Descomposición y coordinación paralela para solucionar un modelo de planeación de la operación de sistemas de generación y transmisión eléctrica con altas penetraciones de fuentes intermitentes, almacenamiento energético y tecnologías de redes inteligentes

dc.contributor.advisorMurillo-Sánchez, Carlos Edmundo
dc.contributor.authorBuitrago Villada, María del Pilar
dc.contributor.researchgroupPotencia Energía y Mercados - GIPEMspa
dc.date.accessioned2022-03-28T20:40:37Z
dc.date.available2022-03-28T20:40:37Z
dc.date.issued2021
dc.descriptiongráficos, tablas.spa
dc.description.abstractEste trabajo presenta una metodología de solución de un modelo estocástico usado en la planeación de la operación de sistemas eléctricos de potencia con alta penetración de fuentes de energía renovable, respuesta de la demanda y sistemas de almacenamiento energético, que además incluye de manera explícita el modelo AC de la red de transmisión. El impacto que tiene el modelo AC sobre la apropiada asignación y valoración de los recursos del sistema de potencia, en el contexto de mercados multi-dimensionales, se evidencia a través de un estudio comparativo simulando un caso de prueba de tamaño real. Resolver de forma directa un problema de las dimensiones que puede alcanzar la formulación propuesta requiere mucho tiempo, grandes esfuerzos de cálculo y recursos informáticos. Por tal motivo, se exploraron dos estrategias para explotar la estructura matemática del problema y abordar su solución usando técnicas de descomposición: La descomposición por Relajación Lagrangiana con lagrangiano Aumentado (RLA) y la Descomposición Generalizada de Benders (DGB). Entre estas, se implementó efectivamente DGB en su versión multicorte con una modificación en la formulación de los subproblemas mediante variables penalizadas. El algoritmo fue acelerado con una técnica de estabilización inspirada en los métodos de haz con región de confianza y el cómputo en paralelo de los subproblemas. Otras medidas de aceleración adicionales fueron diseñadas a partir de observaciones en la evolución de algunos parámetros durante los experimentos. El desempeño de la técnica DGB se validó a través de pruebas experimentales en dos casos de diferente tamaño: el sistema IEEE de 30 barras y el sistema de potencia colombiano de 96 barras. Los resultados sugieren que el esquema de solución propuesto es apropiado para tratar de forma eficiente un problema de optimización de tamaño real como el sistema de potencia colombiano. Una asignación de cantidades de potencia y reservas bastante aproximada fue reflejada en una desviación cercana al 0,005 % en el costo óptimo comparado con la solución de referencia; además del buen desempeño computacional dado por la reducción del 88 % del tiempo de cálculo con respecto a la solución de referencia (sin descomposición), generando un avance en el estado de arte de este campo de estudio (Texto tomado de la fuente).spa
dc.description.abstractThis work presents a solution methodology for a stochastic model used in the operational planning of electric power systems with high penetration of renewable sources, demand response, and energy storage systems, which also explicitly includes the AC model of the network. The AC model impacts the correct allocation and assessment of power system resources in the context of multi-dimensional markets, demonstrated through a comparative study simulating a real-size test case. Solving in a direct way a high dimensional problem that could be reached through the proposed formulation requires a lot of time, great calculation effort, and computer resources. For this reason, two strategies were explored to exploit the mathematical structure of the problem and approach its solution by decomposition techniques: Augmented Lagrangian Relaxation decomposition (ALR) and Generalized Benders Decomposition (GBD). Among these, multi-cut GBD was effectively implemented with a modification in the subproblems formulation through penalized variables. The algorithm was accelerated with a trust-region stabilization technique and the parallel computing of subproblems. Other additional acceleration measures were designed from observations of the evolution of some parameters during the experiments. The performance of the GBD technique was validated through experimental tests in two different-sized test cases: the IEEE 30-bus system and the Colombian 96-bus power system. The results suggest the effectiveness of the proposed solution scheme to efficiently solve a real-size optimization problem like the Colombian power system. A quite approximate power and reserve quantities allocation was reflected in an optimal cost deviation close to 0.005 %, compared with the reference solution; in addition to the good computational performance given by the 88 % reduction in the calculation time relative to the reference solution (without decomposition), generating an advance in the state of the art of this field of study.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automáticaspa
dc.description.researchareaAnálisis de sistemas de potencia eléctricaspa
dc.description.sponsorshipMinisterio de Ciencias (Colciencias) bajo el programa de Becas de Doctorados Nacionales convocatoria 727 de 2015.spa
dc.format.extentxxiv, 175 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81411
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacionalspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesJ. Lin and F. H. Magnago, “Desing, structure and operation of an electricity market,” in Electricity markets: Theories and applications, I. Press, Ed. Wiley, 2017, ch. 7, pp. 173–209.spa
dc.relation.referencesP. Pinson, “Wind energy: Forecasting challenges for its operational management,” Statist. Sci., vol. 28, no. 4, pp. 564–585, Nov. 2013.spa
dc.relation.referencesY. Wang, Z. Zhou, C. Liu, and A. Botterud, “Systematic evaluation of stochastic methods in power system scheduling and dispatch with renewable energy.” [Online]. Available: https://www.osti.gov/biblio/1307654spa
dc.relation.referencesE. Ela, C. Wang, S. Moorty, K. Ragsdale, J. O’Sullivan, M. Rothleder, and B. Hobbs, “Electricity markets and renewables: A survey of potential design changes and their consequences,” IEEE Power and Energy Magazine, vol. 15, no. 6, pp. 70–82, 2017.spa
dc.relation.referencesP. Denholm, E. Ela, B. Kirby, and M. Milligan, “The role of energy storage with electricity renewable generation,” NREL, Tech. Rep, Tech. Rep., Jan. 2010. [Online]. Available: http://www.nrel.gov/docs/fy10osti/47187.pdfspa
dc.relation.referencesM. Kefayati and R. Baldick, “Harnessing demand flexibility to match renewable pro duction using localized policies,” in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012, pp. 1105–1109.spa
dc.relation.referencesE. Karangelos and F. Bouffard, “Towards full integration of demand-side resources in joint forward energy/reserve electricity markets,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 280–289, 2012spa
dc.relation.referencesM. Motalleb, M. Thornton, E. Reihani, and R. Ghorbani, “A nascent market for contingency reserve services using demand response,” Applied Energy, vol. 179, pp. 985 –995, 2016.spa
dc.relation.referencesY. Degeilh and G. Gross, “Stochastic simulation of utility-scale storage resources in power systems with integrated renewable resources,” IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1424–1434, 2015spa
dc.relation.referencesE. Litvinov, F. Zhao, and T. Zheng, “Electricity markets in the United States: Power industry restructuring processes for the present and future,” IEEE Power and Energy Magazine, vol. 17, no. 1, pp. 32–42, 2019spa
dc.relation.referencesG. Martínez, J. Liu, B. Li, J. L. Mathieu, and C. L. Anderson, “Enabling renewable resource integration: The balance between robustness and flexibility,” in 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015, pp. 195–202.spa
dc.relation.referencesA. Papavasiliou and S. S. Oren, “Large-scale integration of deferrable demand and renewable energy sources,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 489–499, 2014.spa
dc.relation.referencesD. Kourounis, A. Fuchs, and O. Schenk, “Toward the next generation of multiperiod optimal power flow solvers,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4005–4014, 2018.spa
dc.relation.referencesW. A. Bukhsh, C. Zhang, and P. Pinson, “An integrated multiperiod OPF model with demand response and renewable generation uncertainty,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1495–1503, 2016.spa
dc.relation.referencesC. J. López-Salgado, A. Helseth, O. Añó, and D. M. Ojeda-Esteybar, “Stochastic daily hydrothermal scheduling based on decomposition and parallelization,” International Journal of Electrical Power Energy Systems, vol. 118, p. 105700, 2020spa
dc.relation.referencesI. Gomes, H. Pousinho, R. Melício, and V. Mendes, “Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market,” Energy, vol. 124, pp. 310 – 320, 2017spa
dc.relation.referencesA. Banshwar, N. K. Sharma, Y. R. Sood, and R. Shrivastava, “Market based procurement of energy and ancillary services from renewable energy sources in deregulated environment,” Renewable Energy, vol. 101, pp. 1390 – 1400, 2017.spa
dc.relation.referencesF. Bouffard and F. D. Galiana, “Stochastic security for operations planning with significant wind power generation,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 306–316, 2008.spa
dc.relation.referencesF. Liu, Z. Bie, S. Liu, and T. Ding, “Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements,” Applied Energy, vol. 188, pp. 399–408, feb 2017.spa
dc.relation.referencesH. Sharifzadeh, N. Amjady, and H. Zareipour, “Multi-period stochastic security-constrained OPF considering the uncertainty sources of wind power, load demand and equipment unavailability,” Electric Power Systems Research, vol. 146, pp. 33–42, may 2017.spa
dc.relation.referencesA. J. Lamadrid, T. Mount, R. Zimmerman, C. E. Murillo-Sanchez, and L. Anderson, “Alternate mechanisms for integrating renewable sources of energy into electricity markets,” in 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1–8.spa
dc.relation.referencesN. Amjady, J. Aghaei, and H. A. Shayanfar, “Stochastic multiobjective market clearing of joint energy and reserves auctions ensuring power system security,” IEEE Transactions on Power Systems, vol. 24, no. 4, pp. 1841–1854, 2009.spa
dc.relation.referencesV. Virasjoki, P. Rocha, A. S. Siddiqui, and A. Salo, “Market impacts of energy storage in a transmission-constrained power system,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4108–4117, 2016spa
dc.relation.referencesC. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, “A stochastic, contingency-based security-constrained optimal power flow for the procurement of energy and distributed reserve,” Decision Support Systems, vol. 56, pp. 1 –10, 2013.spa
dc.relation.referencesJ. Zhang, J. D. Fuller, and S. Elhedhli, “A stochastic programming model for a day-ahead electricity market with real-time reserve shortage pricing,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 703–713, 2010.spa
dc.relation.referencesM. Parastegari, R.-A. Hooshmand, A. Khodabakhshian, and A.-H. Zare, “Joint operation of wind farm, photovoltaic, pump-storage and energy storage devices in energy and reserve markets,” International Journal of Electrical Power & Energy Systems, vol. 64, pp. 275 – 284, 2015spa
dc.relation.referencesC. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, “Secure planning and operations of systems with stochastic sources, energy storage, and active demand,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2220–2229, 2013spa
dc.relation.referencesA. J. Lamadrid, D. Muñoz-Alvarez, C. E. Murillo-Sánchez, R. D. Zimmerman, H. Shin, and R. J. Thomas, “Using the Matpower Optimal Scheduling Tool to test power system operation methodologies under uncertainty,” IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1280–1289, 2019.spa
dc.relation.referencesH. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas, “On computational issues of market-based optimal power flow,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1185–1193, 2007.spa
dc.relation.referencesF. Capitanescu, “Critical review of recent advances and further developments needed in ac optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57 – 68, 2016spa
dc.relation.referencesT. D. Mount, A. J. Lamadrid, W. Y. Jeon, R. D. Zimmerman, and C. E. Murillo-Sánchez, “How will customers pay for the smart-grid,” in 30th Annual Eastern Conference on Regulated Industries, Skytop, Jan. 2011.spa
dc.relation.referencesA. J. Lamadrid, T. Mount, R. Zimmerman, and C. E. Murillo-Sánchez, “Harnessing the renewable generation potential,” in 30th USAEE/IAEE North American Conference, 2011.spa
dc.relation.referencesA. J. Lamadrid, D. L. Shawhan, C. E. Murillo-Sánchez, R. D. Zimmerman, Y. Zhu, D. J. Tylavsky, A. G. Kindle, and Z. Dar, “Stochastically optimized, carbon-reducing dispatch of storage, generation, and loads,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 1064–1075, 2015spa
dc.relation.referencesC. Küchler and S. Vigerske, Decomposition of Multistage Stochastic Programs with Recombining Scenraio Trees. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik, 2007.spa
dc.relation.referencesW. S. Sifuentes and A. Vargas, “Hydrothermal scheduling using benders decomposition: Accelerating techniques,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1351–1359, 2007.spa
dc.relation.referencesM. d. P. Buitrago-Villada, S. García-Marín, J. E. Zuluaga-Orozco, and C. E. Murillo-Sánchez, “On the importance of using an ac or dc network model in the multi-period secure stochastic optimal power flow for settling a multidimensional day-ahead market,” IEEE Latin America Transactions, vol. 19, no. 12, pp. 2003–2010, May 2021. [Online]. Available: https://latamt.ieeer9.org/index.php/transactions/article/view/4794spa
dc.relation.referencesA. Fuchs, J. Garrison, and T. Demiray, “A security-constrained multi-period OPF for the locational allocation of automatic reserves,” in 2017 IEEE Manchester PowerTech, 2017, pp. 1–6.spa
dc.relation.referencesA. Street, A. Brigatto, and D. M. Valladão, “Co-optimization of energy and ancillary services for hydrothermal operation planning under a general security criterion,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4914–4923, 2017.spa
dc.relation.referencesJ. Chen, T. D. Mount, J. S. Thorp, and R. J. Thomas, “Location-based scheduling and pricing for energy and reserves: a responsive reserve market proposal,” Decision Support Systems, vol. 40, no. 3, pp. 563 – 577, 2005, challenges of restructuring the power industryspa
dc.relation.referencesF. D. Galiana, F. Bouffard, J. M. Arroyo, and J. F. Restrepo, “Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves,” Proceedings of the IEEE, vol. 93, no. 11, pp. 1970–1983, 2005spa
dc.relation.referencesJ. M. Arroyo and F. D. Galiana, “Energy and reserve pricing in security and network-constrained electricity markets,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 634–643, 2005.spa
dc.relation.referencesJ. Wang, M. Shahidehpour, and Z. Li, “Contingency-constrained reserve requirements in joint energy and ancillary services auction,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1457–1468, 2009.spa
dc.relation.referencesW. Wei, F. Liu, S. Mei, and Y. Hou, “Robust energy and reserve dispatch under variable renewable generation,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 369–380, 2015spa
dc.relation.referencesF. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with stochastic security - part I: formulation,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1818–1826, 2005spa
dc.relation.referencesK. Van den Bergh and E. Delarue, “Energy and reserve markets: interdependency in electricity systems with a high share of renewables,” Electric Power Systems Research, vol. 189, p. 106537, 2020spa
dc.relation.referencesY. Z. Li, K. C. Li, P. Wang, Y. Liu, X. N. Lin, H. B. Gooi, G. F. Li, D. L. Cai, and Y. Luo, “Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach,” Energy, vol. 126, pp. 810–820, 2017.spa
dc.relation.referencesUnidad de Planeación Minero Energética- UPME, “Plan de expansión de referencia generación-transmisión 2017-2031,” pp. 1–381, 2018. [Online]. Available: https://www1.upme.gov.cospa
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “ MATPOWER Optimal Scheduling Tool (MOST) User’s Manual.” 2020. [Online]. Available: https://matpower.org/docs/MOST-manual.pdfspa
dc.relation.referencesGurobi Optimization LLC, “Gurobi Optimizer Reference Manual version 9.0.0.” 2020. [Online]. Available: http://www.gurobi.comspa
dc.relation.referencesA. Wächter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.spa
dc.relation.referencesGeneradora y comercializadora de energía del Caribe - GECELCA S.A. E.S.P. (2014) Informe de gestión 2014. Accessed 2020-08-06. [Online]. Available: https://www.gecelca.com.co/ Descargas/ publico/ Transparencia/INFORME%20DE%20GESTION.pdfspa
dc.relation.referencesG. Cohen, Optimisation des Grands Systèmes. Cours du DEA MMME, Universitè de Paris I, 2004, pp. 1–116spa
dc.relation.referencesM. A. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming. Theory and algorithms, 3rd ed. Wiley-Interscience, 2006, vol. 1, pp. 257–298spa
dc.relation.referencesD. P. Bertsekas, “Multipliers Methods: A Survey,” Automatica, vol. 12, no. 7, pp. 135–145, 1976spa
dc.relation.referencesA. Ruszczynski, “On convergence of an augmented lagrangian decomposition method for sparse convex optimization,” Mathematics of operations research, vol. 20, pp. 634–656, 1995.spa
dc.relation.referencesM. R. Hestenes, “Multipliers and gradient methods,” Journal of Optimization Theory and Applications, vol. 4, pp. 303–320, 1969.spa
dc.relation.referencesM. J. D. Powell, “A method for nonlinear constraints in minimization problems,” Optimization (R.Fletchr, ed.), Academic Press, New York, vol. 4, pp. 283–298, 1969.spa
dc.relation.referencesG. Cohen and D. Zhu, Decomposition Coordination Methods in Large Scale Optimization Problems: The Nondifferentiable Case and the Use of Augmented Lagrangians. Advances in Large Scale Systems. JAI Press Inc., 1984, vol. 1, pp. 203–266.spa
dc.relation.referencesD. P. Bertsekas, Nonlinear programming, 2nd ed., 1999, ch. 4, pp. 201–205spa
dc.relation.referencesA. J. Conejo, E. Castillo, R. Mínguez, and R. García-Bertrand, Decomposition Techniques in Mathematical Programming. Engineering and Science Applications. Springer, 2006, vol. 1, pp. 195–205.spa
dc.relation.referencesN. Redondo and A. Conejo, “Short-term hydro-thermal coordination by lagrangian relaxation: solution of the dual problem,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 89–95, 1999.spa
dc.relation.referencesP. Bento, S. Mariano, M. Calado, and L. Ferreira, “A novel lagrangian multiplier update algorithm for short-term hydro-thermal coordination,” Energies, vol. 13, no. 24, pp. 728–742, 2020.spa
dc.relation.referencesW. Ongsakul and N. Petcharaks, “Fast lagrangian relaxation for constrained generation scheduling in a centralized electricity market,” International Journal of Electrical Power and Energy Systems, vol. 30, no. 1, p. 46–59, 2008.spa
dc.relation.referencesX. Feng and Y. Liao, “A new lagrangian multiplier update approach for lagrangian relaxation based unit commitment,” IEEE Transactions on Power Systems, vol. 34, no. 8, pp. 857–866, 2006spa
dc.relation.referencesJ. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Numer. Math, vol. 4, p. 238–252, 1962.spa
dc.relation.referencesA. Geoffrion, “Generalized Benders decomposition,” J Optim Theory Appl, vol. 10, no. 4, pp. 237––260, 1972.spa
dc.relation.referencesH. Kim, S. Lee, S. Han, W. Kim, K. Ok, and S. Cho, “Integrated generation and transmission expansion planning using generalized Bender’s decomposition method,” in 2015 IEEE International Conference on Computational Intelligence Communication Technology, 2015, pp. 493–497spa
dc.relation.referencesZ. Li, W. Wu, B. Zhang, and B. Wang, “Decentralized multi-area dynamic economic dispatch using modified generalized Benders decomposition,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 526–538, 2016spa
dc.relation.referencesN. Alguacil and A. J. Conejo, “Multiperiod optimal power flow using Benders decomposition,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 196–201, 2000.spa
dc.relation.referencesK. Chung, B. H. Kim, J. Lee, T. Oh, and J. Lee, “Transmission-security constrained optimal dispatch scheduling using generalized Benders decomposition,” in 2009 Transmission Distribution Conference Exposition: Asia and Pacific, 2009, pp. 1–4.spa
dc.relation.referencesM. Majidi-Qadikolai and R. Baldick, “A generalized decomposition framework for large-scale transmission expansion planning,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1635–1649, 2018spa
dc.relation.referencesA. Moreira, A. Street, and J. M. Arroyo, “An adjustable robust optimization approach for contingency-constrained transmission expansion planning,” IEEE Transactions on Power Systems, vol. 30, no. 4, pp. 2013–2022, 2015.spa
dc.relation.referencesM. R. Ansari, N. Amjady, and B. Vatani, “Stochastic security-constrained hydrothermal unit commitment considering uncertainty of load forecast, inflows to reservoirs and unavailability of units by a new hybrid decomposition strategy,” IET Generation, Transmission Distribution, vol. 8, no. 12, pp. 1900–1915, 2014spa
dc.relation.referencesR. Rahmaniani, T. G.Crainic, M. Gendreau, and W. Rei, “The Benders decomposition algorithm: A literature review,” Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation - CIRRELT, Tech. Rep., 2016.spa
dc.relation.referencesD. W. Watkins and D. C. McKinney, “Decomposition methods for water resources optimization models with fixed costs,” Advances in Water Resources, vol. 21, no. 4, pp. 283 – 295, 1998spa
dc.relation.referencesS. Trukhanov, L. Ntaimo, and A. Schaefer, “Adaptive multicut aggregation for two-stage stochastic linear programs with recourse,” European Journal of Operational Research, vol. 206, no. 2, pp. 395 – 406, 2010.spa
dc.relation.referencesR. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The Benders decomposition algorithm: A literature review,” European Journal of Operational Research, vol. 259, no. 3, pp. 801–817, 2017.spa
dc.relation.referencesR. Pacqueau, F. Soumis, and L. Hoang, “A fast and accurate algorithm for stochastic integer programming, applied to stochastic shift scheduling,” Ècole Polytechnique de Montrèal, Tech. Rep. [Online]. Available: https://www.gerad.ca/en/papers/G-2012-29spa
dc.relation.referencesJ. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd ed. Springer-Verlag New York, 2011, vol. 1, pp. 198–202.spa
dc.relation.referencesJ. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizabal, Numerical Optimization. Theoretical and Practical Aspects, 2nd ed. Springer, 2006, pp. 137–154spa
dc.relation.referencesJ. Linderoth and S. Wright, “Decomposition algorithms for stochastic programming on a computational grid,” Computational Optimization and Applications, no. 24, pp. 207 – 250, 2003.spa
dc.relation.referencesS. Zaourar and J. Malik, “Quadratic stabilization of Benders decomposition,” HAL - archives-ouvertes, no. hal-01181273, pp. 1 – 27, 2014.spa
dc.relation.referencesG. Cohen, Auxiliary problem principle and decomposition of optimization problems. J Optim Theory Appl, 1980, vol. 32, pp. 277–305spa
dc.relation.referencesA. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, 1st ed., August 1983, vol. 165.spa
dc.relation.referencesH. Ma and S. M. Shahidehpour, “Unit commitment with transmission security and voltage constraints,” IEEE Transactions on Power Systems, vol. 14, no. 2, pp. 757– 764, 1999spa
dc.relation.referencesR. C. Green, L. Wang, and M. Alam, “Applications and trends of high performance computing for electric power systems: Focusing on smart grid,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 922–931, 2013.spa
dc.relation.referencesR. C. Green, L. Wang, and M. Alam, “High performance computing for electric power systems: Applications and trends,” in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1–8spa
dc.relation.referencesS. K. Khaitan, “A survey of high-performance computing approaches in power systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5spa
dc.relation.referencesMATLAB, Parallel Computing Toolbox, User’s guide, MatWorks, Inc., 2018spa
dc.relation.referencesMATLAB, MATLAB Distributed Computing Server, System administrator’s guide, MatWorks, Inc., 2018.spa
dc.relation.referencesR. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011spa
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower User’s Manual version 7.0.” 2019. [Online]. Available: https://matpower.org/docs/MATPOWER-manual-7.1.pdfspa
dc.relation.referencesLawrence Livermore National Laboratory. (2021) Introduction to parallel computing tutorial. [Online]. Available: https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorialspa
dc.relation.referencesH. Falsafi, A. Zakariazadeh, and S. Jadid, “The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming,” Energy, vol. 64, pp. 853–867, 2014.spa
dc.relation.referencesO. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 745–751, 1974spa
dc.relation.referencesR. Ferrero, S. Shahidehpour, and V. Ramesh, “Transaction analysis in deregulated power systems using game theory,” IEEE Transactions on Power Systems, vol. 12, no. 3, pp. 1340–1347, 1997.spa
dc.relation.referencesP. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, 1998, ch. 1. Setting the Stage, pp. 1–17spa
dc.relation.referencesJ. Gondzio and A. Grothey, “Exploiting structure in parallel implementation of interior point methods for optimization,” Computational Management Science, vol. 6, no. 2, pp. 135–160, 2009.spa
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “Multi-period SuperOPF (SuperOPF 2.0) User’s Manual.” 2013.spa
dc.relation.referencesFERC, “FERC RTO Unit Commitment Test System,” Federal Energy Regulatory Commission, Tech. Repspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDescomposición y coordinaciónspa
dc.subject.proposalDespacho económico segurospa
dc.subject.proposalFuentes de energía renovablespa
dc.subject.proposalGeneración y transmisión de potenciaspa
dc.subject.proposalOptimización numérica de gran escalaspa
dc.subject.proposalPlaneación de sistemas de potenciaspa
dc.subject.proposalProcesamiento en paralelospa
dc.subject.proposalDecomposition and coordinationeng
dc.subject.proposalLarge-scale numerical optimizationeng
dc.subject.proposalParallel processingeng
dc.subject.proposalPower generation and transmissioneng
dc.subject.proposalPower system planningeng
dc.subject.proposalRenewable energy sourceseng
dc.subject.proposalSecurity economic dispatcheng
dc.subject.unescoFuente de energía renovablespa
dc.subject.unescoRenewable energy sourceseng
dc.titleDescomposición y coordinación paralela para solucionar un modelo de planeación de la operación de sistemas de generación y transmisión eléctrica con altas penetraciones de fuentes intermitentes, almacenamiento energético y tecnologías de redes inteligentesspa
dc.title.translatedParallel decomposition and coordination to solve an operation planning model for the electricity generation and transmission systems with high penetrations of intermittent sources, energy storage, and smart grid technologieseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
30237456.2021.pdf
Tamaño:
4.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: