https://doi.org/10.1111/j.1755-0998.2010.02847.x | spa |
| dc.relation.references | Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086 | spa |
| dc.relation.references | Gutiérrez, E. E., Anderson, R. P., Voss, R. S., Ochoa-G., J., Aguilera, M., & Jansa, S. A. (2014). Phylogeography of Marmosa robinsoni: Insights into the biogeography of dry forests in northern South America. Journal of Mammalogy, 95 (1175-1188). https://doi.org/10.1644/14-MAMM-A-069 | spa |
| dc.relation.references | Griffiths, T. A., & Gardner, A. L. 2008. Subfamily Glossophaginae Bonaparte, 1845. Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews, and Bats (A. L. Gardner, ed.). The University of Chicago Press, Chicago. | spa |
| dc.relation.references | Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia. Electronica, 4(1), 1-9. | spa |
| dc.relation.references | Hoffmann, F. G., & Baker, R. J. (2001). Systematics of bats of the genus Glossophaga (Chiroptera: Phyllostomidae) and phylogeography in S. Soricina based on the cytochrome-b gene. Journal of Mammalogy, 82(4), 1092-1101. https://doi.org/10.1644/1545-1542(2001)082<1092:SOBOTG>2.0.CO;2 | spa |
| dc.relation.references | Hoffmann, F. G., Platt, R. N., Mantilla-Meluk, H., Medellin, R. A., Baker, R. J. (2019). Geographic and genetic variation in bats of genus Glossophaga. Special publications – The Museum, Texas Tech University. 187. | spa |
| dc.relation.references | Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Haeseler, A., Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285 | spa |
| dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096 | spa |
| dc.relation.references | Mammal Diversity Database. (2024). Mammal Diversity Database (Version 1.13) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10595931 | spa |
| dc.relation.references | Mantilla-Meluk, H., Siles, L., & Aguirre, L. F. (2014). Geographic and ecological amplitude in the nectarivorous bat Anoura fistulata (Phyllostomidae: Glossophaginae). Caldasia, 36(2), 373-388. | spa |
| dc.relation.references | Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular biology and evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015 | spa |
| dc.relation.references | Morritz, C. (1994). Defining “Evolutionary Significant Units” for conservation. Trends Ecol Evol, 9(10), 373-375. https://doi.org/10.1016/0169-5347(94)90057-4 | spa |
| dc.relation.references | Newton, L. R., Nassar, J. M., & Fleming, T. H. (2003). Genetic population structure and mobility of two nectar-feeding bats from Venezuelan deserts: Inferences from mitochondrial DNA. Molecular Ecology, 12(11), 3191-3198. https://doi.org/10.1046/j.1365-294X.2003.01982.x | spa |
| dc.relation.references | Oliveira, U., Soares-Filho, B. S., Paglia, A. P., Brescovit, A. D., De Carvalho, C. J. B., Silva, D. P., Rezende, D. T., Leite, F. S. F., Batista, J. A. N., Barbosa, J. P. P. P., Stehmann, J. R., Ascher, J. S., De Vasconcelos, M. F., De Marco, P., Löwenberg-Neto, P., Ferro, V. G., & Santos, A. J. (2017). Biodiversity conservation gaps in the Brazilian protected areas. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08707-2 | spa |
| dc.relation.references | Pearson, R. G., C. J. Raxworthy, M. Nakamura & A. T. Peter- son (2007): Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34: 102–117. | spa |
| dc.relation.references | Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004. https://doi.org/10.1145/1015330.1015412 | spa |
| dc.relation.references | Phillips, S.J. & Dudik, M., (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x | spa |
| dc.relation.references | Prieto-Torres, D. A., & Pinilla-Buitrago, G. (2017). Estimating the potential distribution and conservation priorities of Chironectes minimus (Zimmermann, 1780) (Didelphimorphia: Didelphidae). Therya, 8(2), 131-144. https://doi.org/10.12933/therya-17-478 | spa |
| dc.relation.references | QGIS.org. (2024). *QGIS Geographic Information System* (Version 3.38.2). QGIS Association. http://www.qgis.org | spa |
| dc.relation.references | Rheingantz, M. L., de Menezes, J. F. S., de Thoisy, B. (2014). Defining Neotropical otter Lontra longicaudis distribution, conservation priorities and ecological frontiers. Tropical Conservation Science, 7(2), 214-229. https://doi.org/10.1177/194008291400700204 | spa |
| dc.relation.references | Ruiz, A., Santos, M., Soriano, P. J., Cavelier, J., Cadena, A. (1997). Relaciones mutualísticas entre el murciélago Glossophaga longirostris y las cactáceas columnares en la zona arida de La Tatacoa, Colombia. Biotropica, 29(4), 469-479. https://doi.org/10.1111/j.1744-7429.1997.tb00041.x | spa |
| dc.relation.references | Sambrook, J., Fritsch, E. F., Maniatis, T. (1989). Molecular cloning: a laboratory manual. (2nd ed). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. | spa |
| dc.relation.references | Simal, F., de Lannoy, C., García-Smith, L., Doest, O., de Freitas J. A., Franken, F., Zaandam, I., Martino, A., González-Carcacía, J. A., Peñaloza, C. L., Bertuol, P., Simal, D., Nassar, J. M. (2015). Island–island and island–mainland movements of the Curaçaoan long-nosed bat, Leptonycteris curasoae. Journal of Mammalogy, Volume 96, Issue 3, Pages 579–590. https://doi.org/10.1093/jmammal/gyv063 | spa |
| dc.relation.references | Simmons, N. B. and Cirranello, A.L. (2024). Bat Species of the World: A Taxonomic and Geographical Database. Versión 1.5. | spa |
| dc.relation.references | Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115-1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x | spa |
| dc.relation.references | Solari, S. (2018). Glossophaga longirostris. The IUCN Red List of Threatened Species 2018: e.T9275A22108249. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T9275A22108249 | spa |
| dc.relation.references | Soriano, P. J., Fariñas, M. R., Naranjo, M. E. (2000). A new subspecies of Miller’s long-tongued bat (Glossophaga longirostris) from a semiarid enclave of the Venezuelan Andes. Zeitschrift Fur Saugetierkunde, 65(6). | spa |
| dc.relation.references | Soriano, P. J., Ruiz A., Nassar J. M. (2000). Notas sobre la distribución e importancia ecológica de los murciélagos Leptonycteris curasoae y Glossophaga longirostris en zonas áridas andinas. Ecotropicos, 13, 91–95. | spa |
| dc.relation.references | Vargas, W. (2012). Los bosques secos del Valle del Cauca, Colombia: una aproximación a su flora actual. Biota Colombiana, 13(2). Recuperado a partir de https://revistas.humboldt.org.co/index.php/biota/article/view/265 | spa |
| dc.relation.references | Webster, W. D. (1993). Systematics and evolution of bats of the genus Glossophaga /. In Systematics and evolution of bats of the genus Glossophaga. Texas Tech University Press. https://doi.org/10.5962/bhl.title.156491 | spa |
| dc.relation.references | Webster, W. D., & Handley, C. O. (1986). Systematics of Miller’s long-tongued bat, Glossophaga longirostris, with description of two new subspecies. Systematics of Miller’s Long-Tongued Bat, Glossophaga Longirostris: With Descriptions of Two New Subspecies, 100, 1-22. https://www.biodiversitylibrary.org/part/250857 | spa |
| dc.relation.references | Webster, W. D., Handley, C. O., & Soriano, P. J. (1998). Glossophaga longirostris. Mammalian Species, 576. https://doi.org/10.2307/3504435. | spa |
| dc.relation.references | Wisz, M. S., R. J. Hijmans, A. T. Peterson, C. H. Graham, A. Guisan & NPSDW Group (2008): Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763–773. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.subject.ddc | 570 - Biología | spa |
| dc.subject.lemb | Geografía | spa |
| dc.subject.lemb | Evolución humana | spa |
| dc.subject.proposal | Distribución | spa |
| dc.subject.proposal | Geografía | spa |
| dc.subject.proposal | Linaje evolutivo | spa |
| dc.subject.proposal | Sistemática | spa |
| dc.subject.proposal | Subespecie | spa |
| dc.subject.proposal | Distribution | eng |
| dc.subject.proposal | Evolutionary lineage | eng |
| dc.subject.proposal | Geography | eng |
| dc.subject.proposal | Subspecies | eng |
| dc.subject.proposal | Systematics | eng |
| dc.subject.wikidata | Lineage | spa |
| dc.title | Factores que influyen en el tamaño corporal en poblaciones de Glossophaga longirostris Miller, 1898 (Chiroptera: Phyllostomidae) | spa |
| dc.title.translated | Factors influencing body size in populations of Glossophaga longirostris Miller, 1898 (Chiroptera: Phyllostomidae) | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Padres y familias | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030631021.2025.pdf
- Tamaño:
- 1.42 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

