Automatic retinopathy detection using Deep learning and medical findings

dc.contributor.advisorGonzález Osorio, Fabio Augustospa
dc.contributor.advisorPerdomo Charry, Oscar Juliánspa
dc.contributor.authorde la Pava Rodriguez, Melissaspa
dc.contributor.researchgroupMindLabspa
dc.date.accessioned2022-02-22T16:35:41Z
dc.date.available2022-02-22T16:35:41Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractDiabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina. It can cause blindness if left undiagnosed and untreated. The ophthalmologist performs the diagnosis by screening each patient and detecting in ocular imaging the lesions caused by DR, namely, microaneurisms, hemorrhages, cotton wool spots, venous beading and neovascularization. However, the analysis of ocular findings is cumbersome, time-consuming, and demanding. Due to the insufficient amount of trained specialists to diagnose the illness, and the actual growing population with DR, it is important to develop a method to assist the DR diagnosis. This thesis presents two approaches for the automatic classification of DR using eye fundus images. The first one utilizes convolutional neural networks, transfer learning and shallow machine learning classifiers to identify the main ocular lesions related to DR and then use them to diagnose the illness. The second one is a multitask model which predicts simultaneously ocular lesions and DR. These approaches follow a similar workflow to that of clinicians, providing information that can be interpreted clinically to support the prediction. To achieve this goal a subset of the kaggle EyePACS and the Messidor-2 datasets, are labeled with ocular lesions by a certified opthalmologist. The kaggle EyePACS subset is used as training set and the Messidor-2 dataset is used as test set for both, the lesions and DR classification models. The results indicate that both methods achieve results comparable with state-of-the-art performances. The best results are obtained using the first approach with a multi layer perceptron as classifier for the automatic detection of DR, however, the multitask approach lead to similar results and has a simpler architecture.eng
dc.description.abstractLa retinopatía diabética (RD) es el resultado de una complicacion de la diabetes que afecta la retina. Puede causar ceguera si no se diagnostica ni se trata. El diagnóstico de esta enfermedad se hace mediante el escaneo de cada paciente y el análisis de imágenes oculares para detectar lesiones causadas por la RD, como microaneurismas, hemorragias, manchas algodonosas, arrosamiento venoso y neovascularización. Sin embargo, el análisis de las lesiones oculares es engorroso, lento y exigente. Debido a la cantidad insuficiente de especialistas capacitados para diagnosticar la enfermedad y al crecimiento actual de la población con RD, es importante desarrollar un método para ayudar en el diagnóstico de esta enfermedad. Esta tesis presenta dos enfoques para la clasificación automática de la RD utilizando imágenes de fondo de ojo. El primero utiliza redes neuronales convolucionales, transferencia de aprendizaje y clasificadores clásicos de aprendizaje de máquina para identificar las principales lesiones oculares relacionadas con la RD y luego usarlas para diagnosticar la enfermedad. El segundo es un modelo multitarea que predice simultáneamente lesiones oculares y RD. Estos enfoques siguen un flujo de trabajo similar al de los médicos, proporcionando información que puede interpretarse clínicamente para respaldar la predicción. Para lograr este objetivo, un subconjunto de las bases de datos kaggle EyePACS y Messidor-2 fueron etiquetados con lesiones oculares por un oftalmólogo certificado. El subconjunto de kaggle EyePACS se utiliza como conjunto de entrenamiento y el de Messidor-2 se utiliza como conjunto de prueba tanto para los modelos de detección de lesiones, como para los de clasificación de RD. Los resultados indican que ambos enfoques logran desempeños comparables con los métodos del estado del arte. Los mejores resultados se obtienen utilizando el primer enfoque con un perceptrón multicapa como clasificador para la detección automática de RD, sin embargo, el enfoque multitarea conduce a resultados similares y tiene una arquitectura más simple. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.notesIncluye anexosspa
dc.description.researchareaApplied computingspa
dc.format.extentx, 52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81038
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAutomatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. In: BioMed Research International 2019 (2019), S. 13.spa
dc.relation.referencesAbdelmaksoud, Eman ; El-Sappagh, Shaker ; Barakat, Sherif ; Abuhmed, Tamer ; Elmogy, Mohammed: Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. In: IEEE Access 9 (2021), Nr. January, S. 15939–15960. http://dx.doi.org/10.1109/ACCESS.2021.3052870. – DOI 10.1109/ACCESS.2021.3052870. – ISSN 21693536spa
dc.relation.referencesAbramoff, Michael D.: Datasets and Algorithms. https://medicine.uiowa.edu/eye/abramoff, 2015. – [Online; accessed 15-January-2020]spa
dc.relation.referencesAbràmoff, Michael D. ; Lavin, Philip T. ; Birch, Michele ; Shah, Nilay ; Folk, James C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. In: npj Digital Medicine 1 (2018), Nr. 1. http://dx.doi.org/10.1038/s41746-018-0040-6. – DOI 10.1038/s41746–018–0040–6. – ISSN 2398–6352spa
dc.relation.referencesAlaguselvi, R. ; Murugan, Kalpana: Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. In: Signal, Image and Video Processing 15 (2021), Nr. 4, 797–805. http://dx.doi.org/10.1007/s11760-020-01798-x. – DOI 10.1007/s11760–020–01798–x. – ISSN 18631711spa
dc.relation.referencesAmin, Javeria ; Sharif, Muhammad ; Yasmin, Mussarat ; Ali, Hussam ; Fernandes, Steven L.: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesionsspa
dc.relation.referencesAntal, Bálint ; Hajdu, András: An ensemble-based system for automatic screening of diabetic retinopathy. In: Knowledge-Based Systems 60 (2014), Nr.January, S. 20–27. http://dx.doi.org/10.1016/j.knosys.2013.12.023. – DOI 10.1016/j.knosys.2013.12.023. – ISSN 09507051spa
dc.relation.referencesAshikur, Md ; Arifur, Md ; Ahmed, Juena: Automated Detection of Diabetic Retinopathy using Deep Residual Learningspa
dc.relation.referencesBeagley, Jessica ; Guariguata, Leonor ; Weil, Clara ; Motala, Ayesha A.: Global estimates of undiagnosed diabetes in adults. In: Diabetes Research and Clinical Practice 103 (2014), Nr. 2, 150–160. http://dx.doi.org/10.1016/j.diabres.2013.11.001. –DOI 10.1016/j.diabres.2013.11.001. – ISSN 18728227spa
dc.relation.referencesBhaskaranand, Malavika ; Ramachandra, Chaithanya ; Bhat, Sandeep ; Cuadros, Jorge ; Nittala, Muneeswar G. ; Sadda, Srinivas R. ; Solanki, Kaushal: The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. In: Diabetes Technology and Therapeutics 21 (2019), Nr. 11, S. 635–643. http://dx.doi.org/10.1089/dia.2019.0164. – DOI 10.1089/dia.2019.0164. – ISSN 15578593spa
dc.relation.referencesBresnick, George H. ; Mukamel, Dana B. ; Dickinson, John C. ; Cole, David R.: A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. In: Ophthalmology 107 (2000), Nr. 1, S. 19–24. http://dx.doi.org/10.1016/S0161-6420(99)00010-X. – DOI 10.1016/S0161– 6420(99)00010–X. – ISSN 01616420spa
dc.relation.referencesCarvalho, C. ; Pedrosa, João ; Maia, Carolina ; Penas, S. ; Carneiro, Â. ; Mendonça, L. ; Mendonça, A. M. ; Campilho, A.: A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images. In: ICIAR, 2020spa
dc.relation.referencesChen, Benzhi ; Wang, Lisheng ; Wang, Xiuying ; Sun, Jian ; Huang, Yijie ; Feng, Dagan ; Xu, Zongben: Abnormality detection in retinal image by individualized background learning. In: Pattern Recognition 102 (2020), 107209. http://dx.doi.org/10.1016/j.patcog.2020.107209. – DOI 10.1016/j.patcog.2020.107209. – ISSN 00313203spa
dc.relation.referencesChen, Weijie ; Sahiner, Berkman ; Samuelson, Frank ; Pezeshk, Aria ; Petrick, Nicholas: Calibration of medical diagnostic classifier scores to the probability of disease. In: Statistical Methods in Medical Research 27 (2018), Nr. 5, S. 1394–1409. http://dx.doi.org/10.1177/0962280216661371. – DOI 10.1177/0962280216661371. – ISBN 0962280216spa
dc.relation.referencesChudzik, Piotr ; Majumdar, Somshubra ; Calivá, Francesco ; Al-Diri, Bashir ; Hunter, Andrew: Microaneurysm detection using fully convolutional neural networks. In: Computer Methods and Programs in Biomedicine 158 (2018), S. 185–192. http://dx.doi.org/10.1016/j.cmpb.2018.02.016. – DOI 10.1016/j.cmpb.2018.02.016. – ISSN 18727565spa
dc.relation.referencesCrawshaw, Michael: Multi-Task Learning with Deep Neural Networks: A Survey. (2020). http://arxiv.org/abs/2009.09796spa
dc.relation.referencesCun, Y. L. ; Boser, B. ; Denker, J. S. ; Henderson, D. ; Howard, R. E. ; Hubbard, W. ; Jackel, L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: Advances in neural information processing systems 2 (1989), S. 396–404spa
dc.relation.referencesDecencière, E. ; Cazuguel, G. ; Zhang, X. ; Thibault, G. ; Klein, J. C. ; Meyer, F. ; Marcotegui, B. ; Quellec, G. ; Lamard, M. ; Danno, R. ; Elie, D. ; Massin, P. ; Viktor, Z. ; Erginay, A. ; Laÿ, B. ; Chabouis, A.: TeleOphta: Machine learning and image processing methods for teleophthalmologyspa
dc.relation.referencesDing, Jie ; Wong, Tien Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. In: Current Diabetes Reports 12 (2012), Nr. 4, S. 346–354. http://dx.doi.org/10.1007/s11892-012-0283-6. – DOI 10.1007/s11892–012–0283–6. –ISSN 15344827spa
dc.relation.referencesGargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopathy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, 962–969. http://dx.doi.org/10.1016/j.ophtha.2017.02.008. – DOI 10.1016/j.ophtha.2017.02.008. –ISSN 15494713spa
dc.relation.referencesGayathri, S. ; Gopi, Varun P. ; Palanisamy, P.: A lightweight CNN for Diabetic Retinopathy classification from fundus images. In: Biomedical Signal Processing and Control 62 (2020), Nr. August, 102115. http://dx.doi.org/10.1016/j.bspc.2020. 102115. – DOI 10.1016/j.bspc.2020.102115. – ISSN 17468108spa
dc.relation.referencesGoldbaum, M. H.: STructured Analysis of the Retina Project. http://cecas. clemson.edu/~ahoover/stare. Version: 1975spa
dc.relation.referencesGulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410. http://dx.doi.org/10.1001/jama.2016.17216. – DOI 10.1001/jama.2016.17216. – ISSN 15383598spa
dc.relation.referencesGulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316spa
dc.relation.referencesHassan, Siti Syafinah A. ; Bong, David B. ; Premsenthil, Mallika: Detection of Neovascularization in Diabetic Retinopathy. In: Journal of Digital Imaging 25 (2012), S. 437spa
dc.relation.referencesHe, Along ; Li, Tao ; Li, Ning ; Wang, Kai ; Fu, Huazhu: CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 1, S. 143–153. http://dx.doi.org/10.1109/TMI. 2020.3023463. – DOI 10.1109/TMI.2020.3023463. – ISSN 1558254Xspa
dc.relation.referencesHeijden, Amber A. d. ; Abramoff, Michael D. ; Verbraak, Frank ; Hecke, Manon V. ; Liem, Albert ; Nijpels, Giel: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care Systemspa
dc.relation.referencesHoover, A. D. ; Kouznetsova, V. ; Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. In: IEEE Transactions on Medical Imaging 19 (2000), March, Nr. 3, S. 203–210. http://dx.doi.org/10.1109/42.845178. – DOI 10.1109/42.845178. – ISSN 0278–0062spa
dc.relation.referencesImaging Experts, ADCIS: A T.: Messidor. https://www.adcis.net/en/third-party/messidor/, 2008. – [Online; accessed 23-May-2019]spa
dc.relation.referencesImaging Experts, ADCIS: A T.: Messidor-2. https://www.adcis.net/en/third-party/messidor2/, 2015. – [Online; accessed 25-January-2020]spa
dc.relation.referencesJames Talks, Stephen ; Manjunath, Vina ; H W Steel, David ; Peto, Tunde ; Taylor, Roy: New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. In: Br J Ophthalmol 99 (2015), S. 1606–1609spa
dc.relation.referencesKaggle: Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabeticretinopathy-detection, 2015. – [Online; accessed 10-January-2020]spa
dc.relation.referencesKauppi, T. ; Kalesnykiene, V. ; Kamarainen, J. K. ; Lensu, L. ; Sorri, I. ; Raninen, A. ; Voutilainen, R. ; Pietilä, J. ; Kälviäinen, H. ; Uusitalo, H.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine Vision Conference 2007 (2007), S. 1–18. http://dx.doi.org/10.5244/C.21.15. – DOI 10.5244/C.21.15spa
dc.relation.referencesKauppi, Tomi ; Kalesnykiene, Valentina ; Kamarainen, Joni-kristian ; Lensu, Lasse ; Sorri, Iiris ; Uusitalo, Hannu ; Kalviainen, Heikki Pietila, Juhani: DIARETDB0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland. (2006), 1–17. http://www.siue.edu/$\sim$sumbaug/RetinalProjectPapers/DiabeticRetinopathyImageDatabaseInformation.pdfspa
dc.relation.referencesLam, Carson ; Yu, Caroline ; Huang, Laura ; Rubin, Daniel: Retinal Lesion Detection With Deep Learning Using Image Patches. (2018)spa
dc.relation.referencesLeibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. http://dx.doi.org/10. 1038/s41598-017-17876-z. – DOI 10.1038/s41598–017–17876–z. – ISSN 20452322spa
dc.relation.referencesLi, Tao ; Gao, Yingqi ; Wang, Kai ; Guo, Song ; Liu, Hanruo ; Kang, Hong: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. In: Information Sciences 501 (2019), 511 - 522. http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.06.011. – DOI https://doi.org/10.1016/j.ins.2019.06.011. – ISSN 0020–0255spa
dc.relation.referencesLi, Wong ; Acharya, U R. ; Venkatesh, Y V. ; Chee, Caroline ; Choo, Lim ; Ng, E Y K.: Identification of different stages of diabetic retinopathy using retinal optical images. 178 (2008), S. 106–121. http://dx.doi.org/10.1016/j.ins.2007.07.020. – DOI 10.1016/j.ins.2007.07.020spa
dc.relation.referencesLi, Xiaogang ; Pang, Tiantian ; Xiong, Biao ; Liu, Weixiang ; Liang, Ping ; Wang, Tianfu: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017 2018-Janua (2018), Nr. 978, S. 1–11. http://dx.doi.org/10.1109/CISP-BMEI. 2017.8301998. – DOI 10.1109/CISP–BMEI.2017.8301998. ISBN 9781538619377spa
dc.relation.referencesMeriaudeau, Prasanna Porwal; Samiksha Pachade; Ravi Kamble; Manesh Kokare; Girish Deshmukh; Vivek Sahasrabuddhe; F.: Indian Diabetic Retinopathy Image Dataset (IDRiD). (2018). http://dx.doi.org/10.21227/H25W98. – DOI 10.21227/H25W98spa
dc.relation.referencesMookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Lim, Choo M. ; Ng, E. Y. ; Laude, Augustinus: Computer-aided diagnosis of diabetic retinopathy: A review. In: Computers in Biology and Medicine 43 (2013), Nr. 12, S. 2136–2155. http://dx.doi.org/10.1016/j.compbiomed.2013.10.007. – DOI 10.1016/j.compbiomed.2013.10.007. – ISSN 00104825spa
dc.relation.references(ODIR), Ocular Disease Intelligent R.: ODIR-5K. https://academictorrents.com/details/cf3b8d5ecdd4284eb9b3a80fcfe9b1d621548f72, 2019. – [Online; accessed 13-May-2022]spa
dc.relation.referencesOrlando, JosAn ensemble deep learning based approach for red lesion detection in fundus images I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: lista. An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565spa
dc.relation.referencesOrlando, Josa I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565spa
dc.relation.referencesPaing, May P. ; Choomchuay, Somsak: Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images. (2016). ISBN 9781509039401spa
dc.relation.referencesPandeya, Y.R. ; Lee, J: Deep learning-based late fusion of multimodal information for emotion classification of music video. In: Multimed Tools Appl 80 (2021), S. 2887–2905spa
dc.relation.referencesPrentasic, Pavle ; Loncaric, Sven ; Vatavuk, Zoran ; Bencic, Goran ; Subasic, Marko ; Petkovic, Tomislav ; Malenica-Ravlic, Maja ; Budimlija, Nikolina ; Tadic, Raseljka: Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), S. 711–716spa
dc.relation.referencesQiao, Lifeng ; Zhu, Ying ; Zhou, Hui: Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. In: IEEE Access 8 (2020), S. 104292– 104302. http://dx.doi.org/10.1109/ACCESS.2020.2993937. – DOI 10.1109/ACCESS.2020.2993937. – ISSN 21693536spa
dc.relation.referencesQummar, Sehrish ; Khan, Fiaz G. ; Shah, Sajid ; Khan, Ahmad ; Shamshirband, Shahaboddin ; Rehman, Zia U. ; Khan, Iftikhar A. ; Jadoon, Waqas: A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. In: IEEE Access 7 (2019), S. 150530–150539. http://dx.doi.org/10.1109/ACCESS.2019.2947484. – DOI 10.1109/ACCESS.2019.2947484. – ISSN 21693536spa
dc.relation.referencesRajalakshmi, Ramachandran ; Subashini, Radhakrishnan ; Anjana, Ranjit M. ; Mohan, Viswanathan: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligencespa
dc.relation.referencesResnikoff, Serge ; Lansingh, Van C. ; Washburn, Lindsey ; Felch, William ; Gauthier, Tina M. ; Taylor, Hugh R. ; Eckert, Kristen ; Parke, David ; Wiedemann, Peter: Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? In: British Journal of Ophthalmology (2019), Nr. Md, S. 1–5. http://dx.doi.org/10.1136/bjophthalmol-2019-314336. – DOI 10.1136/bjophthalmol–2019–314336. – ISSN 14682079spa
dc.relation.referencesRuder, Sebastian: An Overview of Multi-Task Learning in Deep Neural Networks. (2017)spa
dc.relation.referencesSelvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob (2017), S. 618–626. http://dx.doi.org/10.1109/ICCV.2017.74. – DOI 10.1109/ICCV.2017.74. – ISBN 9781538610329spa
dc.relation.referencesSengar, Namita ; Dutta, Malay K.: lista.Automated method for hierarchal detection and grading of diabetic retinopathy. In: Computer Methods inBiomechanics and Biomedical Engineering: Imaging & Visualization 1163 (2017), Nr. July, 1–11. http://dx.doi.org/10.1080/21681163.2017.1335236. – DOI 10.1080/21681163.2017.1335236. – ISSN 2168–1163spa
dc.relation.referencesSeoud, Lama ; Hurtut, Thomas ; Chelbi, Jihed ; Cheriet, Farida ; Langlois, J. M.: Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 4, S. 1116–1126. http://dx.doi.org/10.1109/TMI.2015.2509785. – DOI 10.1109/TMI.2015.2509785. – ISSN 1558254Xspa
dc.relation.referencesSharif, Muhammad ; Shah, Jamal H.: Automatic screening of retinal lesions for grading diabetic retinopathy. In: International Arab Journal of Information Technology 16 (2019), Nr. 4, S. 766–774. – ISSN 23094524spa
dc.relation.referencesSon, Jaemin ; Shin, Joo Y. ; Kim, Hoon D. ; Jung, Kyu H. ; Park, Kyu H. ; Park, Sang J.: Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. In: Ophthalmology 127 (2020), Nr. 1, 85–94. http://dx.doi.org/10.1016/j.ophtha.2019.05.029. – DOI 10.1016/j.ophtha.2019.05.029. – ISSN 15494713spa
dc.relation.referencesStaal, Joes ; Abràmoff, Michael D. ; Niemeijer, Meindert ; Viergever, Max A. ; Ginneken, Bram v.: Ridge-Based Vessel Segmentation in Color Images of the Retina. In: IEEE Transactions on Medical Imaging 23 (2004), Nr. 4, S. 501–509. http://dx.doi.org/10.1080/17455030500184511. – DOI 10.1080/17455030500184511. – ISSN 17455030spa
dc.relation.referencesSymposium, Asia Pacific Tele-Ophthalmology Society (.: APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data, 2019. – [Online; accessed 15-January-2020]spa
dc.relation.referencesTajbakhsh, Nima ; Shin, Jae Y. ; Gurudu, Suryakanth R. ; Hurst, R. T. ; Kendall, Christopher B. ; Gotway, Michael B. ; Liang, Jianming: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 5, S. 1299–1312. http://dx.doi.org/10.1109/TMI.2016.2535302. – DOI 10.1109/TMI.2016.2535302spa
dc.relation.referencesUsman Akram, M. ; Khalid, Shehzad ; Tariq, Anam ; Khan, Shoab A. ; Azam, Farooque: Detection and classification of retinal lesions for grading of diabetic retinopathy. In: Computers in Biology and Medicine 45 (2014), Nr. 1, 161–171. http://dx.doi. org/10.1016/j.compbiomed.2013.11.014. – DOI 10.1016/j.compbiomed.2013.11.014. – ISSN 00104825spa
dc.relation.referencesVoets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. (2018), 1–16. http://arxiv.org/abs/1803.04337spa
dc.relation.referencesVoets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. http://dx.doi.org/10.1371/journal.pone.0217541. – DOI 10.1371/journal.pone.0217541. – ISBN 1111111111spa
dc.relation.referencesWan, Shaohua ; Liang, Yan ; Zhang, Yin: Deep convolutional neural networks for diabetic retinopathy detection by image classification. In: Computers and Electrical Engineering 72 (2018), 274–282. http://dx.doi.org/10.1016/j.compeleceng.2018.07.042. – DOI 10.1016/j.compeleceng.2018.07.042. – ISSN 00457906spa
dc.relation.referencesWang, Juan ; Bai, Yujing ; Xia, Bin: Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 12, S. 3397–3407. http://dx.doi.org/10.1109/JBHI.2020.3012547. – DOI 10.1109/JBHI.2020.3012547. – ISSN 21682208spa
dc.relation.referencesWang, Yu T. ; Tadarati, Mongkol ; Wolfson, Yulia ; Bressler, Susan B. ; Bressler, Neil M.: Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. In: JAMA Ophthalmology 134 (2016), Nr. 2, S. 222–228. http://dx.doi.org/10.1001/jamaophthalmol. 2015.5332. – DOI 10.1001/jamaophthalmol.2015.5332. – ISSN 21686165spa
dc.relation.referencesWang, Zhe ; Yin, Yanxin ; Shi, Jianping ; Fang, Wei ; Li, Hongsheng ; Wang, Xiaogang: Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: arXiv 1 (2017), S. 267–275. http://dx.doi.org/10.1007/978-3-319-66179-7. – DOI 10.1007/978–3–319–66179–7. – ISBN 9783319661797spa
dc.relation.referencesWilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682. http://dx.doi.org/10.1016/S0161-6420(03)00475-5. – DOI 10.1016/S0161–6420(03)00475–5. – ISSN 01616420spa
dc.relation.referencesY., LeCun ; Y., Bengio ; G, Hinton: Deep learning. In: Nature 521 (2015), S. 436–444spa
dc.relation.referencesYang, Y ; Li, T ; Li, W ; Wu, H ; Fan, W ; Zhang, W: Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention MICCAI 2017. Bd. 10435, 2017.– ISBN 978–3–319–66184–1, 516–524spa
dc.relation.referencesZago, Gabriel T. ; Andreão, Rodrigo V. ; Dorizzi, Bernadette ; Teatini Salles, Evandro O.: Diabetic retinopathy detection using red lesion localization and convolutional neural networks. In: Computers in Biology and Medicine 116 (2020), Nr.November 2019. http://dx.doi.org/10.1016/j.compbiomed.2019.103537. – DOI 10.1016/j.compbiomed.2019.103537. – ISSN 18790534spa
dc.relation.referencesZander, Eckhard ; Herfurth, Sabine ; Bohl, Beate ; Heinke, Peter ; Kohnert, Klaus D. ; Kerner, Wolfgang ; Herrmann, Uwe: Maculopathy in patients with diabetes mellitus type 1 and type 2: Associations with risk factors. In: British Journal of Ophthalmology 84 (2000), Nr. 8, S. 871–876. http://dx.doi.org/10.1136/bjo.84. 8.871. – DOI 10.1136/bjo.84.8.871. – ISSN 00071161spa
dc.relation.referencesZeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural networkspa
dc.relation.referencesZhou, Lei ; Zhao, Yu ; Yang, Jie ; Yu, Qi ; Xu, Xun: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. In: IET Image Processing 12 (2018), Nr. 4, S. 563–571. http://dx.doi.org/10.1049/iet-ipr.2017. 0636. – DOI 10.1049/iet–ipr.2017.0636. – ISSN 17519659spa
dc.relation.referencesZhou, Y. ; Wang, B. ; Huang, L. ; Cui, S. ; Shao, L.: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771spa
dc.relation.referencesZhou, Yi ; Wang, Boyang ; Huang, Lei ; Cui, Shanshan ; Shao, Ling: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771. – ISSN 1558254Xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.decsDiabetic Retinopathy/diagnosiseng
dc.subject.decsRetinopatía Diabética/diagnósticospa
dc.subject.decsDeep Learningeng
dc.subject.decsAprendizaje Profundospa
dc.subject.decsAprendizaje Automáticospa
dc.subject.decsMachine learningeng
dc.subject.proposalOcular lesionseng
dc.subject.proposalDiabetic retinopathyeng
dc.subject.proposalConvolutional neural networkseng
dc.subject.proposalTransfer learningeng
dc.subject.proposalMultitask modelseng
dc.subject.proposalShallow machine learning classifierseng
dc.subject.proposalLesiones ocularesspa
dc.subject.proposalRetinopatía diabéticaspa
dc.subject.proposalRedes convolucionalesspa
dc.subject.proposalTransferecia de aprendizajespa
dc.subject.proposalModelo multitareaspa
dc.subject.proposalClasificadores clásicos de aprendizaje de máquinaspa
dc.titleAutomatic retinopathy detection using Deep learning and medical findingseng
dc.title.translatedDetección automática de retinopatía diabética usando aprendizaje profundo y hallazgos médicosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053843012.2022.pdf
Tamaño:
3.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: