Multiradial matrix covariance functions: characterization and applications

dc.contributorGiraldo Henao, Ramónspa
dc.contributor.advisorPorcu, Emilio (Thesis advisor)spa
dc.contributor.authorAlonso Malaver, Carlos Eduardospa
dc.date.accessioned2019-06-29T13:29:23Zspa
dc.date.available2019-06-29T13:29:23Zspa
dc.date.issued2014spa
dc.description.abstractAll results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on the radially symmetric case and, the more general case, (b) on multiradial obtained through isotropy between components of the lag vector. We call the later set of functions the class of multiradial matrix-valued covariance functions or the class of d-anisotropic matrix-valued covariance functions, this case includes, as special case, space-time and fully symmetric correlation functions. The classes of radial and multiradial matrix-valued covariance functions are characterized as the scale mixture of a uniquely determined matrix-valued measure d(·), with d(b) − d(a) positive definite matrix for any 0 ≤ a ≤ b, with a, b ∈ Rn +, for some n ∈ Z+. We call the matrix function d(·) the m-Schoenberg measure. Such result is the analogue of Schoenberg (1938) theorem for the class of univariate stationary-isotropic covariance functions. We introduce the multivariate versions of radial and multiradial Mont´ee and Descente operators which were introduced by Matheron in the univariate-radial case, calling these matrix operators the m-Mont´ee and m-Descente, m ≥ 2, and prove that these operators change the smoothness of the mapped functions and they are dimensional walks, i.e. each one of these operators map a matrix-valued covariance function valid in Rd in another matrix-valued covariance function valid in Euclidean space of higher o lower dimension. Also, we characterize the associated m-Schoenberg measures of the new covariance matrix functions, it is set up the necessary conditions for the m-Mont´ee and m-Descente are well define and obtain examples where these operators as dimension walks are not well defined. Analogue of the Turning Bands operator established by Matheron for univariate covariance functions, we show the existence of projection operators that map a matrix-valued covariance function ϕ being positive definite on some Euclidean space Rd in another function, say ̺, being radial and positive definite on a Euclidean space of higher dimension, result which opens a future line of research in simulation of multivariate random fields. At the end, we present ascending dimensional walks, based on scale mixtures of Beta distribution function, that map a radial or multiradial matrix-valued covariance function valid in Rd into a radial or multiradial matrix-valued covariance function valid in a space of higher dimension.spa
dc.description.abstractEn este trabajo se estudian las funciones matriciales de correlación radiales (isotrópicas ) y multiradiales (d-anisotropías), asociadas a campos aleatorios multivariados Gaussianos en Rd. El punto de partida de esta investigación es el desarrollo de la representación integral para las funciones matriciales de correlación radiales y multiradiales. Como resultado se obtiene que dada una función matricial, ´esta es una función de correlación matricial válida en Rd si y sólo si se puede representar como una mixtura de una función característica y una matriz _d(•) con _d(b) − _d(a) matriz definida positiva donde a, b ∈ Rn y a ≤ b. Se introducen las versiones multivariadas de la Montée y la Descente, m-Montée y m-Descente respectivamente, operadores que fueron introducidos en el caso univariado por Matheron. Y análogo a los resultados del caso univariado, se muestra que estos operadores cambian la suavidad - diferenciabilidad - de las funciones transformadas y definen biyecciones entre clases de funciones de correlación matricial, esto es, dada una función de correlación matricial ϕ válida en Rd, esta función se transforma, a través de los operadores m-Montee y m-Descente, en una función de correlación matricial ̺ que es una función de correlación matricial válida en un espacio de mayor o menor dimensión. Comportamiento que permite hablar de estos operadores como caminatas entre espacios de diferente dimensión - caminatas dimensionales -. Unido a lo anterior se hallan las condiciones necesarias para que dichos operadores estén bien definidos y se presentan ejemplos para los cuales no están bien definidos. Adicional a los resultados anteriores, se presentan dos clases de caminatas dimensionales; en la primera se presenta las versiones multivariadas de las ecuaciones de soporte para el método de simulación de bandas rotantes - Turning Bands -, resultado que abre una línea de investigación en simulación de campos aleatorios multivariados. En la segunda clase se exponen operadores con base en mixturas con la función de distribución Beta que generan caminatas dimensionales ascendentes, esto es a partir de funciones de correlación matricial válidas en un espacio Euclideo d-dimensional es posible obtener funciones de correlación matricial válidas en espacios Euclideos de mayor dimensión.spa
dc.description.degreelevelDoctoradospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/46332/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/52078
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadísticaspa
dc.relation.ispartofDepartamento de Estadísticaspa
dc.relation.referencesAlonso Malaver, Carlos Eduardo (2014) Multiradial matrix covariance functions: characterization and applications. Doctorado thesis, Universidad Nacional de Colombia.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.ddc53 Física / Physicsspa
dc.subject.proposalMultivariate random fieldspa
dc.subject.proposalStationarity-isotropyspa
dc.subject.proposalMatrix-covariance functionsspa
dc.subject.proposalFourier Transformspa
dc.subject.proposalSigned measuresspa
dc.subject.proposalCampos aleatorios multivariadosspa
dc.subject.proposalEstacionariedad-isotropíaspa
dc.subject.proposalFunciones de covarianza matricialesspa
dc.subject.proposalTransformada de Fourierspa
dc.subject.proposalMedidas signadasspa
dc.titleMultiradial matrix covariance functions: characterization and applicationsspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
832340.2014.pdf
Tamaño:
945.21 KB
Formato:
Adobe Portable Document Format